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Supplementary Text 1 | Deriving AC energy use fractions 28 

To obtain anthropogenic heat flux (AHF) due to AC for validation, we follow a similar procedure 29 

as described in ref.1 We start with a gridded AHF dataset, then multiply it with the country- or region-30 

specific fractions of AC energy use over total energy consumption, which we define as AC energy use 31 

fractions (𝑓). In this study, we collaborated with the authors of Varquez et al. dataset2 and obtained an 32 

updated AHF dataset, which represents AHF from the commercial, residential, and transport sectors only. 33 

This is one of the components that make up the original Varquez et al. dataset. This allowed us to correct 34 

some of the biases introduced from industry or point sources (such as power plants) that lead to high AHF 35 

on sparsely built/populated areas. 36 

Because of this change, the AC energy fractions now need to represent AC energy use as a fraction 37 

of commercial, residential, and transport energy consumption. Therefore, we modify the calculations to 38 

reflect this change as well as leverage updated versions of the relevant datasets, as detailed below. 39 

Country-level data come from two free IEA datasets in their latest versions: 1) Energy Efficiency 40 

Indicators Highlights (EEI) November 2023 edition (https://www.iea.org/data-and-statistics/data-41 

product/energy-efficiency-indicators-highlights), which contains final end-use energy consumption that 42 

includes AC energy consumption for residential and commercial sectors for select countries; and 2) World 43 

Energy Balances Highlights (WEB) 2024 edition (https://www.iea.org/data-and-statistics/data-44 

product/world-energy-balances-highlights), which contains annual sectoral total energy consumption for 45 

select countries. A total of 15 countries/regions (including the U.S.) have AC energy consumption data in 46 

EEI. These countries/regions are: United States, South Korea, Germany, Japan, France, Portugal, New 47 

Zealand, Italy, Morocco, Netherlands, Canada, Spain, Uruguay, Taiwan, and Hong Kong.  The 𝑓 for the 14 48 

countries/regions excluding the U.S. are calculated as:  49 

𝑓 =  
𝐸𝐴𝐶,𝑟𝑒𝑠 + 𝐸𝐴𝐶,𝑐𝑜𝑚

𝐸𝑟𝑒𝑠  + 𝐸𝑐𝑜𝑚  + 𝐸𝑡𝑟𝑎
,                                                           (S1) 50 

where 𝐸𝐴𝐶,𝑟𝑒𝑠 and  𝐸𝐴𝐶,𝑐𝑜𝑚 are average annual AC energy consumption for residential and commercial 51 

sectors, respectively, obtained from EEI, and 𝐸𝑟𝑒𝑠, 𝐸𝑐𝑜𝑚, and 𝐸𝑡𝑟𝑎 are average annual total energy 52 

https://www.iea.org/data-and-statistics/data-product/energy-efficiency-indicators-highlights
https://www.iea.org/data-and-statistics/data-product/energy-efficiency-indicators-highlights
https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights
https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights
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consumption for residential, commercial, and transport sectors, respectively, obtained from WEB. The 53 

average is computed for 2010 – 2019 ignoring missing years. 54 

For the U.S., we compute 𝑓 for each state by leveraging U.S. subnational-level data from three EIA 55 

datasets: 1) 2015 Residential Energy Consumption Survey (RECS) 56 

(https://www.eia.gov/consumption/residential/data/2015/), which include the annual final end-use 57 

(including AC) energy consumption in the residential sector at the census division level (the 50 U.S. states 58 

are grouped into 9 census divisions); 2) 2018 Commercial Buildings Energy Consumption Survey (CBECS) 59 

(https://www.eia.gov/consumption/commercial/data/2018/), which include the annual final end-use 60 

(including AC) energy consumption in the commercial sector at the census division level, and 3) 2022 State 61 

Profiles and Energy Estimates (https://www.eia.gov/state/), which include annual total primary energy 62 

consumption for all sectors (including residential, commercial, transportation, and industrial) at the state 63 

level. 64 

We combine the three datasets and calculate 𝑓 for each state as: 65 

𝑓 =  
𝐸′

𝐴𝐶,𝑟𝑒𝑠 

𝐸′
𝑟𝑒𝑠 

⋅
𝐸𝑟𝑒𝑠  

𝐸𝑐𝑟𝑡,𝑡𝑜𝑡
+

𝐸′
𝐴𝐶,𝑐𝑜𝑚 

𝐸′
𝑐𝑜𝑚 

⋅
 𝐸𝑐𝑜𝑚

𝐸𝑐𝑟𝑡,𝑡𝑜𝑡
,                                                                 (S2) 66 

where 𝐸𝑐𝑟𝑡,𝑡𝑜𝑡 is annual total energy consumption for commercial, residential, and transport sectors, and 67 

the prime symbol denotes the census-division value of the respective quantity is used. In this equation, 68 

𝐸′
𝐴𝐶,𝑟𝑒𝑠 

𝐸′
𝑟𝑒𝑠 

 is calculated from 2015 RECS for each census division, 
𝐸′

𝐴𝐶,𝑐𝑜𝑚 

𝐸′
𝑐𝑜𝑚 

 is calculated from 2018 CBECS 69 

for each census division, and 
𝐸𝑟𝑒𝑠  

𝐸𝑐𝑟𝑡,𝑡𝑜𝑡
 and 

 𝐸𝑐𝑜𝑚

𝐸𝑐𝑟𝑡,𝑡𝑜𝑡
 are calculated from 2022 State Profiles and Energy Estimates 70 

for each state. This allows us to obtain state-level estimates of 𝑓 by leveraging census-division level 71 

statistics where state-level information is missing. 72 

  73 

https://www.eia.gov/consumption/residential/data/2015/
https://www.eia.gov/consumption/commercial/data/2018/
https://www.eia.gov/state/
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Supplementary Table 1 | The U-Surf dataset3 helps correct anthropogenic heat overestimation. The 74 

observed value is derived from the Varquez et al. dataset2, following ref.4 Both simulations are run with 75 

the original modeling scheme (i.e., no dehumidification), with the same urban extent as defined in U-Surf. 76 

The AHF result for default surface data is much larger than that presented in ref.4 because the urban 77 

extent in U-Surf is used, which is much larger than the default urban extent used in ref.4 78 

Annual average global total AHF due to heating and 

air conditioning for 2010 – 2014   

Value 

(terawatts) 

Observed estimates (derived from ref.2) 3.1 

Simulated with default surface data 9.7 

Simulated with U-Surf 3.3 

 79 

  80 
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Supplementary Table 2 | Condensate produced from the new dehumidification scheme has minimal 81 

effect on river flow. Annual average volumetric flow rates of world’s 50 largest rivers simulated under 82 

the new dehumidification scheme and under the original scheme for 2081 – 2100, and the increase due to 83 

condensate from dehumidification. The simulation run under the original scheme is otherwise identical to 84 

the one analyzed in the study.  85 

No. River Name 

Station, 

country 

Volumetric flow rate (km3 yr-1) Increase 

due to new 

scheme 

(m3 yr-1) 

Relative 

increase 

due to new 

scheme 

(%) 

New scheme (with 

dehumidification) 
Original scheme (no 

dehumidification) 

1 Amazon Obidos, 

Brazil 
2922.365 2922.363 2000 0.000% 

2 Congo Kinshasa, 

Congo 
2763.163 2763.162 1000 0.000% 

3 Orinoco Pte Angostu, 

Venezuela 
764.246 764.244 2000 0.000% 

4 Changjiang Datong, 

China 
1766.562 1766.52 42000 0.002% 

5 Brahmaputra Bahadurabad

, Bangladesh 
1254.887 1254.887 0 0.000% 

6 Mississippi Vicksburg, 

MS, USA 
712.012 711.99 22000 0.003% 

7 Yenisey Igarka, 

Russia 
820.19 820.19 0 0.000% 

8 Parana Timbues, 

Argentina 
748.066 748.046 20000 0.003% 

9 Lena Kusur, 

Russia 
781.819 781.819 0 0.000% 

10 Mekong Pakse, Laos 412.121 412.112 9000 0.002% 

11 Tocantins Tucurui, 

Brazil 
497.262 497.261 1000 0.000% 

12 Tapajos Jatoba, 

Brazil 
167.063 167.063 0 0.000% 

13 Ob Salekhard, 

Russia 
394.439 394.439 0 0.000% 

14 Ganges Farakka, 

India 
389.709 389.699 10000 0.003% 

15 Irrawaddy Sagaing, 

Myanmar(B

urma) 

273.883 273.883 0 0.000% 

16 St Lawrence Cornwall 

ON, Canada 
369.235 369.227 8000 0.002% 

17 Amur Komsomols

k, Russia 
610.788 610.786 2000 0.000% 

18 Xingu Altamira, 

Brazil 
71.389 71.389 0 0.000% 

19 Mackenzie Arctic Red, 

Canada 
462.492 462.492 0 0.000% 

20 Xijiang Wuzhou, 

China 
223.535 223.525 10000 0.004% 
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21 Columbia The Dalles, 

OR, USA 
226.26 226.26 0 0.000% 

22 Magdalena Calamar, 

Colombia 
304.675 304.675 0 0.000% 

23 Uruguay Concordia, 

Argentina 
154.975 154.973 2000 0.001% 

24 Yukon Pilot Stn, 

AK, USA 
471.407 471.407 0 0.000% 

25 Atrato Tagachi, 

Colombia 
53.659 53.659 0 0.000% 

26 Danube Ceatal Izma, 

Romania 
112.84 112.84 0 0.000% 

27 Niger Gaya, Niger 23.328 23.328 0 0.000% 

28 Ogooue Lambarene, 

Gabon 
209.895 209.895 0 0.000% 

29 Essequibo Plantain Is, 

Guyana 
25.853 25.853 0 0.000% 

30 Fraser Hope, 

Canada 
136.536 136.536 0 0.000% 

31 Pechora Oksino, 

Russia 
144.516 144.516 0 0.000% 

32 Nelson Upstream of 

Bladder, 

Canada 

1.74 1.74 0 0.000% 

33 Khatanga Khatanga, 

Russia 
116.48 116.48 0 0.000% 

34 Sepik Ambunti, 

Papua New 

Guinea 

240.695 240.695 0 0.000% 

35 Kolyma Kolymskoye

, Russia 
236.808 236.808 0 0.000% 

36 Zambeze Matundo-

Cai, 

Mozambique 

17.074 17.074 0 0.000% 

37 Severnaya 

Dvina 
Ust Pinega, 

Russia 
110.673 110.673 0 0.000% 

38 Indus Kotri, 

Pakistan 
0.22 0.22 0 0.000% 

39 Sanaga Edea, 

Cameroon 
115.492 115.492 0 0.000% 

40 Godavari Polavaram, 

India 
105.002 104.999 3000 0.003% 

41 Rajang Kapit Wharf, 

Malaysia 
120.749 120.749 0 0.000% 

42 Sao Francisco Traipu, 

Brazil 
263.106 263.104 2000 0.001% 

43 Usumacinta Boca del Ce, 

Mexico 
7.725 7.725 0 0.000% 

44 Maroni Langa 

Tabbe, 

Suriname 

12.332 12.332 0 0.000% 
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45 Rhine Lobith, 

Netherlands 
61.687 61.687 0 0.000% 

46 Purari Wabo Dam, 

Papua New 

Guinea 

173.323 173.323 0 0.000% 

47 Caniapiscau Chute de la, 

Canada 
25.225 25.225 0 0.000% 

48 Mahanadi Kaimundi, 

India 
32.574 32.574 0 0.000% 

49 Sacramento Sacramento, 

CA, USA 
23.848 23.848 0 0.000% 

50 Jacui Passo do Ra, 

Brazil 
58.025 58.024 1000 0.002% 

  86 
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