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N = 4

Component Pauli String Coefficient

HH

IIX v1
IXX v2/2
IYZ v2/2
XXX v2/4
XYZ −v2/4
YXZ v2/4
YYX v2/4

HA
III γ/2
IIZ −γ/2

N = 8

Component Pauli String Coefficient

HH

IIIX v1
IIXX v2/2
IIYZ v2/2
IXXX v2/4
IXYZ −v2/4
IYXZ v2/4
IYYX v2/4
XXXX v2/8
XXYZ −v2/8
XYXZ −v2/8
XYYX −v2/8
YXXZ v2/8
YXYX v2/8
YYXX v2/8
YYYZ −v2/8

HA
IIII γ/2
IIIZ −γ/2

Supplementary Table S1. Explicit Pauli decompositions of Heb
0 Hamiltonian in the single-particle (p = 1) sector at N = 4 and

N = 8 unit cells, given for illustration. Above v1, v2 are tight-binding hopping coefficients and γ is an on-site loss rate—see
Eq. (1) of main text or Eq. (7) of Methods. The general forms of Pauli decompositions of HH and HA components are written
in Eq. (13) of Methods and used consistently thereafter in the description of our algorithms.

Experiment N p Regime v1 v2 γ Ur Init. Locs. {x0}

Supplementary Figure S3a–S3d 4 1 Edge burst 0.4 0.5 0.5 - {3}
Supplementary Figure S3e 4 1 Trivial 1 0.5 0.5 - {3}
Main Figure 2a–d 8 1 Edge burst 0.4 0.5 0.5 - {6}
Main Figure 2e 8 1 Trivial 1 0.5 0.5 - {6}
Supplementary Figure S2a–S2d 8 1 Edge burst 0.4 0.5 0.5 - {4}
Supplementary Figure S2e 8 1 Edge burst 1 0.5 0.5 - {4}
Main Figure 3a, 3c 64 1 Edge burst 0.4 0.5 1 - {51}
Main Figure 3b, 3c 64 1 Trivial 1 0.5 1 - {51}
Main Figure 4b 16 1 Variable [0, 1] 0.5 0.5 - β = 0 Gibbs
Main Figure 5a 12 2 Edge burst∗ 0.4 0.5 1 Ur = 3∀ r ∈ [1] {10, 12}
Main Figure 5b 12 2 Trivial 0.7 0.5 1 Ur = 3∀ r ∈ [1] {10, 12}
Main Figure 5c, Supplementary Figure S6a 14 2 Edge burst∗ 0.4 0.5 1 Ur = 3∀ r ∈ [3] {11, 14}
Supplementary Figure S4a, S6b 14 2 Trivial∗ 0.7 0.5 1 Ur = 3∀ r ∈ [3] {11, 14}
Main Figure 5d 14 2 Edge burst∗ 0.4 0.5 1 Ur = 3∀ r ∈ [5] {10, 14}
Supplementary Figure S4b 14 2 Trivial∗ 0.7 0.5 1 Ur = 3∀ r ∈ [5] {10, 14}
Main Figure 6a 14 2 Edge burst∗ 0.4 0.5 1 Ur = 2∀ r ∈ [1] {8, 9}
Main Figure 6b 14 2 Trivial∗ 0.7 0.5 1 Ur = 2∀ r ∈ [1] {8, 9}
Main Figure 6c 14 2 Edge burst∗ 0.4 0.5 1 Ur = 2∀ r ∈ [3] {8, 9}
Main Figure 6d 14 2 Trivial∗ 0.7 0.5 1 Ur = 2∀ r ∈ [3] {8, 9}
Supplementary Figure S5a 13 3 Edge burst∗ 0.375 0.5 1 Ur = 5∀ r ∈ [1] {9, 11, 13}
Supplementary Figure S5b 13 3 Trivial∗ 0.6 0.5 1 Ur = 5∀ r ∈ [1] {9, 11, 13}
Supplementary Figure S5c 17 3 Edge burst∗ 0.375 0.5 1 Ur = 5∀ r ∈ [3] {11, 14, 17}
Supplementary Figure S5d 17 3 Trivial∗ 0.6 0.5 1 Ur = 5∀ r ∈ [3] {11, 14, 17}
Supplementary Figure S5e 20 3 Edge burst∗ 0.375 0.5 1 Ur = 5∀ r ∈ [5] {12, 16, 20}
Supplementary Figure S5f 20 3 Trivial∗ 0.6 0.5 1 Ur = 5 ∀ r ∈ [5] {12, 16, 20}

Supplementary Table S2. Values of hopping coefficients v1, v2, on-site loss rate γ, and interaction amplitudes Ur parametrizing
the non-Hermitian Hamiltonian Heb used in experiments. Also listed are the number of unit cells N (the number of sites on the
ladder is accordingly 2N), number of bosons p, and initial boson localization used in the experiments. For ease of interpretation
we label regimes canonically supporting the non-Hermitian edge burst as “Edge burst” (v1/v2 ≤ 1) and regimes that do not as
“Trivial” (v1/v2 > 1). The ∗ mark denotes that the experiment involves multiple interacting bosons and is beyond the canonical
setting of the non-Hermitian edge burst (i.e. single-particle non-interacting).
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Experiment Devices Used

Supplementary Figure S3 ibm_hanoi
Main Figure 2a–e, Supplementary Figure S2 ibm_hanoi, ibmq_mumbai
Main Figure 3a–c ibm_sherbrooke, ibm_osaka, ibm_kyoto
Main Figure 4b ibm_hanoi, ibmq_mumbai, ibm_osaka
Main Figure 5a–d, Supplementary Figure S4, S6 ibm_osaka, ibm_kyoto, ibm_nazca
Main Figure 6a–d ibm_torino, ibm_osaka, ibm_kyoto, ibm_nazca
Supplementary Figure S5 ibm_sherbrooke, ibm_osaka, ibm_kyoto, ibm_nazca

Supplementary Table S3. Superconducting quantum devices used in experiments.

Device Qubits 2Q Gate 1Q Gate Error (×10−4) 2Q Gate Error (×10−3) Readout Error (×10−2)

10% 90% Med. 10% 90% Med. 10% 90% Med.

ibm_torino 133 CZ 1.77 9.50 3.06 2.44 13.5 4.62 0.89 5.84 2.01
ibm_sherbrooke 127 ECR 1.39 6.24 2.25 4.55 15.0 7.42 0.51 5.01 1.15
ibm_osaka 127 ECR 1.23 12.5 2.41 4.03 19.3 7.15 0.65 8.94 1.99
ibm_kyoto 127 ECR 1.46 10.5 2.68 4.56 19.4 8.01 0.61 8.15 1.51
ibm_nazca 127 ECR 1.90 8.74 3.15 6.00 24.2 10.7 0.87 7.65 2.67
ibm_hanoi 27 CX 1.55 6.02 2.18 4.40 16.1 7.60 0.67 3.19 1.09
ibmq_mumbai 27 CX 1.58 3.75 2.08 5.66 11.5 7.52 1.24 5.87 1.70

Device 1Q Gate
Time (ns)

Readout
Time (ns)

2Q Gate Times (ns) T1 (µs) T2 (µs)

10% 90% Med. 10% 90% Med. 10% 90% Med.

ibm_torino 1560 84.0 124 84.0 62.3 250 171 42.5 220 125
ibm_sherbrooke 56.9 1244 533 533 533 157 379 273 48.7 321 183
ibm_osaka 60.0 1400 660 660 660 127 396 275 19.8 322 151
ibm_kyoto 60.0 1400 660 660 660 124 320 223 28.2 237 115
ibm_nazca 60.0 4000 660 660 660 115 286 194 32.8 239 136
ibm_hanoi 32.0 818 242 576 348 68.8 194 142 25.1 284 132
ibmq_mumbai 35.6 3513 277 640 405 54.6 130 108 58.4 251 149

Supplementary Table S4. Performance characteristics of quantum devices used in experiments. For quantities that vary
between qubits on the same device, we provide 10th and 90th percentile and median values evaluated over all qubits on the
device. Characteristics summarized here are based on routine (∼daily) calibration data of the machines, retrieved over a
duration of four weeks in the middle of experiments.
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P1 P2

II II
IX IX
IY ZY
IZ ZZ
XI XX
XX XI
XY YZ
XZ YY
YI YX
YX YI
YY XZ
YZ XY
ZI ZI
ZX ZX
ZY IY
ZZ IZ

Supplementary Table S5. List of operator pairs P1 and P2 used for Pauli twirling. Each CX gate in an experiment circuit to
be twirled is replaced by P1(CX)P2 for (P1, P2) randomly drawn from the list above, such that the action of the twirled CX
remains invariant. See Methods for methodological details.



6

Supplementary Note 1: Further details on model and time-dynamics

A. Symmetries and equivalences of the quantum ladder Hamiltonian

The quantum ladder model examined in our study, which we described in Eqs. (1)–(2) of the main text and Eq. (7)
of Methods, possesses a U(1) number-conserving symmetry in the hardcore boson species. Explicitly, the Hamiltonian
Heb is invariant under the rotation cxℓ → eiϕcxℓ and c†xℓ → e−iϕc†xℓ for any ϕ ∈ R across all unit cells x ∈ [1, N ]
and sublattice ℓ ∈ {a, b} on the ladder. This implies that the total particle number is a conserved quantity under
time-evolution (i.e. is a constant of motion). This number conservation is discussed and made use of in numerous
places, for example as a physical constraint for error mitigation, as described in the main text and Methods.

The non-interacting Heb
0 possesses additional symmetries that constrain its complex spectrum. Here, it is most

convenient to consider the Bloch Hamiltonian without the imaginary loss term, Heb

0 (k) = Heb
0 (k) + iγI/2, where the

Bloch Hamiltonian Heb
0 (k) was given in Eq. (1) of the main text. Then we note the following symmetries,

• Chiral symmetry characterized by τyHeb

0 (k)τy = −Heb

0 (k), which implies that the spectrum of Heb

0 is inversion-
symmetric, that is, eigenenergies come in pairs (+E,−E).

• Time-reversal symmetry characterized by τxHeb

0 (−k)τx = −Heb

0 (k)†, which implies that the spectrum of Heb

0 is
reflection-symmetric about the real axis, that is, eigenenergies come in pairs (E,E∗).

Above, τx, τy, τz are Pauli operators acting in the sublattice pseudospin space. Together, these constrain the
complex spectrum of Heb

0 to be reflection-symmetric about both the Re(E) = 0 and Im(E) = −γ/2 lines, as observed
in Figures 4b–c of the main text.

Lastly, as mentioned in the main text, the non-interacting quantum ladder model Heb
0 is unitarily equivalent to the

non-Hermitian Su–Schrieffer–Heeger (SSH) model [1, 2] with left-right asymmetric hoppings. Explicitly, the trans-
formation R†

SSHHeb
0 (k)RSSH with the unitary pseudospin rotation RSSH = e−iπσx/4 maps Heb

0 (k) onto the canonical
non-Hermitian SSH model [3] with intercell hopping v2 and asymmetric intracell hoppings v1 ± γ/2. This equivalence
immediately establishes the presence of the non-Hermitian skin effect (NHSE) on the quantum ladder model. A
non-unitary similarity transformation involving site-dependent rescaling can map the quantum ladder model onto the
Hermitian SSH model [2].

B. Speed limit on energy variation during non-Hermitian time-evolution

As mentioned in the discussion of Section II G of the main text, while a time-independent non-Hermitian Hamil-
tonian is not energy-conserving in the same sense as a time-independent (and therefore continuously time-translation
symmetric) Hermitian Hamiltonian of a closed quantum system is, it can nonetheless be shown that energy varia-
tions during time-evolution under a time-independent non-Hermitian Hamiltonian are bounded by a fixed limit. This
speed limit is determined by the magnitude (i.e. norm) of the anti-Hermitian part of the Hamiltonian, relative to the
Hermitian part.

Concretely, consider an arbitrary non-Hermitian Hamiltonian H = HH−iHA, where HH and −iHA are its Hermitian
and anti-Hermitian parts respectively. Without loss of generality, the Hamiltonian can be rescaled such that ∥HH∥2 =
1, where here ∥·∥2 denotes the spectral norm. Starting from an initial normalized quantum state ω0, the state after
evolution by time t is

ωt = e−iHtω0e
+iH†t. (S1.1)

We evaluate the speed of change of energy of the state,∣∣∣∣ ddtEt

∣∣∣∣ = ∣∣∣∣ ddt ⟨H⟩ωt

∣∣∣∣ = ∣∣∣∣ ddt tr(Hωt)

∣∣∣∣ = ∣∣∣∣ ddt tr(He−iHtω0e
+iH†t

)∣∣∣∣
=

∣∣∣∣tr[H(
d

dt
e−iHt

)
ω0e

+iH†t +He−iHtω0

(
d

dt
e+iH†t

)]∣∣∣∣
=

∣∣∣tr[H (−iH) e−iHtω0e
+iH†t +He−iHtω0

(
+iH†) e+iH†t

]∣∣∣
=

∣∣tr[(H† −H
)
Hωt

]∣∣
= 2|tr(HAHωt)|,

(S1.2)
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where we have used the cyclic property of the trace. Then, noting that ωt is a quantum state and is positive
semidefinite, Hölder’s inequality for inner product spaces implies∣∣∣∣ ddtEt

∣∣∣∣ ≤ 2∥HAH∥2 tr(ωt). (S1.3)

Lastly, noting that the spectral norm is sub-multiplicative and using the triangle inequality, we have∣∣∣∣ ddtEt

∣∣∣∣ ≤ 2∥HA∥2∥H∥2 tr(ωt)

≤ 2∥HA∥2 (∥HH∥2 + ∥HA∥2) tr(ωt)

≤ 2∥HA∥2 (1 + ∥HA∥2) tr(ωt),

(S1.4)

which is the speed limit we alluded to. Observe that for Hermitian Hamiltonians, for which HA = 0, this bound
reproduces energy conservation, ∣∣∣∣ ddtEt

∣∣∣∣ ≤ 0 =⇒ d

dt
Et = 0. (S1.5)

In the analysis above, the energy of the state Et is defined with respect to ωt with no further normalization
considerations. However, in the non-Hermitian setting, state normalization is not generically preserved—i.e. tr(ωt) ̸=
tr(ω0) = 1. Then there is no physical reason to forbid scalar rescaling of quantum states as in conventional Hermitian
systems, that is, one can envision mathematical transformations ωt 7→ αωt for any α > 0 to be allowed. Manifestly
Et and (d/ dt)Et as analyzed above are not invariant to such rescalings. To enforce invariance, we may consider Et

and (d/ dt)Et normalized by the quantum state norm tr(ωt). Then we have the compact result

1

tr(ωt)

∣∣∣∣ ddtEt

∣∣∣∣ ≤ 2∥HA∥2 (1 + ∥HA∥2) . (S1.6)
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Supplementary Note 2: Further details on quantum simulation methods

A. Implementation of uncontrolled and coherently controlled multi-qubit Pauli rotations

An exponentiated Pauli string e−iθσ for a coefficient θ ∈ R and Pauli string σ acting on n qubits, also referred to as
a multi-qubit Pauli rotation, can be implemented on a quantum circuit with the following standard construction [4],

e−iθσ = B†E†Rz
1(2θ)EB, B =

n⊗
j=1

Bj , E† =

n∏
j=2
σj ̸=I

CXj1, Bj =


I σj ∈ {I, Z}
H σj = X

HS† σj = Y,

(S2.1)

where we have written σ = ⊗n
j=1σj for single-qubit Pauli operators σj ∈ {I, X, Y, Z}, and we assume the first and last

Paulis are non-trivial, σ1 ̸= I and σn ̸= I, without loss of generality. Here B is a layer of Clifford single-qubit rotations
acting as a basis transformation, E is an entangler that connects qubits in the support of the Pauli string, CXjj′ is
a CX gate with control and target on qubits j and j′ respectively, and H and S are the Hadamard and phase gates
respectively. The Rz rotation gate in the middle of the construction acts only on a single qubit. See Supplementary
Figure S1a for a circuit diagram.

The structure of the entangler E above requires numerous long-range CX gates. In particular, CX gates connecting
the nth qubit and the first qubit are needed, amongst others. This is problematic on devices with effectively linear
nearest-neighbor (LNN) qubit connectivity, where qubits are connected only to adjacent ones in a one-dimensional
chain. While in principle a long-range CX can be decomposed into nearest-neighbor CXs through the insertion
of SWAP gates, which exchange the states of neighboring qubits and in turn can be implemented with 3 nearest-
neighbor CXs, or a bridge gate construction [5] (see Supplementary Figures S1c and S1e for circuit illustrations),
these decompositions are hugely expensive in the circuit depth and gate counts incurred.

An alternative implementation of the entangler E uses a ladder of CX gates that span qubits in the support Λ(σ)
of σ, and reduces both the number of non-nearest-neighbor CX gates and their average range:

E† =

|Λ(σ)|∏
j=2

CXΛ(σ)jΛ(σ)j−1
, Λ(σ) = (j = 1, 2, . . . , n : σj ̸= I) , (S2.2)

which is illustrated in Supplementary Figure S1b. This implementation requires non-nearest-neighbor CX gates
only to connect across qubits not in the support of σ. It is thus advantageous to use this structure on LNN qubit
connectivity topologies, as is the case in our experiments.

The controlled versions of the exponentiated Pauli string e−iθσ are written

C
[
e−iθσ

]
= |0⟩ ⟨0| ⊗ I+ |1⟩ ⟨1| ⊗ e−iθσ,

C
[
e−iθσ

]
= |1⟩ ⟨1| ⊗ I+ |0⟩ ⟨0| ⊗ e−iθσ = (X ⊗ I)C

[
e−iθσ

]
(X ⊗ I),

(S2.3)

where we have introduced an additional qubit to act as the control, and C and C denote coherent control by the |0⟩
and |1⟩ states of the control quit respectively. That is, C[eiθσ] acts as the identity and as e−iθσ on the n system qubits
when the control qubit is in the |0⟩ and |1⟩ states respectively. The C[e−iθσ] gate is identical to C[e−iθσ] but with the
control states flipped, and can be implemented as C[e−iθσ] sandwiched by X gates on the control qubit.

A straightforward but naïve circuit construction for C[e−iθσ] follows by adding controls to every gate in the circuit
for e−iθσ as written in Eqs. (S2.1) and (S2.2) above. This turns the single-qubit Clifford gates in the B layers into
controlled Cliffords, the CX gates in E into Toffoli gates (double-controlled X gates), and the single-qubit Rz rotation
into a controlled Rz rotation. Using the CX ladder implementation in Eq. (S2.2), we have explicitly

C
[
eiθσ

]
= CB† CE† CRz

1(2θ) CE CB, CB =

n⊗
j=1

CBj , CE† =

|Λ(σ)|∏
j=2

CCXΛ(σ)jΛ(σ)j−1
, (S2.4)

where CCXjj′ = C[CXjj′ ] is the Toffoli gate with the control ancillary qubit and qubit j as controls, and qubit j′ as
the target. But this construction is stupendously expensive, as controlled gates are deep when decomposed into 1- and
2-qubit basis gates satisfying qubit connectivities. For example, a Toffoli gate decomposes into 6 CXs disregarding
connectivity [4, 6]; satisfying connectivity further increases this overhead as gates have to be introduced to bridge
between non-adjacent qubits.
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A much more efficient construction for C[e−iθσ] arises by noting that the circuits in Eqs. (S2.1) and (S2.2) are
symmetric, E†E = I and B†B = I, and so without the Rz in the middle the circuit collapses into the identity. Then

C
[
eiθσ

]
= B†E† CRz

1(2θ)EB (S2.5)

and the CRz gate decomposes compactly into a pair of CX gates and a pair of single-qubit Rz rotations. See
Supplementary Figures S1f and S1g for circuit diagrams. This construction for C

[
e−iθσ

]
is only slightly more expensive

than the uncontrolled e−iθσ itself, incurring a pair of CXs to connect to the control qubit and an additional single-qubit
Rz rotation. We use this implementation in our experiments.

B. Implementation of MA map and time steps

We reproduce the defining requirement of the map MA as written in Eq. (12) of Methods here,

MA(ρ) = N
[
e−HA∆tρe−HA∆t

]
+O

(
1

m2

)
, (S2.6)

for a Hermitian Hamiltonian HA, any arbitrary state ρ, and simulation time step ∆t = t/m for a number of time steps
m. In the context of our present work, HA originates from a parent Hamiltonian H = HH − iHA which need not be
Hermitian, where HH and −iHA are the Hermitian and anti-Hermitian components of the Hamiltonian respectively.
As written above, the action of MA is to implement normalized imaginary time-evolution under HA.

a. An effective square root of HA is known or efficiently computable

In the case that a Hermitian auxiliary Hamiltonian R is known or efficiently computable such that R2 = HA, a
linear combination of unitaries (LCU) construction implementing an action W ∝ U+ + U− with U± approximating
forward and backward time-evolution by R can be used to realize the MA map, as described in Methods. That is,
supposing that we have circuit components U± such that

U± = e±iR
√
2∆t +O

(
∆t2

)
, (S2.7)

we can then assemble via LCU

W =
1

2
(U+ + U−) =

1

2

(
e+iR

√
2∆t + e−iR

√
2∆t +O

(
∆t2

))
= 1−R2∆t+O

(
∆t2

)
= e−HA∆t +O

(
∆t2

)
,

(S2.8)

and accordingly

MA(ρ) = N
[
WρW †] = N

{[
e−HA∆t +O

(
∆t2

)]
ρ
[
e−HA∆t +O

(
∆t2

)]}
= N

[
e−HA∆tρe−HA∆t

]
+O

(
1

m2

)
,

(S2.9)

as desired. As introduced in Methods, the LCU construction implementing W straightforwardly requires a single
ancillary qubit prepared in the |+⟩ state, which coherently controls U+ and U− on the system register conditioned
on its |0⟩ and |1⟩ states interchangeably, followed by a measurement in the σx-basis, equivalent to a Hadamard gate
followed by a computational basis (σz-basis) measurement. The implementation succeeds when a |0⟩-outcome is
reported and fails otherwise. The ancillary qubit can be re-used through mid-circuit qubit reset before the next time
step begins. Figure 1d in the main text illustrates the general LCU circuit structure, and Figures 1c and 1e illustrate
the structure of time-evolution circuits assembled using this approach.

The square root R can be obtained from algebraic manipulation of HA in certain problems. Constraints on the
symmetries and properties of the system can oftentimes also be exploited. There is broad literature on, for example, the
roots of topological insulators and superconductors [7–10] and generalized classes of symmetry-protected topological
or topologically ordered systems [11–16]. In situations where R is difficult to obtain, an alternative approach that
requires only knowledge of HA, albeit incurring higher overhead, can be used, which we detail in Supplementary
Note 2 B d.
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The coherently controlled forward and backward time-evolution blocks U+ and U− in the LCU can be implemented
by trotterization, as we mention in Methods. For this, we require the Pauli decomposition of R, which then lends a
standard implementation of U± through, for example, the first-order Trotter-Lie product formula,

R =

KR∑
k=1

γkη
k, U± =

KR∏
k=1

e±iγkη
k
√
2∆t, CU± =

KR∏
k=1

C
[
e±iγkη

k
√
2∆t

]
(S2.10)

where coefficients γk ∈ R and ηk are Pauli strings. That is, the time-evolution circuits for U± comprise layers of
multi-qubit Pauli rotations (i.e. exponentiated Pauli strings), and accordingly CU± can be implemented as layers of
coherently controlled multi-qubit Pauli rotations. We discussed in Supplementary Note 2A the efficient implementa-
tion of controlled multi-qubit Pauli rotations at the gate level on hardware.

A relevant question concerns the conditions under which R exists. A positive semidefinite Hermitian HA always
possesses a square root R that is positive semidefinite and Hermitian. In the case that HA is not positive semidefinite,
one can trivially introduce an energy offset to make it so, HA → HA+λI, for any λ ≥ |λmin| where λmin is the smallest
eigenenergy of HA. Such an energy offset is inconsequential to the normalized time-evolution, as

N
[
e−(HA+λI)∆tρe−(HA+λI)∆t

]
= N

[
e−2λ∆te−HA∆tρe−HA∆t

]
= N

[
e−HA∆tρe−HA∆t

]
, (S2.11)

and therefore works as a trick of convenience to realize well-defined choices of R. Here, on grounds of physicality
of the system of interest, we assume that the spectrum of HA is bounded from below, such that λmin is finite. The
minimum eigenenergy λmin can be estimated from the algebraic structure of HA or numerically. Alternatively, without
additional calculation, a simple conservative, but typically much excessive, choice is λ =

∑KA

k=1 |βk|, where βk are the
coefficients of the Pauli decomposition of HA as written in Eq. (13) of Methods.

In the present context of the edge burst, it was not necessary to invoke this energy shift as Heb
A is positive semidefinite,

as can be seen from Eq. (8) of Methods. In fact, by leveraging the on-site structure of Heb
A , we were able to obtain

a Hermitian auxiliary Hamiltonian Heb
aux taking the role of R, such that the normalized superposition of its forward

and backward time-evolutions via LCU implements the e−Heb
A ∆t evolution of MA exactly, instead of to O

(
1/m2

)
error as demanded generally here. We detailed this optimization in Methods. The implementation of the forward
and backward time-evolutions via first-order trotterization, however, re-introduces O

(
1/m2

)
approximation error, so

the reduction in error from this optimization is sub-dominant. On general HA with complicated, possibly interacting,
structure, we expect that such modifications to achieve errorless LCUs would be difficult; but we re-iterate that they
are unnecessary for the simulation methodology to work.

b. Circuit depth reduction by merging pairs of time steps

We remark that a general circuit optimization trick can be invoked for every pair of time steps, that roughly halves
the circuit depth. We perform a re-ordering of MH and MA in the second time step,

(MA ◦MH)
2
(ρ) = (MH ◦MA ◦MA ◦MH) (ρ) +O

(
1

m2

)
, (S2.12)

as the commutator of MH and MA acting on ρ is of order O
(
∆t2

)
, and considering the middle consecutive MA ◦MA,

one observes

W 2 ∝ (U+ + U−)
2
=

(
e+iR

√
2∆t + e−iR

√
2∆t +O

(
∆t2

))2

=
(
I+ e−2iR

√
2∆t +O

(
∆t2

))(
I+ e+2iR

√
2∆t +O

(
∆t2

))
,

(S2.13)

which informs us that the same action across two time steps can be realized to the same O
(
1/m2

)
error but restructured

in the following way,

(MA ◦MH)
2
(ρ) = (MH ◦MA− ◦MA+ ◦MH) (ρ) +O

(
1

m2

)
, (S2.14)

where

MA±(ρ) = N
[(

I+ e∓2iR
√
2∆t

)
ρ
(
I+ e±2iR

√
2∆t

)]
+O

(
1

m2

)
. (S2.15)
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That is, the first map MA+ requires an LCU that superposes the unitaries I and forward time-evolution by 2R,
and the second map MA− requires an LCU that superposes the unitaries I and backward time-evolution by 2R. Now,
we note that the implementation of the I unitary portions in the LCU is trivial, as a coherently controlled-I is simply
the identity—i.e. no gates at all are required.

Therefore, this optimized implementation of (MA ◦ MA)
2 requires only two controlled time-evolution unitaries

(forward and backward by 2R), compared to the original four (two pairs of forward and backward by R). We
illustrate this circuit transformation in Supplementary Figures S1i and S1j. As the time-evolution unitaries are
expensive and account for an overwhelming majority of the depth of the overall quantum simulation circuits, this
optimization is hugely beneficial. We employed this technique in all of our experiments,

c. Higher-order implementations of MA via many-term LCUs

In the main text, Methods, and Supplementary Note 2 B a, we considered mainly an MA that approximates
normalized time-evolution by −iHA to O

(
1/m2

)
error, as that is sufficient for our quantum simulation methodology

for non-Hermitian Hamiltonian as a whole to work. This defining requirement on MA was written in Eq. (12) of
Methods and repeated in Eq. (S2.6). But it can also be of interest to examine more advanced realizations of MA that
approximates the time-evolution to higher-order error,

MA(ρ) = N
[
e−HA∆tρe−HA∆t

]
+O

(
1

mκ

)
, (S2.16)

for orders κ ≥ 2. As described in Methods, in particular Eq. (15) and the surrounding discussion, the general strategy
to obtain such realizations is to consider LCU expansions of the form

A0I+
B∑

b=1

Ab

(
e+iR∆τb + e−iR∆τb

)
= e−HA∆t +O

(
1

mκ

)
, (S2.17)

for coefficients A0, . . . , AB ≥ 0 and rescaled simulation times {∆τb}b, and to match their Taylor expansions order-by-
order on both sides. This leads to a system of polynomial equations that can then be solved. Generally, for any κ ≥ 2,
candidate LCU expansions realizing MA can be found this way, and it is generally beneficial to select a solution with
a minimal number of term pairs B as this directly reduces circuit depth and the number of ancillary qubits needed
to implement the LCU. We provide some examples of higher-order expansions with a minimal number of terms in
Supplementary Table S6.

κ Expansion # Anc. Qubits

2 e±iR
√
2∆t 1

3 4I+ e±iR
√
6∆t 2

4 (3−
√
6)e±iR

√
2(3+

√
6)∆t + (3 +

√
6)e±iR

√
2(3−

√
6)∆t 2

5 32I+ (7− 2
√
10)e±iR

√
2(5+

√
10)∆t + (7 + 2

√
10)e±iR

√
2(5−

√
10)∆t 3

Supplementary Table S6. Examples of linear combination of unitaries (LCU) expansions that approximate the non-unitary
(imaginary) time-evolution propagator e−HA∆t for a Hermitian Hamiltonian HA to O(1/mκ) error, and thus can be used
to implement the MA map used in our time-evolution algorithm for general non-Hermitian Hamiltonians. The κ = 2 case
corresponds to the setting discussed in the main text, Methods, and Supplementary Note 2 B a. Higher κ beyond those presented
here can be achieved by using more terms in the LCU expansions. Here R is any Hermitian Hamiltonian such that R2 = HA,
we use the shorthand e±iA = e+iA + e−iA, and we present the expansions up to overall normalization factors that are omitted.

d. An effective square root of HA is not known

In the case that a square root of HA is not known or cannot be efficiently found, there is an alternative, more
general approach of realizing MA, albeit requiring an extra ancillary qubit register in addition to the LCU ancillary
qubit(s). Just like the LCU ancillary qubits, this ancillary qubit register can be re-used through mid-circuit qubit
reset before the next time step.
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Recall that by premise H is local and thus so is HA; we assume they are l-local, that is, they comprise terms that
act on at most l ∈ O(1) sites each on the system, independent of the system size. Then we can write

HA =

LA∑
k=1

κkhk, (S2.18)

for real coefficients κk > 0 and Hermitian hk that each have support on at most l sites, and a number of terms LA

that is polynomial in the system size. For simplicity, we assume hk are positive semidefinite; this can always be made
the case by adding suitable energy offsets to HA, whose spectrum we assume to be lower-bounded on grounds of
physicality, or alternatively to each hk, in a similar fashion as discussed in Supplementary Note 2B a. Then there
exist positive semidefinite Hermitian rk for each hk such that r2k = hk. Either these are algebraically known from the
form of hk, or they can be efficiently computed, since each hk acts only on l sites and can each be efficiently processed.

Now we consider the larger Hermitian Hamiltonian

L =

LA∑
k=1

√
κkrk ⊗ (|k⟩a ⟨0|a + |0⟩a ⟨k|a) , (S2.19)

where we have introduced an ancillary Hilbert space that is at least (LA + 1)-dimensional, that is, comprising at least
⌈log2(LA + 1)⌉ qubits, labeled by the subscript ‘a’ above. As defined, L is Hermitian, and one observes

L2p (|ψ⟩ ⊗ |0⟩a) = [(HA)
p |ψ⟩]⊗ |0⟩a , (S2.20)

for any power p ∈ N and any system state |ψ⟩. That is, given that the ancillary register starts in state |0⟩a, the action
of L2p is identical to that of (HA)

p on the system qubits. Note that the ancillary register is brought back to |0⟩a after
being acted upon by L2p, and indeed is entirely disentangled with the system qubits.

In the same spirit as in Supplementary Note 2 B a, we consider an LCU construction implementing W ∝ (U++U−)
with U± approximating forward and backward time-evolution by L to O

(
1/m2

)
error. The difference is that U± here

act jointly on the system and ancillary qubit register, whereas U± before acted only on the system register with no
involvement of any ancillae. Explicitly, supposing that we have circuit components U± such that

U± = e±iL
√
2∆t +O

(
∆t2

)
, (S2.21)

we find

W (|ψ⟩ ⊗ |0⟩a) =
1

2

(
U+ + U−

)
(|ψ⟩ ⊗ |0⟩a) =

1

2

(
e+iL

√
2∆t + e−iL

√
2∆t +O

(
∆t2

))
(|ψ⟩ ⊗ |0⟩a)

=
[
I− L2∆t+O

(
∆t2

)]
(|ψ⟩ ⊗ |0⟩a)

= [(I−HA∆t) |ψ⟩]⊗ |0⟩a +O
(
∆t2

)
= e−HA∆t |ψ⟩ ⊗ |0⟩a +O

(
∆t2

)
.

(S2.22)

Examining the system qubits, we find accordingly that

MA(ρ) ≡ N
{
tra

[
W (ρ⊗ |0⟩a ⟨0|a)W

†]}
= N

[
e−HA∆tρe−HA∆t ⊗ |0⟩a ⟨0|a

]
+O

(
1

m2

)
= N

[
e−HA∆tρe−HA∆t

]
+O

(
1

m2

)
,

(S2.23)

as desired. That is, an LCU construction implementing W ∝ (U+ + U−) achieves MA.
A remaining detail is how the coherently controlled U± necessary in the LCU can be implemented. Without loss of

generality we can perform processing (i.e. perform Pauli-basis decomposition) such that the {rk}k terms in Eq. (S2.19)
are Pauli strings. Likewise, we consider expressing the ancillary portion of each of the terms in L as Pauli strings.
The details of this ancillary Pauli decomposition depends on the mapping chosen between the (LA + 1)-dimensional
Hilbert space considered here and a register of qubits—we discuss this below. The number of terms LA in the
Hamiltonian L remains polynomial in the system size after this rewriting. Ultimately, once L has been expressed
entirely as Pauli strings, conventional trotterization, such as the first-order Trotter-Lie product formula, can be used
to implement forward and backward time-evolution (U±) by L to error O

(
1/m2

)
or better, in the same fashion as

for HA originally discussed in the main text, Methods, and Supplementary Note 2 B a. Coherently controlling U±
entails adding controls to the Pauli rotations in the trotterization, and we have discussed an efficient implementation
of these operations in Supplementary Note 2A.

Lastly, we revisit the issue of mapping the ancillary space onto qubits. We discuss two natural choices:
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• Using the minimum possible ⌈log2(LA + 1)⌉ number of ancillary qubits. Then the states {|k⟩a}k can be mapped
to the basis states of the ancillary qubits in, for example, binary ascending order,

|0⟩a ≡ |0 . . . 00⟩ , |1⟩a ≡ |0 . . . 01⟩ , |2⟩a ≡ |0 . . . 10⟩ , |3⟩a ≡ |0 . . . 11⟩ , . . . . (S2.24)

While this is space-efficient (in terms of qubit count), an issue is that |k⟩a ⟨0|a + |0⟩a ⟨k|a can be relatively
complicated when expressed in the Pauli basis of the qubits, containing a number of Pauli strings polynomial
in LA with weight up to ⌈log2(LA + 1)⌉. Therefore the circuit depth may not be particularly shallow.

• Choosing to use LA qubits instead, we enjoy a reduction in circuit depth and complexity, at the expense of using
a larger number of ancillary qubits. Here we map the states {|k⟩a}k to the basis states of the ancillary qubits
via one-hot encoding, for example,

|0⟩a ≡ |000 . . . 0⟩ , |1⟩a ≡ |100 . . . 0⟩ , |2⟩a ≡ |010 . . . 0⟩ , |3⟩a ≡ |001 . . . 0⟩ , . . . . (S2.25)

That is, {|k⟩a}k for k > 0 is identified with the ancillary qubit state where the kth qubit is in |1⟩ while all other
qubits are in |0⟩. Then straightforwardly,

|k⟩a ⟨0|a + |0⟩a ⟨k|a ≡ σx
k , (S2.26)

within the subspace of qubit states associated with {|k⟩a}k, where σx
k denotes the single-qubit σx Pauli operator

acting on the kth ancillary qubit. Thus each |k⟩a ⟨0|a+ |0⟩a ⟨k|a term maps to only a single-qubit Pauli operator.
This is particularly simple to implement.
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(a)

𝑅

𝐻

(b)

(c) (d) (e)

(f) (g)

𝐻

(i)

(j)

(h)

(k)

Supplementary Figure S1. Detailed quantum simulation circuit structures and components. (a) Naïve implementation
of an exponentiated Pauli string e−iθσ, also referred to as a multi-qubit Pauli rotation, comprising single-qubit Clifford basis
changes and an entangler built from CX gates sandwiching a single Rz rotation, as described in Supplementary Note 2 A. The
Pauli string illustrated here is σ = σz

1σ
x
2 I3σy

4σ
z
5 . (b) Alternative implementation of the same multi-qubit Pauli rotation as in

(a) but with the entangler constructed via CX ladders, which reduces the number of long-range CXs and is more suitable for
hardware. (c) A non-nearest neighbor CX gate can be reduced to a nearest-neighbor one through insertion of SWAP gates.
Longer-range CXs can be decomposed in the same manner recursively. (d) A SWAP gate decomposes into 3 CX gates. (e)
Bridge gate construction for non-nearest neighbor CX gates, which is more efficient in CX gate count than the SWAP insertion
approach. Likewise, longer-range CXs can be decomposed recursively. (f) A coherently controlled e−iθσ amounts to inserting
a control on the central single-qubit Rz rotation. (g) A controlled-Rz gate decomposes into CX gates and 2 single-qubit
Rz rotations. (h) The ∞-temperature Gibbs state (i.e. maximally mixed state) can be prepared by mid-circuit measuring
qubits prepared in the |+⟩ product state and discarding the measurement outcomes. (i) Our architecture of time-evolution
circuits for non-Hermitian Hamiltonians as described in the main text, Methods and in Supplementary Note 2B, comprising
time steps of MH and MA maps approximating evolution by the Hermitian and anti-Hermitian parts of the Hamiltonian
respectively. MA is achieved through a linear combination of unitaries (LCU) construction, superposing forward and backward
time-evolution. A pair of adjacent time steps is highlighted. (j) Merging of a pair of time steps as described in Supplementary
Note 2Bb, which halves the circuit depth of MA by removing a LCU term from each of the time steps. (k) Ansatz for circuit
recompilation, comprising an interleaved brickwork pattern of CX gates and U(2) single-qubit rotations. The angles of the
single-qubit rotations are treated as variational parameters.
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Supplementary Note 3: Further details on error suppression and mitigation methods

A. Zero-noise extrapolation with physicality constraints

As described in Methods, we employed zero-noise extrapolation (ZNE) as an error mitigation technique [17–21]
to reduce the effects of hardware noise (e.g. gate errors and decoherence) on our experiment results. To review, we
performed repetitions of each experiment circuit at noise amplification factors 1 = λ1 < λ2 < . . . < λr, where λ = 1
corresponds to the unmodified experiment. We assumed an affine relation between ⟨O(λ)

k ⟩ and λ,

⟨O(λ)
k ⟩ ≈ mkλ+ ck, (S3.1)

where {Ok}k are the measured observables on the circuit, and {mk}k and {ck}k are gradients and zero-noise intercepts
respectively. Thus, with ⟨O(λ)

k ⟩ data measured on hardware at λ1, . . . , λr, we perform the least-squares regression

(m∗, c∗) = argmin
m,c

∑
k

r∑
γ=1

(
mkλγ + ck −

〈
O

(λγ)
k

〉)2

, (S3.2)

to find best-fit gradients m∗ and intercepts c∗, as also expressed in Eq. (27) of Methods. On top of this standard
ZNE procedure, we imposed physicality constraints on the regression to ensure that our mitigated expectation values
(and the regression itself) are physically meaningful. We elaborate on these constraints below.

• Experiments in p-particle Fock sector measuring site-resolved occupancies, that is, {Ok}k = {nxℓ}xℓ. This
includes, for example, the experiments shown in Figures 2, 3, 5, 6 of the main text, and Supplementary Figures S2
to S6. For these, we invoked number conservation, which dictates that the number of particles in the system
when measured must be p—otherwise an unphysical violation of the number-conserving symmetry of the system
has taken place—and hardcore bosonic statistics of the particles in our system, which forbid double occupancy
and thus constrains 0 ≤ ⟨nxℓ⟩ ≤ 1 for all sites. Explicitly, we require∑

k

〈
O

(λ)
k

〉
= p ∧ 0 ≤

〈
O

(λ)
k

〉
≤ 1, (S3.3)

at all noise factors 0 ≤ λ ≤ λr, even at intermediary levels not directly measured on hardware but implied by
the regression. On the affine relation of Eq. (S3.1), this translates into regression constraints∑

k

mk = 0 ∧
∑
k

ck = 1 ∧ 0 ≤ c ≤ 1 ∧ 0 ≤ mλr + c ≤ 1. (S3.4)

• Experiments measuring the imaginary energy in the p-particle sector, that is {Ok}k = {Heb
A }. This includes, for

example, the experiments shown in Figure 4 of the main text. For these we invoked the purely lossy character
of Heb, that is, that Heb

A is positive semi-definite, which dictates that
〈
Heb

A

〉
≤ 0. Furthermore, as there are

p conserved particles in the quantum system and the smallest eigenenergy of Heb
A is −γ, by the variational

principle the imaginary energy of any quantum state must satisfy −pγ ≤
〈
Heb

A

〉
. These physicality bounds

should hold at all noise factors 0 ≤ λ ≤ λr, just as in the case above. On the affine relation of Eq. (S3.1), this
translates into regression constraints

−pγ ≤ c ≤ 0 ∧ −pγ ≤ mλr + c ≤ 0, (S3.5)

where we have dropped the vector notations for m, c as there is only a single measured observable in this context.

We remark that the affine relation in Eq. (S3.1) is not a unique choice and is effectively a linear approximation—the
exact variation of ⟨O(λ)

k ⟩ with noise amplification factor λ is in reality an unknown function of the observables, circuit
structure, and hardware error characteristics. Prior studies have examined [17–21] other ansatzes, the most common
choices other than affine being a quadratic or exponential variation of ⟨O(λ)

k ⟩ with λ. As our circuits are non-Clifford
and the hardware noise experienced in experiments is not generally simply a depolarizing channel, there is no strong
theoretical justification for any of these other ansatzes, and we did not employ them for simplicity in our work.
An additional theoretical challenge is also that these other ansatzes do not, strictly speaking, allow certain physical
constraints to hold, unlike the affine relation. For example, as these other regression ansatzes are non-linear, they
generally do not support number conservation, as in

∑
k ⟨O(λ)

k ⟩ = p in Eq. (S3.3), across all noise noise amplification
factors 0 ≤ λ ≤ λr. Therefore the physical soundness of the regression result using these other ansatzes, in our
context, would be unclear.
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a. Amplifying noise through local gate folding

To artificially amplify noise to factors λ > 1, we employed randomized local gate folding (see e.g. Ref. [20]), which
probabilistically replaces each gate G in the circuit by GG†G, as described in Methods. Amplifying the number of
gates in the circuit directly amplifies accumulated noise from gate errors, but also increases circuit depth and thereby
amplifies, for example, thermal relaxation and dephasing noise (i.e. background decoherence). We comment that we
perform folding such that the total number of 1- and 2-qubit gates in the circuit is each increased by factor λ. Merely
targeting an increase in the total number of gates in the circuit, irrespective of their type, by λ is insufficient. This is
because the error rates of 1- and 2-qubit gates typically differ massively on hardware—indeed, by at least an order of
magnitude on the devices used in our experiments—so amplifying the total number of gates by λ without maintaining
balance between the number of 1- and 2-qubit gates does not ensure that circuit noise is amplified by λ.

b. Randomizing coherent errors through Pauli twirling

Lastly, we comment on the usage of randomized Pauli twirling [18, 22, 23] in producing circuits for ZNE. As
described in Methods, for each experiment circuit at each λ, we produced a set of randomized gate-folded circuits
and applied randomized Pauli twirling on those circuits. These circuits were executed on hardware and their results
averaged, to produce the ⟨O(λ)

k ⟩ data for regression. The advantage of applying randomized Pauli twirling is that
2-qubit error processes on the circuits, which are the dominant source of noise, are diagonalized into incoherent
stochastic (Pauli) noise channels [18, 22, 23], which can be straightforwardly averaged over (across circuit shots and
realizations) in experiments. This results in more consistent trends of ⟨O(λ)

k ⟩ against λ, which ZNE relies upon.
Without this conversion of noise processes, consistency of ⟨O(λ)

k ⟩ trends is less certain. For example, the coherent
composition of coherent error channels (e.g. unitary errors arising from gate angle mis-calibration) means that the
measured ⟨O(λ)

k ⟩ on a circuit instance can be sensitive to the exact gates selected to be folded.
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Supplementary Note 4: Additional Results

A. Additional experiment results on the canonical edge burst

In Figure 2 and surrounding discussion of the main text, we described hardware results on an N = 8-unit cell
quantum ladder in the edge burst and trivial regimes. In Supplementary Figure S2 below, we present an analogous
breakdown of results on the same quantum ladder (i.e. the same Hamiltonian Heb) but with different initial particle
localizations, here at x0 = 4 instead of x0 = 6 in the main text. Identical to the experiments of Figure 2, we employed
trotterization for our quantum simulation circuits without further compression (e.g. recompilation) before execution
on hardware. The observations and conclusions are qualitatively identical to those in the main text. The real-space
signature of the edge burst, a spike in final escape probability Px at the x = 1 boundary, is clearly observed in the
edge burst regime; in contrast in the trivial regime no boundary increase in Px appears. Likewise, we observe our
error mitigation strategies of zero-noise extrapolation (ZNE) and readout error mitigation (RO) to be of considerable
benefit to data quality.

We additionally show a breakdown of experiment results on a smaller N = 4 quantum ladder in Supplementary
Figure S3, employing likewise trotterization in the quantum simulation methodology. Here, we display a complete
dataset of the measured site-resolved occupancy densities ⟨nxℓ⟩ρt

for all unit cells x ∈ [4] on the ladder and sublattices
ℓ ∈ {a, b}. The observations are qualitatively similar to those before, namely a spike in Px at the x = 1 boundary in
the edge burst regime and an absence of this signature in the trivial regime.
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Supplementary Figure S2. Canonical edge burst on N = 8 quantum ladder with different initial particle localization.
(a) Site-resolved occupancy densities after normalized time-evolution on a 8-unit cell quantum ladder, comparing data measured
on quantum hardware at various noise amplification factors λ, after post-processing with zero-noise extrapolation (ZNE), and
exact numerics. Solid thin lines are with readout error mitigation (RO) applied; translucent thin lines behind are without.
To avoid clutter, only the a sublattice of unit cells x ∈ {1, 3, 4, 6} are shown. (b) Unit-cell-resolved escape probabilities Px(t)
obtained from the data in (a). Time-integration of the occupancy densities first recovers proper wavefunction norm, and a
second time-integration produces Px(t). (c) Total escape probability P (t) summed over all unit cells, which approaches unity
as time progresses. (d) Final unit-cell-resolved escape probabilities Px in the long-time limit. Data obtained on quantum
hardware with and without ZNE and RO, and from exact numerics, are shown. In a parameter regime supporting the edge
burst, anomalously high escape probability on the x = 1 edge of the ladder is detected; whereas in the trivial regime escape
probability is concentrated only near the initial location of the particle (at x0 = 4). Error bars are standard deviations across
8 experiment runs. See Supplementary Tables S1 and S2 for Hamiltonian parameter values and superconducting quantum
devices used. The experiments shown here complement Figure 2 of the main text, which reports results on the same quantum
ladder but with different initial particle locations (there x0 = 6).
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Supplementary Figure S3. Canonical edge burst on a smaller N = 4 quantum ladder. (a) Site-resolved occupancy
densities after normalized time-evolution on a 4-unit cell quantum ladder, comparing data measured on quantum hardware
at various noise amplification factors λ, after post-processing with zero-noise extrapolation (ZNE), and exact numerics. Solid
thin lines are with readout error mitigation (RO) applied; translucent thin lines behind are without. (b) Unit-cell-resolved
escape probabilities Px(t) obtained from the data in (a). Time-integration of the occupancy densities first recovers proper
wavefunction norm, and a second time-integration produces Px(t). (c) Total escape probability P (t) summed over all unit
cells, which approaches unity as time progresses. (d) Final unit-cell-resolved escape probabilities Px in the long-time limit.
Data obtained on quantum hardware with and without ZNE and RO, and from exact numerics, are shown. In a parameter
regime supporting the edge burst, anomalously high escape probability on the x = 1 edge of the ladder is detected; whereas
in the trivial regime escape probability is concentrated only near the initial location of the particle (at x0 = 3). Error bars
are standard deviations across 8 experiment runs. See Supplementary Tables S1 and S2 for Hamiltonian parameter values and
superconducting quantum devices used. The experiments shown here complement Figure 2 of the main text and Supplementary
Figure S2, which report results on a larger N = 8 quantum ladder.
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B. Spatially extended edge bursts with multiple interacting particles

In Figure 5 and surrounding discussion of the main text, we described the possibility of obtaining spatially extended
edge bursts spanning multiple unit cells, in contrast to the canonical single-particle edge burst that occurs on a single
unit cell, and which exhibit spatial ordering, when multiple interacting particles are present on the quantum ladder.
There, we began by examining experiments with two interacting particles. Figures 5a, 5c and 5d reported hardware
results in the edge burst without ordering and with Z2 and Z3 ordering respectively, where the occurrence of the edge
burst is clearly observed, while Figure 5b reported results without ordering in the trivial regime. As validation that
this is indeed an edge burst phenomenon, the spatially ordered edge bursts should vanish in the trivial regime. We
verify this in Supplementary Figure S4, which presents hardware results directly analogous to Figures 5c and 5d of
the main text but in the trivial regime.

Additionally, as also discussed in the main text, the same phenomenon of spatially extended and ordered edge bursts
can be observed with larger numbers of interacting particles. With p particles, it is generically possible to obtain
edge bursts extended over p unit cells from the boundary. Here, we report hardware results with three interacting
particles in Supplementary Figure S5. A spatially extended edge burst is seen in Supplementary Figure S5a, and edge
bursts with Z2 and Z3 ordering are observed in Supplementary Figure S5c and Supplementary Figure S5e respectively.
Supplementary Figures S5b, S5d and S5f show results in the trivial regime, in which no edge burst arises.

(a)

Unit 0

0 1 0 0.40 1 0 0.4 (b)

ZNE + RO
Raw

Exact

Supplementary Figure S4. Additional results with two interacting particles. (a) Site-resolved occupancy densities
and unit-cell-resolved escape probabilities Px(t) measured on a 14-unit cell quantum ladder in the trivial regime hosting two
interacting particles. The quantum ladder has density-density interactions Ur > 0 switched on for r ≤ 3. Final escape
probabilities Px obtained on hardware with and without zero-noise extrapolation (ZNE) and readout error mitigation (RO),
and exact numerics, are shown. Gray arrows denote the initial localization of the particles. (b) Same as (a) but with longer-
ranged interactions, Ur > 0 switched on for r ≤ 5, and with correspondingly larger separation in initial localization of the
particles. Error bars are standard deviations across 10 experiment runs. See Supplementary Tables S1 and S2 for Hamiltonian
parameter values and superconducting quantum devices used. No edge burst is observed in both (a) and (b). Panels (a) and
(b) complement Figures 5c and 5d in the main text respectively, which show results in the edge burst regime.
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Supplementary Figure S5. Spatially extended and ordered edge bursts with three interacting particles. (a) Site-
resolved occupancy densities and unit-cell-resolved escape probabilities Px(t) measured on a 13-unit cell quantum ladder in the
edge burst regime hosting three interacting particles. The quantum ladder has density-density interactions Ur > 0 switched on
for r = 1. Final escape probabilities Px obtained on hardware with and without zero-noise extrapolation (ZNE) and readout
error mitigation (RO), and exact numerics, are shown. Gray arrows denote the initial localization of the particles. (b) Same
as (a) but in the trivial regime. (c), (e) Occupancy densities, escape probabilities Px(t), and final escape probability Px on
(c) a 17-unit cell ladder with interactions Ur > 0 switched on for r ≤ 3, and a 20-unit cell ladder with interactions Ur > 0 for
r ≤ 5, in the edge burst regime. (d), (f) Same as (c) and (e) respectively but in the trivial regime. Spatially extended edge
bursts are observed in (a), (c), (e), with Z2 and Z3 ordering in (c) and (e) respectively. The spatial patterns of edge bursts
on unit cells are illustrated as black shading in the cartoon insets. Error bars are standard deviations across 10 experiment
runs. See Supplementary Tables S1 and S2 for Hamiltonian parameter values and superconducting quantum devices used.
The experiments shown here extend Figure 5 of the main text and Supplementary Figure S4 which were with two interacting
particles.
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C. Alternative recovery of quantum state norm from algorithm success probability

To review, recall that time-evolution by a non-Hermitian Hamiltonian H is non-unitary, and the norm of a quan-
tum state is not generically preserved during time-evolution. That is, examining the physical time-evolved state
ωt = e−iHtω0e

+iH†t from an initial state ω0, generically trωt ̸= trω0 = 1. As mentioned in the main text and
Methods, to realize time-evolution on a quantum platform in experiments, we perform normalized time-evolution,
ρt = N [e−iHtρ0e

+iH†t], where ρ0 = ω0. The normalized state ρt is related to ωt by a rescaling, ωt = A2
tρt. Accord-

ingly, by measuring any observable O on the normalized time-evolved state ρt in the experiment, we can rescale the
measurement results to be on ωt, by the relation ⟨O⟩ωt

= A2
t ⟨O⟩ρt

.
The method employed to recover At in all our reported experiments is through a double time-integration of measured

occupancy density ⟨nxℓ⟩ρt
data, as was described in detail in the main text and Methods. But as described in Methods,

there is an alternative method available. Namely, the quantum simulation algorithm for normalized time-evolution
succeeds precisely with a probability St directly related to the norm of the time-evolved quantum state. Provided
trω0 = tr ρ0 = 1 initially, A2

t ≈ St up to suppressible approximation errors in the time-evolution algorithm and
circuit construction. Thus St measured in experiments allow recovery of A2

t , to then serve the same role in enabling
estimation of observable expectation values ⟨O⟩ωt

.
In Supplementary Figure S6a, we show a concrete comparison between the two methods. We examine the same

experiment as in Figure 5c of the main text, with two interacting particles on the quantum ladder producing a
spatially extended edge burst with Z2 ordering. We report the cell-resolved final escape probabilities Px obtained via
the observed success rate of the time-evolution algorithm (denoted “Anc.” in the figure), and for ease of comparison,
include also Px obtained through the time-integration method (denoted “Int.”) previously shown in Figure 5c. We
show also a comparison of the total escape probability P (t) summed over all unit cells, obtained through the success
rate and time-integration methods. In Supplementary Figure S6b we present analogous data but in the trivial regime.

Our general observation in experiments is that both methods of recovering the quantum state norm give very similar
results after error mitigation. Indeed here, in the example shown in Supplementary Figure S6, the Px spatial profiles
obtained from the two methods exhibit a quantitative match within error bars. The P (t) time profiles are also similar;
the small differences detectable in Supplementary Figure S6 are largely inconsequential to the escape probabilities
Px(t) and Px.

(a)

Unit 0

(b)

Exact
ZNE + RO (Int.)
ZNE + RO (Anc.)

Raw (Int.)
Raw (Anc.)

Exact
Int.
Anc.

Supplementary Figure S6. Example comparison between quantum state norm recovery methods. (a) Final cell-
resolved escape probabilities Px obtained on hardware with and without zero-noise extrapolation (ZNE) and readout error
mitigation (RO), and exact numerics, shown on the left. Total escape probability P (t) summed over all unit cells versus time
t, shown on the right. (b) Analogous experiment data but in the trivial regime. Data denoted “Int.” were obtained via double
time-integration of measured site-resolved occupancy densities for quantum state norm recovery, a method described in the
main text and Methods, and were previously shown in Figure 5c. Data denoted “Anc.” were obtained by inferring quantum
state norm from algorithm success rate. Error bars are standard deviations across 10 experiment runs. See Supplementary
Tables S2 and S3 for Hamiltonian parameter values and superconducting quantum devices used.
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