

Stk1 is required for BlaR1-mediated broad-spectrum β -lactam resistance in epidemic-causing strains of *Staphylococcus aureus*

Raymond Poon^{1,2&}, Nidhi Satishkumar^{1,2&}, Wesley A. Mosiman^{3&}, Vedangi Hayatnagarkar^{1,2}, Vijay Hemmadi^{1,2}, Skyler Kuhn⁴, Aditi Chatterjee^{1,2%}, Liam Worrall³, Nathan P. Manes⁵, J. Andrew N. Alexander³, Justin Lack⁴, Henry F. Chambers⁶, Aleksandra Nita-Lazar⁵, Natalie C.J. Strynadka³, Som S. Chatterjee^{1,2#}

¹ Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.

² Institute of Marine and Environmental Technology (IMET); Baltimore, MD, USA.

³ Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.

⁴ Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, USA.

⁵ Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

⁶ Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, CA, USA.

& Equal contributors

% Current address: University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA

Corresponding author:

Som S. Chatterjee

Rita Rossi Colwell Center

701 Pratt Street

Baltimore, MD 21202

Tel: 410-234-8890

E-mail: schatterjee@umaryland.edu

Results

In keeping with the binding and kinetic data, the GWX ligand in the active site binds in a highly ordered way in this structure as observed in the polder map (**Fig. S2c**), indicating the conformational rigidity. The GWX ligand inserts itself deep into the active site cleft of the kinase allowing it to position the aromatic pyrazolopyridine moiety under Phe150. The centroids of the Phe and the pyrazolopyridine are $\sim 3.9\text{\AA}$ apart which is ideal for pi-stacking interactions and mimics what was seen in previous *in silico* models of this specific ligand-protein interaction. While the pyrazolopyridine group appears to be oriented similarly to the *in silico* model, there is a $\sim 90^\circ$ rotation of the rest of the molecule about the N-C bond of the aniline moiety. This rotation causes the aniline and methyl-piperazine rings to face perpendicular to what is seen in the model and drives the trifluoromethyl group to point towards the backbone of the glycine-rich loop instead of interacting with Thr. Despite this, the nearest oxygen on the γ -carboxyl of Glu97 still appears to be in close proximity (3.0 \AA) to the terminal nitrogen of the methyl-piperazine group in GWX. This is an ideal range for a salt bridge between the N-O atom pair for which both would be expected to be charged in the 7.0-7.5 pH range used in this study. This positively-charged piperazine moiety was observed as critical to the strong binding of these pyrazolopyridine derivatives in the previous *in vivo* characterization.

While this structure contains many characteristics of a “DFG-out” kinase, it also shows hallmarks of an active kinase, suggesting it adopts a conformational space somewhere in-between the DFG-out and DFG-in states as described earlier for the AMP-PNP substrate analog complex¹. In our structure, the C-helix is analogously blocked by the activation loop, preventing formation of the salt bridge between Lys and Glu. Asp of the DFG-motif, on the other hand, is positioned in the active-site in a fashion that would allow it to directly co-ordinate a Mg^{2+} ion, similar to the *M. tuberculosis* structure of PknB (PDB: 5U94). New methods to classify these kinases have been explored in detail recently due to the variety of conformational intermediates observed in structural studies. In **Fig. S2d**, the active site architecture of some Hanks-type kinases in DFG-in and DFG-

out conformations are compared, revealing the position of the DFG motif in our structure more closely matches the DFG-in motif of other kinases, while still lacking other key structural motifs that are traditionally considered necessary for activity. Our work here provides further experimental evidence that the broad spectrum of kinase structures in the literature can't be classified into two distinct states, and instead occupies a wide range of intermediates. It is worth noting the presence of additional GWX molecules outside of the active site that appear to aid in crystal packing, but likely do not play a physiological role. The latter supposition is supported by the fact that in the ITC experiments we observed an n-site of 1, and the data did not fit a two-site binding model. Additionally, in the *M. tuberculosis* PknB homolog only one binding site was observed for GWX ITC experiments and\ the reported K_d for GWX binding was similar (21nM vs 27nM). This similarity in binding constants of the *M.tuberculosis* and *S. aureus* PASTA kinases is compelling as key regions of the active site fold are preserved, suggesting the major interaction elements with GWX, i.e. the backbone interaction (at Ile90) and the highly electrostatic elements (Lys39 and Glu97/Asp), we observe in the *S. aureus* Stk1 variant will be conserved in *M. tuberculosis* PknB (**Fig. S7**). However, there remain stark contrasts between these structures and eukaryotic kinase structures, in ligand-bound states, which could allow for the rational design of more selective inhibitors. Phe150 of STK1, which participates in the π -stacking interaction with GWX, is not conserved across Hanks-type kinases. However, in *M. tuberculosis* PknB, this position contains a methionine, for which the sulfur molecule could undergo a similar π -stacking interaction. By understanding these subtle differences in active site conservation and fold, this structure can assist in the development of more selective inhibitors that lack activity on eukaryotic kinases and could serve as a platform for adjuvant design in the treatment of *S. aureus*.

Supplementary tables:

Table S1: List of strains used in this study

Table S2: List of plasmids used in this study

Table S3: List of primers used in this study

Table S4: List of qRT-PCR primers used in this study

Table S5: Data collection and refinement statistics

Table S6: Data processing and anisotropy information extracted from the STARANISO log file

Table S1: List of strains used in this study

Strain	Description	Reference
<i>S. aureus</i> RN4220	Laboratory <i>S. aureus</i> strain	BEI resources
SF8300	USA300 MRSA Background Strain	2
SF8300 Δ stk1	SF8300 with <i>stk1</i> gene deletion	This Study
SF8300 Δ stp1	SF8300 with <i>stp1</i> gene deletion	This Study
SF8300 Δ stk1 pTX $_{\Delta}$ [E]	SF8300 Δ stk1 with an empty pTX $_{\Delta}$ vector	This Study
SF8300 Δ stk1 pTX $_{\Delta}$ [stk1(WT)]	SF8300 Δ stk1 with pTX $_{\Delta}$ constitutively expressing wild-type Stk1	This Study
SF8300 Δ stk1 pTX $_{\Delta}$ [stk1(K39G)]	SF8300 Δ stk1 with pTX $_{\Delta}$ constitutively expressing Stk1 with a K39G loss-of-function mutation	This Study
SF8300 pTX15	SF8300 with an empty pTX15 vector	This Study
SF8300 Δ stk1 pTX $_{\Delta}$ [E]	SF8300 Δ stk1 with an empty pTX15 vector	This Study
SF8300 Δ stk1 PTX15	SF8300 Δ stk1 with a inducible wild-type Stk1 in a pTX15 vector	This Study
SF8300 Δ stk1 pTX15 [stk1(K39G)]	SF8300 Δ stk1 with a inducible Stk1 K39G loss-of-function mutation in a pTX15 vector	This Study
SF8300 Δ stp1 pTX $_{\Delta}$ [E]	SF8300 Δ stp1 with an empty pTX $_{\Delta}$ vector	This Study
SF8300 Δ stp1 pTX $_{\Delta}$ [stp1(WT)]	SF8300 Δ stp1 with pTX $_{\Delta}$ constitutively expressing wild-type Stp1	This Study
SF8300 Δ stp1 pTX $_{\Delta}$ [stp1(G40A)]	SF8300 Δ stp1 with pTX $_{\Delta}$ constitutively expressing Stp1 with a G40A loss-of-function mutation	This Study
SF8300 pTX $_{\Delta}$ [E]	SF8300 with an empty pTX $_{\Delta}$ vector	
SF8300 pTX $_{\Delta}$ [blaI(WT)]	SF8300 with pTX $_{\Delta}$ constitutively expressing wild-type BlaI	This Study
SF8300 Dstk1 pTX $_{\Delta}$ [blaI(WT)]	SF8300 Dstk1 with pTX $_{\Delta}$ constitutively expressing wild-type BlaI	This Study
SF8300 pTX $_{\Delta}$ [blaI(N101A,F102A)]	SF8300 with pTX $_{\Delta}$ constitutively expressing BlaI with a N101A, F102A cleavage-defective mutation	This Study
SF8300 Δ stk1 pTX $_{\Delta}$ [blaI(N101A,F102A)]	SF8300 Δ stk1 with pTX $_{\Delta}$ constitutively expressing BlaI with a N101A, F102A cleavage defective mutation	This Study
Mu50	ATCC 700699	
SF8300ex	SF8300 devoid of <i>mecA</i> gene and <i>blaZ</i> plasmid	3
SF8300ex pTX $_{\Delta}$ [E]	SF8300ex with an empty pTX $_{\Delta}$ vector	4
SF8300ex pTX $_{\Delta}$ [blaI(WT)]	SF8300ex with pTX $_{\Delta}$ constitutively expressing wild-type BlaI	This Study
SF8300ex pTX $_{\Delta}$ [blaR1 (C-His)]	SF8300ex with pTX $_{\Delta}$ constitutively expressing wild-type BlaR1 with a C-terminal 6x His-tag	This Study
SF8300ex Δ spa Δ sbi	SF8300ex with <i>spa</i> and <i>sbi</i> gene deletion	This Study
SF8300ex Δ spa Δ sbi pTX $_{\Delta}$ [E]	SF8300ex Δ spa Δ sbi with an empty pTX $_{\Delta}$ vector	This Study

	SF8300ex Δ spa Δ sbi pTX $_{\Delta}$ [blaR1]	SF8300ex Δ spa Δ sbi with pTX $_{\Delta}$ constitutively expressing wild-type BlaR1	This Study
<i>E. coli</i>	DH5a	Laboratory <i>E. coli</i> strain	Invitrogen
	BL21	<i>E. coli</i> strain used for protein expression	Invitrogen
	BL21 pET28b (+) [stk1 (KD)]	Used for expressing Stk1 KD, residues 1-291	This Study

Table S2: List of plasmids used in this study

Plasmid	Description	Notes	Reference
pJB38 [Δ stk1]	Used to delete <i>stk1</i> in SF8300	<i>E. coli</i> ampR; <i>S. aureus</i> cmR	This Study
pJB38[Δ stp1]	Used to delete <i>stp1</i> in SF8300	<i>E. coli</i> ampR; <i>S. aureus</i> cmR	4
pTX $_{\Delta}$ [E]	Empty vector for pTX $_{\Delta}$	<i>S. aureus</i> tetR	4
pTX $_{\Delta}$ [stk1(WT)]	Constitutively expressing wild-type Stk1	<i>S. aureus</i> tetR	This Study
pTX $_{\Delta}$ [stk1(K39G)]	Constitutively expressing Stk1 with a K39G loss-of-function mutation	<i>S. aureus</i> tetR; <i>S. aureus</i> tetR;	This Study
pTX15 [E]	Empty vector for pTX15	Xylose inducible	This Study
pTX15 [stk1(WT)]	Xylose-inducible expression wild-type Stk1	<i>S. aureus</i> tetR; Xylose inducible	This Study
pTX15 [stk1(K39G)]	Xylose-inducible expression Stk1 with a K39G loss-of-function mutation	<i>S. aureus</i> tetR; Xylose inducible	This Study
pTX $_{\Delta}$ [stp1(WT)]	Constitutively expressing wild-type Stp1	<i>S. aureus</i> tetR	4
pTX $_{\Delta}$ [stp1(G40A)]	Constitutively expressing Stp1 with a G40A loss-of-function mutation	<i>S. aureus</i> tetR	This Study
pTX $_{\Delta}$ [blaI(WT)]	Constitutively expressing BlaI	<i>S. aureus</i> tetR	This Study
pTX $_{\Delta}$ [blaI(N101A,F102A)]	Constitutively expressing BlaI with a N101A, F102A cleavage-defective mutation	<i>S. aureus</i> tetR	This Study
pTX $_{\Delta}$ [blaR1 (C-His)]	Constitutively expressing wild-type BlaR1 with a C-terminal 6x His-tag	<i>S. aureus</i> tetR	This Study
pJB38 [Δ spa]	Used to delete <i>spa</i> in SF8300	<i>E. coli</i> ampR; <i>S. aureus</i> cmR	This Study
pJB38 [Δ sbi]	Used to delete <i>sbi</i> in SF8300	<i>E. coli</i> ampR; <i>S. aureus</i> cmR	This Study
pTX $_{\Delta}$ [blaR1]	Constitutively expressing wild-type BlaR1	<i>S. aureus</i> tetR	This Study
pET28b (+) [stk1 (KD)]	E. coli IPTG inducible protein expression vector expressing Wild-type Stk1 Kinase domain, residues 1-291	<i>E. coli</i> kanR; IPTG inducible	This Study

Table S3: List of primers used in this study

Primer	Sequence	Description
<i>stp1</i> - <i>stk1</i> - P1	ACAAGAGCTCCAAAAATTGAGCGAACAG ATTTTGAATGG	<i>stp1</i> & <i>stk1</i> deletion
<i>stk1</i> -P2	TACATTTACTTCAATTATATTCTACTTTATCA CCTTCAATAGCCGCGAGTATGAAAGTAACG	<i>stk1</i> deletion
<i>stk1</i> -P3	ATATAATTGAAGTAATGTACCGAGGTTCTA TTTGGAAAGTC	<i>stk1</i> deletion
<i>stk1</i> -P4	TATTCCCAGGGTATCTCTAATTGATGCTTAAC ATTACAATTAGG	<i>stk1</i> deletion
<i>stp1</i> -P2	TTTATTATTTACCTATCATTGTCTTACCTC GTTTCTACTTGTCTTCCTTGC	<i>stp1</i> deletion
<i>stp1</i> -P3	ATGATAGGTAAAATAATAATGAACGATATAA AATTGTAGATAAGC	<i>stp1</i> deletion
<i>stp1</i> -P4	TACACCCCCGGGCTGGCTTTGGAATTGCT GATGATGAGCAGGCC	<i>stp1</i> deletion
Stk1-for	ACTTGGATCCTCGCGGCTATTGAAGGTGATA AAGTATGATAGG	<i>stk1</i> cloning in pTX _Δ and pTX15
Stk1-rev	TCAAACCGCGTTATACATCATCATAGCTGAC TTCTTTTCAGCTAC	<i>stk1</i> cloning in pTX _Δ and pTX15
Stk1-K39G-for	CTTAACATTAAAGTTGCAATTGGGGCGATT	<i>stk1</i> (K39G) loss-of-function mutant cloning in pTX _Δ
Stk1-K39G-rev	TCTAGGTGGTATAAAATCGCCCCATTGC AAAGGATCCACAAGTAGAAACGAGGGTAAAG	<i>stk1</i> (K39G) loss-of-function mutant cloning in pTX _Δ
Stp1-for	ACAAATGC	<i>stp1</i> cloning in pTX _Δ
Stp1-rev	ATTACCGTATCATACTTATCACCTTCAATA GCCGC	<i>stp1</i> cloning in pTX _Δ
Stp1-G40A-for	TTTTAGTTCTGTGTGATGGTATGGCTGGCCA TAAAGC	<i>stp1</i> (G40A) loss-of-function mutant cloning in pTX _Δ
Stp1-G40A-rev	TTGCAACTCTCCTGCTTTATGGCCAGCCAT ACCATC	<i>stp1</i> (G40A) loss-of-function mutant cloning in pTX _Δ
Bla1-for	CCGGATCCATATTAAAAGGAATGGGTGTTT AAATGACC	<i>bla1</i> cloning in pTX _Δ
Bla1-rev	CCACCGCGTTACTTTTACTAATATCATTAA AATGTC	<i>bla1</i> cloning in pTX _Δ
Bla1- N101A,F102A- for	ATATGAAAAGTTAGTGCTGGCTGCGAA AAATG	<i>bla1</i> (N101A, F102A) non- cleavable mutant cloning in pTX _Δ
Bla1- N101A,F102A- rev	GTTATTAAATTCTTCATTTCAGGCCA GCAC	<i>bla1</i> (N101A, F102A) non- cleavable mutant cloning in pTX _Δ
BlaR1-for	TTAGGATCCATATTGAAAGAAGGTGTCAA ATGGC	<i>blaR1</i> cloning in pTX _Δ
BlaR1-rev	TTCACCGCGTAGATATTCAACTTGCTTATTG GTC	<i>blaR1</i> cloning in pTX _Δ

BlaR1-C-His- rev	TTCACGCGTTAATGATGATGATGATGATGT GATGAACCTTGGTCATTTAAAACACCCATT TGAAGGTACCATGTTCGTTAAGAAAAAA	<i>blaR1</i> (C-His) cloning in <i>pTX_Δ</i>
spa-P1	GTCAAGCCTGAAGTCG AATATAACGAATTATGTATTGCAATACTAAAA	<i>spa</i> deletion
spa-P2	TC TGCAATACATAATTGTTATTTAAACAAACA	<i>spa</i> deletion
spa-P3	ATACACAACGATAGATATCATTATCC AAGGTCGACTGCTTATTGGTCGAAGCAATT	<i>spa</i> deletion
spa-P4	AAAGAATTATGG TTGCGTTAGGTACAACGTCATCTTCTTGAA	<i>spa</i> deletion
sbi-P1	CAAACGAGGTGCATTTGAATAACTACTTGG GTGTATTCCCTTCTTTACATATTAAATTAA	<i>sbi</i> deletion
sbi-P2	TTGTATGCTTTAGAATTATC TCAATCAAAAATATCTTCTCTAGTTTACATC	<i>sbi</i> deletion
sbi-P3	ATTTTTAAATAATTTCGTAACAAACCG TGATGGCGCTGATTGGAAGTTCCGCCGAT	<i>sbi</i> deletion
sbi-P4	ATTATAGCCTAATTCTGAC	<i>sbi</i> deletion
pET-Stk1-KD- for	CCGTCGACATAGGTAAAATAATAATGAACG ATATAAAATTG	Cloning Stk1 Kinase domain into pET28 (+) IPTG inducible expression vector
pET-Stk1-KD- rev	CCGC GGCCGCTTAATCTTCTTTCAAAGG TACCG	Cloning Stk1 Kinase domain into pET28 (+) IPTG inducible expression vector

Table S4: List of qRT-PCR primers used in this study

Primer	Sequence	Description
<i>gyrB</i> -for	ATTGCTCTAGTAAAAGTCCTGAAGAATG	forward qRT-PCR primer for <i>gyrB</i>
<i>gyrB</i> -rev	TAATCGTGCTTTCAACATTAATATC	reverse qRT-PCR primer for <i>gyrB</i>
<i>pbp2a</i> -for	ACTTAAAACAAGCAATAGAATCATCAG	forward qRT-PCR primer for <i>mecA</i>
<i>pbp2a</i> -rev	AATTGAGCATTATAAAATGGATAATCAC	reverse qRT-PCR primer for <i>mecA</i>
<i>blaZ</i> -for	TGCTTAAATACTAAAAGTGGTAAGG	forward qRT-PCR primer for <i>blaZ</i>
<i>blaZ</i> -rev	AGCAACTATATCATCTTGTAAATATG	reverse qRT-PCR primer for <i>blaZ</i>
<i>blaR1</i> -qPCR-F	AGTTTGGTATCTAACTATGCTGCTGG	forward qRT-PCR primer for <i>blaR1</i>
<i>blaR1</i> -qPCR-R	ATAGGTTGGTGGTATTATGTTATGGTTC	reverse qRT-PCR primer for <i>blaR1</i>
<i>blaI</i> -qPCR-F	TGATAAAACGATTAGAACATTAATCACAAG	forward qRT-PCR primer for <i>blaI</i>
<i>blaI</i> -qPCR-R	TCCATACAGTTATTAAGAAAGGTTTAGC	reverse qRT-PCR primer for <i>blaI</i>

Table S5: Data collection and refinement statistics

Data collection and refinement statistics for PDB: 9YMT as generated through Phenix' model statistics program. Anisotropic cut-off applied to merged intensity data through StarAniso. See tables S6a and S6b.

PDB: 9YMT	STK1 ¹⁻²⁹¹ + GWX
Data Collection Statistics	
Resolution range	45.08 – 2.07 (2.144 – 2.07)
Space group	P 4 ₃ 2 ₁ 2
Cell dimensions	
	100.792
a,b,c (Å)	100.792
	91.698
	90
α,β,γ (°)	90
	90
Total reflections	727220 (56898)*
Unique reflections	29327 (340)
Multiplicity	24.8 (20.1)
Completeness (%)	74.91 (11.87)
Mean I/ σ(I)	23.96 (0.48)
Wilson B-factor (Å ²)	42.62
R-merge	0.1134 (6.17)
R-meas	0.1158 (6.332)
R-pim	0.02309 (1.381)
CC1/2	1.000 (0.217)
CC*	1.000 (0.597)
Refinement Statistics	
Reflections used in refinement	22003 (341)
Reflections used for R-free	2000 (31)
R-work	0.2130 (0.4184)
R-free	0.2494 (0.5569)
CC (work)	0.926 (0.553)

CC (free)	0.907 (0.295)
Number of non-H atoms	2350
Macromolecules	2166
Ligands	112
Solvent	72
Protein Residues	273
RMS (bonds) (Å)	0.002
RMS (angles) (°)	0.54
Ramachandran favored (%)	97.77
Ramachandran allowed (%)	2.23
Ramachandran outliers (%)	0.00
Rotamer outliers (%)	1.23
Clashscore	4.06
Average B-factor (Å ²)	59.2
Macromolecules	59.7
Ligands	53.8
Solvent	53.8
Number of TLS groups	3
MolProbity Score	1.45

* Italicized values are statistics calculated with respect to unmerged data and assume spherical truncation of the data based on the selected cut-off. For a comparison with these statistics for the elliptically truncated data, please refer to Supplementary Table 6b.

Table S6a: Data processing and anisotropy information extracted from the STARANISO log file:

Diffraction limits (Å) and corresponding principal axes of the ellipsoid fitted to the diffraction cut-off surface as direction cosines in the orthogonal basis, and in terms of reciprocal unit-cell vectors:										Eigenvalues of the overall anisotropy tensor on $ F _s$ (Å 2) and corresponding eigenvectors of the overall anisotropy tensor as direction cosines in the orthogonal basis, and in terms of reciprocal unit-cell vectors:				
2.393	1.0000	0.0000	0.0000	a*	66.26	1.0000	0.0000	0.0000	a*	66.26	0.0000	1.0000	0.0000	b*
2.393	0.0000	1.0000	0.0000	b*	39.24	0.0000	0.0000	1.0000	c*	39.24	0.0000	0.0000	1.0000	c*
1.981	0.0000	0.0000	1.0000	c*										

Table S6b: Data processing statistics with comparison of spherical and ellipsoidal truncation of data for PDB: 9YMT following anisotropic cut-off.

	Overall	Inner Shell	Outer Shell
Low resolution limit (Å)	45.076	45.076	2.235
High resolution limit (Å)	2.066	6.437	2.066
Rmerge (all I+ & I-)	0.091	0.023	2.010
Rmerge (within I+/I-)	0.095	0.022	1.983
Rmeas (all I+ & I-)	0.093	0.023	2.059
Rmeas (within I+/I-)	0.098	0.023	2.075
Rpim (all I+ & I-)	0.018	0.005	0.436
Rpim (within I+/I-)	0.027	0.006	0.603
Total number of observations	557554	24378	23811
Total number of unique	22007	1100	1100
Mean(I)/sd(I)	28.7	114.0	1.8
Completeness (spherical)	74.5	100.0	18.1
Completeness (ellipsoidal)	95.8	100.0	80.2
Multiplicity	25.3	22.2	21.6
CC (1/2)	1.000	1.000	0.643
Anomalous completeness (spherical)	73.4	100.0	17.2
Anomalous completeness (ellipsoidal)	95.7	100.0	80.3
Anomalous multiplicity	13.7	13.6	11.7

References

- 1 Rakette, S., Donat, S., Ohlsen, K. & Stehle, T. Structural analysis of *Staphylococcus aureus* serine/threonine kinase PknB. *PLoS one* **7**, e39136, doi:10.1371/journal.pone.0039136 (2012).
- 2 Chan, L. C. *et al.* PBP 4 Mediates High-Level Resistance to New-Generation Cephalosporins in *Staphylococcus aureus*. *Antimicrobial agents and chemotherapy* **60**, 3934-3941, doi:10.1128/aac.00358-16 (2016).
- 3 Chatterjee, A., Poon, R. & Chatterjee, S. S. Stp1 Loss of Function Promotes β -Lactam Resistance in *Staphylococcus aureus* That Is Independent of Classical Genes. *Antimicrobial agents and chemotherapy* **64**, doi:10.1128/aac.02222-19 (2020).
- 4 Modi, V. & Dunbrack, R. L., Jr. Defining a new nomenclature for the structures of active and inactive kinases. *Proceedings of the National Academy of Sciences of the United States of America* **116**, 6818-6827, doi:10.1073/pnas.1814279116 (2019).

Figure S1:

- a)** Coomassie-stained gel as loading control for **Fig. 1c**
- b)** Coomassie-stained gel as loading control for **Fig. 1d**
- c)** Growth curve assay of *S. aureus* MW2 Wt and its isogenic $\Delta stk1$ and $\Delta stp1$ mutants without antibiotics (untreated), or with nafcillin ([Naf] 2 μ g/mL) or oxacillin ([Oxa] 4 μ g/mL).
- d)** Growth curve demonstrating conditions of sample collection for EM studies. 8 μ g/mL Nafcillin was added 1 hour of growth, following which cells were collected at the final time point of 6 hours.
- e)** Coomassie-stained gel as loading control for **Fig. 2a**
- f)** Coomassie-stained gel as loading control for **Fig. 2b**

Figure S2:

- a)** Coomassie-stained gel as loading control for **Figs. 3c - e**
- b)** ITC thermograms to assess GWX binding to $Stk1^{1-291}$. Normalized binding isotherm (top) and normalized binding heats (bottom) with a curve depicting a least squares regression fit for the non-linear data.
- c)** mFo-dFc Polder omit map of the GWX ligand in the active site contoured at 3.0 σ
- d)** Ligplot analysis results depicting a 2D representation of the protein-ligand interactions between GWX and $Stk1^{1-291}$
- e)** Coomassie-stained gel as loading control for **Fig. 3k**
- f)** qRT-PCR for relative induction of *blaZ* in Wt and $\Delta stk1$ at the mid-exponential stage (2 hours of growth) when treated with 2 μ g/mL nafcillin (Naf), 2.5 μ g/mL GWX inhibitor, or co-treated with nafcillin and GWX inhibitor for 30 min in comparison to samples untreated for 30 min. qRT-PCR was performed in triplicate, in two independent experiments. Data from representative independent experiments are presented as mean \pm SD. Statistical analysis using an unpaired Student's t-test. ns = not significant with $P > 0.05$, *** $P \leq 0.001$.

Figure S3:

- a)** **Immunoblotting validation with custom-generated Blal antibody.** Validation of anti-Blal antibody (α -Blal) by detecting intact Blal in SF8300 Wt at \sim 15 kDa in whole cell lysate. Samples were grown until the mid-exponential stage (2 hours of growth), then untreated or treated nafcillin (2 μ g/mL and 8 μ g/mL) for 1 hour. Nafcillin exposure led to Blal cleavage, resulting in loss of the Blal band. SF8300ex (Wtex), which is devoid of Blal, was included as a negative control. Wtex constitutively expressing Blal through pTX Δ , Wtex [*blaI*], was included as a positive control. Sortase A (SrtA) was used as a loading control
- b)** Coomassie-stained gel as loading control for **Fig. S3a**

c) Coomassie-stained gels as loading control for **Fig. 4a - c**

d) Coomassie-stained gels as loading control for **Fig. 4d - e**

Figure S4:

a) Immunoblotting validation with custom-generated BlaR1 antibody. Validation of anti-BlaR1 antibody (α -BlaR1) by detecting full-length BlaR1 in SF8300 Wt at ~55 kDa in membrane fractions. Samples were grown until the mid-exponential stage (2 hours of growth), then untreated or treated nafcillin (2 μ g/mL and 8 μ g/mL) for 1 hour. Nafcillin exposure led to BlaR1 degradation, resulting in loss of the BlaR1 band. SF8300ex (Wtex), which is devoid of BlaR1, was included as a negative control. Wtex constitutively expressing C-terminal His-tagged BlaR1 through pTX_Δ, Wtex [*blaR1* (C-His)], was included as a positive control. Sortase A (SrtA) was used as a loading control.

b) Immunoblotting validation with custom-generated BlaR1 antibody against non-specific binding. Validation of anti-BlaR1 antibody (α -BlaR1) by detecting full-length BlaR1 in SF8300 Wt at ~55 kDa in membrane fractions. Samples were grown until the mid-exponential stage (2 hours of growth), then untreated or treated nafcillin (2 μ g/mL) for 1 hour. Nafcillin exposure (2 μ g/mL) led to BlaR1 degradation, resulting in loss of the BlaR1 band. Deletion of IgG-binding proteins Spa and Sbi in SF8300ex (Wtex Δ spa Δ sbi), which is devoid of BlaR1, was included as a negative control. Wtex Δ spa Δ sbi constitutively expressing BlaR1 through pTX_Δ, Wtex Δ spa Δ sbi [*blaR1* (C-His)], was included as a positive control. Sortase A (SrtA) was used as a loading control.

c) Coomassie-stained gel as loading control for **Fig. S4a**

d) Coomassie-stained gel as loading control for **Fig. S4b**

e) Coomassie-stained gel as loading control for **Fig. 5a**

f) Coomassie-stained gel as loading control for **Fig. 5b**

Figure S5:

a) Coomassie-stained gel as loading control for **Fig. 5c**

b) Coomassie-stained gel as loading control for **Fig. 5d**

c) Coomassie-stained gel as loading control for **Fig. 5f**

Figure S6:

a) qRT-PCR for basal *blaI* expression in Wt, Δ stk1, and Δ stp1 at the mid-exponential stage (2 hours of growth) and late-exponential stage (3 hours of growth). qRT-PCR was performed in triplicate, in two independent experiments. Data from representative independent experiments are presented as mean \pm SD. Statistical analysis using an unpaired Student's t-test. ns = not significant with $P > 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$.

b) Immunoblotting and corresponding densitometry analysis for basal protein levels of Blal in Wt, Δ stk1, and Δ stp1 in whole cell lysates at the late-exponential stage (3 hours of growth). Sortase A (SrtA) was used as a loading control. Immunoblotting was performed in three independent experiments, the blots of which were used for densitometry, represented as mean \pm SD. Statistical analysis using an unpaired Student's t-test. ns = not significant with $P > 0.05$, * $P \leq 0.05$, ** $P \leq 0.01$.

c) Coomassie-stained gel as loading control for Fig. S6b

Figure S7:

Comparison of key active-site features.

a) The active site of *S. aureus* Stk1¹⁻²⁹¹ in complex with GW779439X aligned with the active site of Hanks-type kinases.

b) *M. tuberculosis* PknB in complex with GSK690693 (PDB: 5U94).

c) *H. sapiens* ABL1 in complex with Dastinib.

d) *H. sapiens* ABL1 in complex with Imatinib (PDB: 2GQQ and 2HYY).

To capture the relative location of the DFG-Phe residue, the outermost atom of the Phe ring was measured with respect to conserved residues. The C α atom of the conserved β 3 Lys and the C α atom of the residue 4 AA downstream of the conserved Glu in the C-helix were used for distance measurements⁴. The measured distances for ABL1 kinase with imatinib match the measurements seen in the DFG-out conformation, while the other structures contain distances which correspond to DFG-in conformations

e) Multiple sequence alignment: Sequence alignment of the *S. aureus* Stk1 (Strain Mu50, identical to USA300) kinase domain against the kinase domains of various Hanks-type kinases. The aligned sequences include *B. subtilis* PrkC (strain 168), *M. tuberculosis* PknB (strain H37Rv), *H. sapiens* ABL1 (Uniprot: P00519), and *E. faecalis* IreK (GenBank: WP_002387383). Residues are numbered based on the primary sequence of Stk1 and key conserved elements are labelled below.