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Supplementary Text 1 | Deriving AC energy use fractions

To obtain anthropogenic heat flux (AHF) due to AC for validation, we follow a similar procedure
as described in ref.! We start with a gridded AHF dataset, then multiply it with the country- or region-
specific fractions of AC energy use over total energy consumption, which we define as AC energy use
fractions (f). In this study, we collaborated with the authors of Varquez et al. dataset’ and obtained an
updated AHF dataset, which represents AHF from the commercial, residential, and transport sectors only.
This is one of the components that make up the original Varquez et al. dataset. This allowed us to correct
some of the biases introduced from industry or point sources (such as power plants) that lead to high AHF
on sparsely built/populated areas.

Because of this change, the AC energy fractions now need to represent AC energy use as a fraction
of commercial, residential, and transport energy consumption. Therefore, we modify the calculations to
reflect this change as well as leverage updated versions of the relevant datasets, as detailed below.

Country-level data come from two free [EA datasets in their latest versions: 1) Energy Efficiency
Indicators Highlights (EEI) November 2023 edition (https://www.iea.org/data-and-statistics/data-
product/energy-efficiency-indicators-highlights), which contains final end-use energy consumption that
includes AC energy consumption for residential and commercial sectors for select countries; and 2) World
Energy Balances Highlights (WEB) 2024 edition (https://www.iea.org/data-and-statistics/data-
product/world-energy-balances-highlights), which contains annual sectoral total energy consumption for
select countries. A total of 15 countries/regions (including the U.S.) have AC energy consumption data in
EEIL These countries/regions are: United States, South Korea, Germany, Japan, France, Portugal, New
Zealand, Italy, Morocco, Netherlands, Canada, Spain, Uruguay, Taiwan, and Hong Kong. The f for the 14

countries/regions excluding the U.S. are calculated as:

f — EAC,res + EAC,Com (S 1)
Eres + Ecom + Etra,

where Ejc res and Eyc com are average annual AC energy consumption for residential and commercial

sectors, respectively, obtained from EEI, and E,.s, E.om, and E;., are average annual total energy
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consumption for residential, commercial, and transport sectors, respectively, obtained from WEB. The
average is computed for 2010 — 2019 ignoring missing years.

For the U.S., we compute f for each state by leveraging U.S. subnational-level data from three EIA
datasets: 1) 2015 Residential Energy Consumption Survey (RECS)
(https://www.eia.gov/consumption/residential/data/2015/), which include the annual final end-use
(including AC) energy consumption in the residential sector at the census division level (the 50 U.S. states
are grouped into 9 census divisions); 2) 2018 Commercial Buildings Energy Consumption Survey (CBECS)
(https://www.eia.gov/consumption/commercial/data/2018/), which include the annual final end-use
(including AC) energy consumption in the commercial sector at the census division level, and 3) 2022 State
Profiles and Energy Estimates (https://www.eia.gov/state/), which include annual total primary energy
consumption for all sectors (including residential, commercial, transportation, and industrial) at the state
level.

We combine the three datasets and calculate f for each state as:

f — E,Ac,res . Eres +E’AC,com . Ecom (Sz)

! ! b
E'res  Ecrttot E'com  Ecritot

where E ¢ 1o¢ is annual total energy consumption for commercial, residential, and transport sectors, and

the prime symbol denotes the census-division value of the respective quantity is used. In this equation,

EE“}M is calculated from 2015 RECS for each census division, E;}Cﬂ is calculated from 2018 CBECS

res com

for each census division, and EE”S and =™ are calculated from 2022 State Profiles and Energy Estimates

crt,tot crt,tot
for each state. This allows us to obtain state-level estimates of f by leveraging census-division level

statistics where state-level information is missing.
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Supplementary Table 1 | The U-Surf dataset’ helps correct anthropogenic heat overestimation. The
observed value is derived from the Varquez et al. dataset?, following ref.* Both simulations are run with
the original modeling scheme (i.e., no dehumidification), with the same urban extent as defined in U-Surf.
The AHF result for default surface data is much larger than that presented in ref.* because the urban
extent in U-Surf is used, which is much larger than the default urban extent used in ref.*

Annual average global total AHF due to heating and Value

air conditioning for 2010 — 2014 (terawatts)
Observed estimates (derived from ref.?) 3.1
Simulated with default surface data 9.7
Simulated with U-Surf 33
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Supplementary Table 2 | Condensate produced from the new dehumidification scheme has minimal
effect on river flow. Annual average volumetric flow rates of world’s 50 largest rivers simulated under

the new dehumidification scheme and under the original scheme for 2081 — 2100, and the increase due to
condensate from dehumidification. The simulation run under the original scheme is otherwise identical to

the one analyzed in the study.

Volumetric flow rate (km? yr')

Increase

Relative
increase

due to new due to new

Station, New scheme (with  Original scheme (no scheme scheme
No. River Name country dehumidification) dehumidification) (m3 yr!) (%)
1 Amazon Obidos, 2922.365 2922.363 2000 0.000%
Brazil
2 Congo Kinshasa, 2763.163 2763.162 1000 0.000%
Congo
3 Orinoco Pte Angostu, 764.246 764.244 2000 0.000%
Venezuela
4 Changjiang Datong, 1766.562 1766.52 42000 0.002%
China
5 Brahmaputra  Bahadurabad 1254.887 1254.887 0 0.000%
, Bangladesh
6 Mississippi Vicksburg, 712.012 711.99 22000 0.003%
MS, USA
7 Yenisey Igarka, 820.19 820.19 0 0.000%
Russia
8 Parana Timbues, 748.066 748.046 20000 0.003%
Argentina
9 Lena Kusur, 781.819 781.819 0 0.000%
Russia
10 Mekong Pakse, Laos 412.121 412.112 9000 0.002%
11 Tocantins Tucurui, 497.262 497.261 1000 0.000%
Brazil
12 Tapajos Jatoba, 167.063 167.063 0 0.000%
Brazil
13 Ob Salekhard, 394.439 394.439 0 0.000%
Russia
14  Ganges Farakka, 389.709 389.699 10000 0.003%
India
15 Irrawaddy Sagaing, 273.883 273.883 0 0.000%
Myanmar(B
urma)
16 St Lawrence Cornwall 369.235 369.227 8000 0.002%
ON, Canada
17  Amur Komsomols 610.788 610.786 2000 0.000%
k, Russia
18 Xingu Altamira, 71.389 71.389 0 0.000%
Brazil
19 Mackenzie Arctic Red, 462.492 462.492 0 0.000%
Canada
20 Xijiang Wuzhou, 223.535 223.525 10000 0.004%
China




21  Columbia The Dalles, 226.26 226.26 0 0.000%
OR, USA

22 Magdalena Calamar, 304.675 304.675 0 0.000%
Colombia

23 Uruguay Concordia, 154.975 154.973 2000 0.001%
Argentina

24 Yukon Pilot Stn, 471.407 471.407 0 0.000%
AK, USA

25 Atrato Tagachi, 53.659 53.659 0 0.000%
Colombia

26 Danube Ceatal Izma, 112.84 112.84 0 0.000%
Romania

27 Niger Gaya, Niger 23.328 23.328 0 0.000%

28 Ogooue Lambarene, 209.895 209.895 0 0.000%
Gabon

29 Essequibo Plantain Is, 25.853 25.853 0 0.000%
Guyana

30 Fraser Hope, 136.536 136.536 0 0.000%
Canada

31 Pechora Oksino, 144.516 144.516 0 0.000%
Russia

32 Nelson Upstream of 1.74 1.74 0 0.000%
Bladder,
Canada

33 Khatanga Khatanga, 116.48 116.48 0 0.000%
Russia

34 Sepik Ambunti, 240.695 240.695 0 0.000%
Papua New
Guinea

35 Kolyma Kolymskoye 236.808 236.808 0 0.000%
, Russia

36 Zambeze Matundo- 17.074 17.074 0 0.000%
Cai,
Mozambique

37 Severnaya Ust Pinega, 110.673 110.673 0 0.000%

Dvina Russia

38 Indus Kotri, 0.22 0.22 0 0.000%
Pakistan

39 Sanaga Edea, 115.492 115.492 0 0.000%
Cameroon

40 Godavari Polavaram, 105.002 104.999 3000 0.003%
India

41 Rajang Kapit Wharf, 120.749 120.749 0 0.000%
Malaysia

42 Sao Francisco Traipu, 263.106 263.104 2000 0.001%
Brazil

43  Usumacinta Boca del Ce, 7.725 7.725 0 0.000%
Mexico

44  Maroni Langa 12.332 12.332 0 0.000%
Tabbe,
Suriname
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45 Rhine Lobith, 61.687 61.687 0 0.000%
Netherlands

46 Purari Wabo Dam, 173.323 173.323 0 0.000%
Papua New
Guinea

47 Caniapiscau Chute de la, 25.225 25.225 0 0.000%
Canada

48 Mahanadi Kaimundi, 32.574 32.574 0 0.000%
India

49  Sacramento Sacramento, 23.848 23.848 0 0.000%
CA, USA

50 Jacui Passo do Ra, 58.025 58.024 1000 0.002%
Brazil
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