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1. Supplementary Figures 
[image: ]
[bookmark: OLE_LINK6][bookmark: OLE_LINK2]Supplementary Fig. 1. Molecular dimensions of C3F8 and c-C4F8. The unit of length is angstrom (Å).
[image: ]
Supplementary Fig. 2. The surface electrostatic potential of C3F8 and c-C4F8.
[image: ]
Supplementary Fig. 3. Schematic illustration of preparation process for organofluorinated zeolite.
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Supplementary Fig. 4. PXRD patterns of NaY, ZnY-FU, ZnY-FC, CuY-FU and CuY-FC.
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Supplementary Fig. 5. SEM images of (a) ZnY-FU, (b) ZnY-FC, (c) CuY-FU and (d) CuY-FC, (e) NaY.
[image: ]
Supplementary Fig. 6. (a) Structure of zeolites Y with cation positions SII and SIII in supercages, SI′ and SII′ in sodalite units, and SI in the centers of hexagonal prisms1. (b) 23Na MAS NMR spectra of pristine zeolites NaY, CuY, ZnY, and ZnY-FU. Peak fit results of 23Na MAS NMR spectra of zeolites (c) NaY, (d) CuY, and (e) ZnY. I1: sodium cations in the centers of hexagonal prisms, Q1: sodium cations in supercages, Q2: sodium cations in sodalite units.

The 23Na NMR results of ZnY, CuY and ZnY-FU results indicate that sites SII and SIII in the FAU supercages were exchanged first, which is consistent with previous reports1. It further demonstrates that the FU ligands coordinate with Cu2⁺ and Zn2⁺ ions located at either site SII or site SIII, both of which are closed to the pore entrance within the 12-membered ring channels.
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Supplementary Fig. 7. HAADF-STEM image of ZnY-FC and the corresponding energy-dispersive x-ray mapping images for Zn, N, and F elements.
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Supplementary Fig. 8. HAADF-STEM image of CuY-FU and the corresponding energy-dispersive x-ray mapping images for Cu, N, and F elements.
[image: ]
Supplementary Fig. 9. HAADF-STEM image of CuY-FC and the corresponding energy-dispersive x-ray mapping images for Cu, N, and F elements.
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Supplementary Fig. 10. (a) N2 adsorption-desorption isotherms at -196 °C and (b) pore size distribution of NaY, ZnY-FU, ZnY-FC, CuY-FU, and CuY-FC.
[image: ]
[bookmark: OLE_LINK8]Supplementary Fig. 11. The TG-DSC curves of (a) ZnY-FU, (b) CuY-FU, (c) ZnY-FC and (d) CuY-FC.

The TG-DSC curves of ZnY-FU, CuY-FU, ZnY-FC and CuY-FC exhibit a weight loss of approximately 1% following the decomposition temperature of organic ligands2,3, which is consistent with the C contents in Supplementary Table 2.
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Supplementary Fig. 12. Chemical structures and molecular dimensions of 5-fluorouracil.
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[bookmark: _Hlk205813480]Supplementary Fig. 13. FTIR spectra of ZnY-FU, ZnY-FC, CuY-FU, CuY-FC and NaY.
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Supplementary Fig. 14. N1s XPS spectra of (a) FU, (b) ZnY-FU, (c) CuY-FU, (d) FC, (e) ZnY-FC, (f) CuY-FC.
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Supplementary Fig. 15. c-C4F8 and C3F8 adsorption isotherms of (a) NaY, (b) ZnY, (c) CuY; (d) IAST adsorption selectivity (c-C4F8/C3F8, 5:95, v/v) and 0.1 bar for different porous solids at 25 C.
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Supplementary Fig. 16. C3F8 and c-C4F8 adsorption kinetic profiles for (a, b) NaY, (c, d) ZnY and (e, f) ZnY-FU at 25 C.
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Supplementary Fig. 17. Linear fittings for the kinetic profiles for (a, b) NaY, (c, d) ZnY and (e, f) ZnY-FU at 25 C. 
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[bookmark: OLE_LINK4]Supplementary Fig. 18. The c-C4F8 and C3F8 adsorption isotherms of (a, b) ZnY and (c, d) ZnY-FU at 15 C, 25 C and 35 C. 
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Supplementary Fig. 19. Isosteric heats of adsorption (Qst) as a function of C3F8 and c-C4F8 uptakes for (a) ZnY and (b) ZnY-FU.
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[bookmark: _Hlk207700237][bookmark: _Hlk207699313]Supplementary Fig. 20. Structural configurations and energies of different zeolite systems with or without FU. (a) NaY, CuY, ZnY zeolites with or without FU. (b) Ion and ligand positioning in 12-MR structures (c) Comparison of energies for different zeolite systems.

[bookmark: _Hlk207699857][bookmark: _Hlk207700872]The constructed NaY structure is presented in Figs. 20a. The 12-membered ring structure shown in Figs. 20b, structures with Na⁺ located in 12-membered rings and 6-membered rings were tested, with relative energies shown as blue bars in Figs. 20c, reveals that Na⁺ exhibits greater stability when positioned at 6-membered ring centers. Based on the constructed NaY structure, two Na⁺ ions were removed and replaced with Cu2+ or Zn2+ to generate CuY or ZnY structures, respectively. FU ligands were subsequently introduced into these structures, and relative energies of FU ligands near 12-membered rings and 6-membered rings were examined, as indicated in Figs. 20c. FU ligands on 6-membered rings exhibit lower energy, with the structure shown in Figs. 20a. To emphasize structural features, color treatment was applied to the main ligand vicinity while other regions are presented in gray. The H atom coordinated with N on the FU ligand detaches from its original coordination position and adsorbs onto surrounding framework oxygen atoms, while the N coordinates with metal ions, slightly displacing metal ions from the stable 6-membered ring center. The metal ions and ligands collectively occlude part of the 12-membered ring pore.

[image: ]
Supplementary Fig. 21. Representative geometries extracted from AIMD trajectories in Fig. 3 (a) NaY-C3F8. (b) CuY-FU-C3F8. (c)NaY-c-C4F8. (d) CuY-FU-c-C4F8.

[bookmark: OLE_LINK49]As depicted in Figs. 21 (corresponding to Fig. 3 in manuscript), the attractive force between the C atom closest to the 12-MR and the Na⁺ ion in the same motion direction was monitored. AIMD simulations revealed that molecules initially displace the FU ligands through fluorine interactions. Continuous interaction with the FU ligands during passage prevents their return to the initial state of partial 12-MR ring occlusion, but the differences in energy barrier between these two gases is still not obvious. Additionally, the CuY-FU system consistently maintains both Cu-O and Cu-N connections throughout the process, resulting in elevated barriers compared CuY. 


2. Supplementary Tables
[bookmark: OLE_LINK7]Supplementary Table 1. The peak fit results of 3Na MAS NMR spectra.
	Samples
	Q1:I1
	Q1:(Q1+I1+I2)

	NaY
	4.71
	0.70

	CuY
	0.02
	0.02

	ZnY
	0.09
	0.09



[bookmark: _Hlk205825176]Supplementary Table 2. Physical and chemical properties of the samples.
	Sample
	SBET
(m2/g)
	Smicro
(m2/g)
	Vmicro
(cm3/g)
	Zn wt%
[a]
	Cu wt%
[a]
	C wt%
[b]

	ZnY
	561
	551
	0.287
	9.54
	—
	0.074

	ZnY-FU
	505
	463
	0.179
	—
	—
	0.306

	ZnY-FC
	499
	489
	0.266
	—
	—
	0.278

	CuY
	569
	558
	0.219
	—
	9.48
	0.083

	CuY-FU
	533
	521
	0.207
	—
	—
	0.451

	CuY-FC
	541
	530
	0.211
	—
	—
	0.154


[a] Zn and Cu content was measured by ICP-OES. [b] C content was measured by CS analysis instrument.


Supplementary Table 3. Fitting parameters of the DSLF model.
	Parameters
	q1
	b1
	n1
	q2
	b2
	n2
	R2

	NaY
	C3F8
	[bookmark: OLE_LINK3]5.1688
	0.0122
	0.2077
	0.6716
	0.0006
	0.8061
	0.9982

	
	c-C4F8
	0.3972
	1.1183
	0.8994
	1.0060
	0.0015
	0.7143
	0.9227

	ZnY
	C3F8
	0.3912
	0.2257
	0.6824
	0.3297
	0.0004
	0.2327
	0.9931

	
	c-C4F8
	0.9738
	0.8585
	0.3939
	1.5505
	0.0008
	0.5988
	0.9996

	CuY
	C3F8
	1.1380
	0.6078
	0.3525
	0.6884
	0.0007
	0.6107
	0.9997

	
	c-C4F8
	1.1380
	0.6079
	0.3525
	0.6884
	0.0007
	0.6108
	0.9997

	ZnY-FU
	C3F8
	0.5311
	0.0006
	0.7657
	0.7301
	0.0007
	0.8841
	0.9155

	
	c-C4F8
	12.9033
	0.0545
	0.0806
	0.7124
	0.0007
	0.7072
	0.9998

	ZnY-FC
	C3F8
	0.4032
	0.0530
	0.5156
	0.3446
	0.2751
	0.9562
	0.9998

	
	c-C4F8
	0.5535
	1.1060
	0.8549
	1.3248
	0.0926
	0.2457
	0.9999

	CuY-FU
	C3F8
	3.7812
	0.0017
	0.3740
	0.6619
	0.0007
	0.5423
	0.9992

	
	c-C4F8
	1.1842
	0.5455
	0.3241
	0.5880
	0.0006
	0.5449
	0.9733

	CuY-FC
	C3F8
	0.1250
	91.1975
	0.9698
	0.0211
	5.5149
	0.3695
	0.9997

	
	c-C4F8
	5.3057
	0.0341
	0.3672
	0.5137
	91.5058
	0.5924
	[bookmark: OLE_LINK5]0.9998





Supplementary Table 4. Adsorbents for the separation of F-electronic specialty gases at 25 C and 100 kPa.
	Adsorbents
	Uptakes/ mmol g-1
	Selectivity/IAST
	Ref.

	c-C4F8/C3F8
	C3F8
	c-C4F8
	
	

	GC-K1
	~3.8
	1.2a
	3.7b
	4

	ZnY-FU
	0.03
	0.97
	1.71010
	This work

	C3F6/C3F8
	C3F8
	C3F6
	
	

	JXNU-21
	0.77
	1.33
	15.6
	5

	Zn-bzc-CF3
	negligible
	2.10
	12
	6

	Zr-PMA
	0.76
	2.64
	Not mentioned
	7

	Ca-tcpb
	0.065
	2
	>10000
	8

	Co-FA
	0.16
	~2.0
	Not mentioned
	9

	Mn-dhbq
	0.16
	2.0 
	Not mentioned
	10

	Al-PMA
	0.047
	1.75
	>10000
	11

	C3F8/N2
	C3F8
	N2
	
	

	A520
	2.93
	0.22
	6034
	12

	CPOF-6
	1.79 
	~0.1
	148
	13

	c-C4F8/N2
	c-C4F8
	N2
	
	

	CPOF-6
	3.59
	~0.1
	1128
	13

	C2ClF5/C3F8
	C3F8
	C2ClF5
	
	

	TMAZ-2
	0.2
	0.8
	2.53c
	14


Note: Measured at 25 °C and 100 kPa. a: Dynamic adsorption capacity; b: Dynamic selectivity; c: Henry selectivity.

Supplementary Table 5. Kinetic selectivities for the uptake of c-C4F8 over C3F8 in NaY, ZnY and ZnY-FU, expressed as the ratio of the two relevant diffusion time constants (D/r2).
	Sample
	D/r2 (s-1)
	Kinetic Selectivity 
(c-C4F8/C3F8)

	
	c-C4F8
	C3F8
	

	NaY
	1.0710-5
	1.7210-4
	0.06

	ZnY
	1.5010-5
	1.0610-4
	0.14

	ZnY-FU
	6.4210-5
	5.0710-5
	1.27
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