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I. PROOF OF THE METHOD

Given (M + 1) numbers {αi}Mi=1 and β, we have a N ×N block matrix

K =


A11 A12 A13 · · · A1M

A21 A22 A23 · · · A2M

A31 A32 A33 · · · A3M

...
...

...
. . .

...
AM1 AM2 AM3 · · · AMM

 , (I.1)

where the diagonal blocks

Aii =


0 αi · · · αi

αi 0 · · · αi

...
...

. . .
...

αi αi · · · 0

 (I.2)

are square matrices of size Ni ×Ni and the off diagonal matrices

Aij = β


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 (I.3)

for i ̸= j are matrices of dimension Ni ×Nj and

M∑
i=1

Ni = N.

We define a new M ×M matrix whose (i, j) entry is the row sum of the block Aij :

K =


(N1 − 1)α1 N2β · · · NMβ

N1β (N2 − 1)α2 · · · NMβ
...

...
. . .

...
N1β N2β · · · (NM − 1)αM

 (I.4)
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Lemma I.1. Eigenvalues of K are also eigenvalues of K and if

(x1, x2, x3 . . . xM )t

is an eigenvector of K with eigenvalue λ, then

(x1, x1, . . . , x1︸ ︷︷ ︸
N1

, x2, x2, . . . , x2︸ ︷︷ ︸
N2

, . . . , xM , xM , . . . , xM︸ ︷︷ ︸
NM

)t

is an eigenvector of K with eigenvalue λ.

Proof. The main theorem of [1, Theorem, Pg 2] gives us the statement about eigenvalues whereas [1, Corollary 16]
proves the one on eigenvectors.

Lemma I.2. The eigenvalues of the matrix K are the eigenvalues of the matrix K and the numbers {−αi}Mi=1, where
−αi occur with multiplicity Ni − 1.

Proof. By Circulant Diagonalisation and the the main theorem in [1].

Lemma I.3. Under the assumption that for all 1 ≤ k ≤ M

|αk| >
1

Nk − 1
max
i∈[M ]

(|αi|) + (M − 1)
Nk

Nk − 1
|β| (I.5)

where [M ] denote the natural numbers from 1 to M . The eigenvectors of K corresponding to the first M eigenvalues
(sorted according to the absolute values) are of the form

(x1, x1, . . . , x1︸ ︷︷ ︸
N1

, x2, x2, . . . , x2︸ ︷︷ ︸
N2

, . . . , xM , xM , . . . , xM︸ ︷︷ ︸
NM

)t

Proof. Using [2, Corollary II.A.3], we have the following bound for any eigenvalue λ of K

|λ| ≥ |(Nk − 1)αk − (M − 1)Nkβ|

for some k satisfying 1 ≤ k ≤ M . Under the assumption, we have

|(Nk − 1)αk − (M − 1)Nkβ| ≥ |(Nk − 1)αk| − |(M − 1)Nkβ| > max
i∈[M ]

(|αi|). (I.6)

Hence all eigenvalues of K are bounded below by |αi| for all i. Hence by Lemma I.2, the first M eigenvalues of K are
the ones of K. We are done by Lemma I.1.

Now we scramble the matrix K to form a new matrix Ks. This corresponds to choosing a permutation matrix Ps

such that

Ks = Ps KP−1
s . (I.7)

Lemma I.4. For Ks as defined in (I.7), the eigenvalues of Ks are the same as eigenvalues of K. Moreover, y is an
eigenvector of Ks with eigenvalue λ if and only if y = Ps(x) for some eigenvector x of K with eigenvalue λ.

Proof. The eigenvalues of K are the same as Ks since they are similar. Moreover y is an eigenvector of Ks with
eigenvalue λ if and only if Ks(y) = λy if and only if Ps KP−1

s (y) = λy if and only if KP−1
s (y) = λP−1

s (y). We can
take x to be P−1

s (y) to finish off the proof.

Notations I.5. Let σ be a permutation of n elements. Then we denote by Pσ the n× n permutation matrix whose
elements are defined as

(Pσ)ij =

{
1 if j = σ(i)

0 otherwise.
(I.8)

Any n× n permutation matrix is of the form Pσ for some permutation σ.

Lemma I.6. If σ(i) = j, then the ith row of PσK is the jth row of K and the the ith column of KP t
σ is the jth

column of K for all matrices K.
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Lemma I.7. Let Pσ and Pτ be permutation matrices corresponding to permutations σ and τ respectively, then PσPτ

is a permutation matrix corresponding to the permutation σ ◦ τ . The inverse of Pσ is also a permutation matrix
corresponding to the permutation σ−1.

Lemma I.8. Let y be a vector of the form

(x1, x1, . . . , x1︸ ︷︷ ︸
N1

, x2, x2, . . . , x2︸ ︷︷ ︸
N2

, . . . , xM , xM , . . . , xM︸ ︷︷ ︸
NM

)t

where xi ̸= xj if i ̸= j. Let Q be a N ×N permutation matrix such that

Q(y) = y

Then Q is a block diagonal matrix of the form

Q =


P1 0 0 · · · 0
0 P2 0 · · · 0
0 0 P3 · · · 0
...

...
...

. . .
...

0 0 0 · · · PM

 , (I.9)

where each of the Pi is a permutation matrix of size Ni ×Ni

Proof. Let us fix the notation

L0 = 0

Lk =

k∑
i=1

Nk

Let σ be the N permutation such that Q = Pσ and let yl be the lth component of y for 1 ≤ l ≤ N . In particular, this
means Q(yl) = yσ(l). Since Q(y) = y, yl = yσ(l) for all l. Hence if Lk−1 < l ≤ Lk for some k and Lm−1 < σ(l) ≤ Lm

for some m, xk = yl = yσ(l) = xm which implies k = m by hypothesis. Thus, σ permutes the set

{Lk−1 + 1, Lk−1 + 2, Lk−1 + 3, . . . , Lk}

into itself for k from 1 to M . This can be concisely restated as the equation

σ = σ1 ◦ σ2 ◦ σ3 . . . σM

where each σk acts on the set

{Lk−1 + 1, Lk−1 + 2, Lk−1 + 3, . . . , Lk}

by a Nk permutation σk and leaves all other elements unchanged. Now, by definition

Pσ1 =


Pσ1 0 0 · · · 0
0 IdN2

0 · · · 0
0 0 IdN3 · · · 0
...

...
...

. . .
...

0 0 0 · · · IdNM

 , (I.10)

Pσ2 =


IdN1 0 0 · · · 0
0 Pσ2

0 · · · 0
0 0 IdN3 · · · 0
...

...
...

. . .
...

0 0 0 · · · IdNM

 , (I.11)
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...

PσM
=


IdN1

0 0 · · · 0
0 IdN2

0 · · · 0
0 0 IdN3

· · · 0
...

...
...

. . .
...

0 0 0 · · · PσM

 . (I.12)

So, we have

Q = Pσ1
Pσ2

Pσ3
. . . PσM

=


Pσ1

0 0 · · · 0
0 Pσ2

0 · · · 0
0 0 Pσ3

· · · 0
...

...
...

. . .
...

0 0 0 · · · PσM

 (I.13)

by I.7.

Given a M permutation σ, we define a new N ×N block matrix

Kσ =


Aσ

11 Aσ
12 Aσ

13 · · · Aσ
1M

Aσ
21 Aσ

22 Aσ
23 · · · Aσ

2M

Aσ
31 Aσ

32 Aσ
33 · · · Aσ

3M
...

...
...

. . .
...

Aσ
M1 Aσ

M2 Aσ
M3 · · · Aσ

MM

 , (I.14)

where the diagonal blocks

Aσ
ii =


0 ασ(i) · · · ασ(i)

ασ(i) 0 · · · 0
...

...
. . .

...
ασ(i) ασ(i) · · · 0

 (I.15)

are square matrices of size Nσ(i) ×Nσ(i) and the off diagonal matrices

Aσ
ij = β


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 (I.16)

for i ̸= j are matrices of dimension Nσ(i) ×Nσ(j).

Lemma I.9. Let

x = (x1, x1, . . . , x1︸ ︷︷ ︸
N1

, x2, x2, . . . , x2︸ ︷︷ ︸
N2

, . . . , xM , xM , . . . , xM︸ ︷︷ ︸
NM

)t

and

y = (y1, y1, . . . , y1︸ ︷︷ ︸
N ′

1

, y2, y2, . . . , y2︸ ︷︷ ︸
N ′

2

, . . . , yM , yM , . . . , yM︸ ︷︷ ︸
N ′

M

)t

be permutations of each other. Then there exists a M permutation σ and a N ×N permutation matrix P such that

1. P(x) = y

2. P KP−1 = Kσ
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Proof. Since x and y are permutations of each other, we can choose a M permutation σ such that

1. N ′
i = Nσ(i)

2. yi = xσ(i)

Then we define a N ×N block matrix P

P =


P11 P12 P13 · · · P1M

P21 P22 P23 · · · P2M

P31 P32 P33 · · · P3M

...
...

...
. . .

...
PM1 PM2 PM3 · · · PMM

 , (I.17)

where each block Pij is a matrix of dimension Nσ(i) ×Nj and is defined by the equation

Pij =

{
Idj if σ(i) = j

0 otherwise
(I.18)

Then, we have

P x =


P11 P12 P13 · · · P1M

P21 P22 P23 · · · P2M

P31 P32 P33 · · · P3M

...
...

...
. . .

...
PM1 PM2 PM3 · · · PMM

 (x1, x1, . . . , x1︸ ︷︷ ︸
N1

, x2, x2, . . . , x2︸ ︷︷ ︸
N2

, . . . , xM , xM , . . . , xM︸ ︷︷ ︸
NM

)t

= (xσ(1), xσ(1), . . . , xσ(1)︸ ︷︷ ︸
Nσ(1)

, xσ(2), xσ(2), . . . , xσ(2)︸ ︷︷ ︸
Nσ(2)

, . . . , xσ(M), xσ(M), . . . , xσ(M)︸ ︷︷ ︸
Nσ(M)

)t

= (y1, y1, . . . , y1︸ ︷︷ ︸
N ′

1

, y2, y2, . . . , y2︸ ︷︷ ︸
N ′

2

, . . . , yM , yM , . . . , yM︸ ︷︷ ︸
N ′

M

)t

= y.

where the second last equality follows from our assumption on σ. We now prove that

P KP−1 = Kσ (I.19)

We first note that, since P is a permutation matrix, P−1 is just the transpose Pt. Thus it is a block matrix of the
form

P−1 =


P ′
11 P ′

12 P ′
13 · · · P ′

1M

P ′
21 P ′

22 P ′
23 · · · P ′

2M

P ′
31 P ′

32 P ′
33 · · · P ′

3M
...

...
...

. . .
...

P ′
M1 P ′

M2 P ′
M3 · · · P ′

MM

 , (I.20)

where each block P ′
ij is a Ni ×Nσ(j) matrix defined by the equation

P ′
ij =

{
Idi if σ(j) = i

0 otherwise
(I.21)

Hence, we have that P KP−1 is a N ×N block matrix

P KP−1 =


A′

11 A′
12 A′

13 · · · A′
1M

A′
21 A′

22 A′
23 · · · A′

2M

A′
31 A′

32 A′
33 · · · A′

3M
...

...
...

. . .
...

A′
M1 A′

M2 A′
M3 · · · A′

MM

 , (I.22)
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whose diagonal blocks A′
ii are matrices of dimension Nσ(i) ×Nσ(i) defined by the equation

A′
ii =

M∑
j,l=1

Pij Ajl P−1
li

= Aσ(i)σ(i)

= Aσ
ii .

and the off diagonal blocks A′
ij are matrices of dimension Nσ(i) ×Nσ(j) defined by the equation

A′
ij =

M∑
l,k=1

Pil Alk P−1
kj

= Aσ(i)σ(j)

= Aσ
ij

for i ̸= j. This proves Equation (I.19).

Lemma I.10. Let Pi be an Ni ×Ni permutation matrix. Let Aii be a matrix as in Equation (I.2). Then

Pi Aii P
−1
i = Aii .

Proof. Let σ be the Ni permutation such that Pi = Pσ (refer Notation I.5). Then we have that

(Pi Aii P
−1
i )jk = (Pσ Aii P

−1
σ )jk

=
∑
l,m

(Pσ)jl(Aii)lm(P−1
σ )mk

= (Pσ)jσ(j)(Aii)σ(j)σ(k)(P
−1
σ )σ(k)k

= (Aii)σ(j)σ(k).

For j ̸= k, (Pi Aii P
−1
i )jk = (Aii)σ(j)σ(k) = α = (Aii)jk. On the other hand, (Pi Aii P

−1
i )jj = (Aii)σ(j)σ(j) = 0 =

(Aii)jj .

Lemma I.11. Let Q be a block diagonal matrix of the form

Q =


P1 0 0 · · · 0
0 P2 0 · · · 0
0 0 P3 · · · 0
...

...
...

. . .
...

0 0 0 · · · PM

 , (I.23)

where each of the Pi is a Ni ×Ni permutation matrix. Then for a matrix K as in Eq. (I.1),

QKQ−1 = K

Proof. By product of block matrices, we have that QKQ−1 is of the form

K =


P1 A11 P

−1
1 P1 A12 P

−1
2 P1 A13 P

−1
3 · · · P1 A1M P−1

M

P2 A21 P
−1
1 P2 A22 P

−1
2 P2 A23 P

−1
3 · · · P2 A2M P−1

M

P3 A31 P
−1
1 P3 A32 P

−1
2 P3 A33 P

−1
3 · · · P3 A3M P−1

M
...

...
...

. . .
...

PM AM1 P
−1
1 PM AM2 P

−1
2 PM AM3 P

−1
3 · · · PM AMM P−1

M

 , (I.24)

The diagonal blocks are Pi Aii P
−1
i and hence Aii by I.10. Moreover, for i ̸= j, all elements of the off diagonal blocks

Aij are the same, implying that any permutations leave Aij invariant. Hence the off-diagonal matrices are Pi Aij P
−1
j

= Aij .
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Theorem I.12. Let y′ be a linear combination of 1st M eigenvectors (eigenvectors corresponding to 1st M eigenval-
ues) of Ks. Then by I.4, there exists x such that Ps(x) = y′ and x is a linear combination of leading M eigenvectors
(eigenvectors corresponding to leading M eigenvalues sorted according to their absolute values) of K. Under the
assumption

|αk| >
1

Nk − 1
max
i∈[M ]

(|αi|) + (M − 1)
Nk

Nk − 1
|β|,

x is of the form

(x1, x1, . . . , x1︸ ︷︷ ︸
N1

, x2, x2, . . . , x2︸ ︷︷ ︸
N2

, . . . , xM , xM , . . . , xM︸ ︷︷ ︸
NM

)t

by Lemma I.3. Furthermore, we assume we have chosen y′ such that xi ̸= xj for i ̸= j. Now let T be a permutation
matrix such that the entries y = Ty′ is sorted in an ascending order. Then

T Ks T
−1 = Kσ

for some M permutation σ.

Proof. We have y = Ty′ = TPs(x) and y is of the form

(y1, y1, . . . , y1︸ ︷︷ ︸
N ′

1

, y2, y2, . . . , y2︸ ︷︷ ︸
N ′

2

, . . . , yM , yM , . . . , yM︸ ︷︷ ︸
N ′

M

)t.

By Lemma I.9, we know the existence of a M permutation σ and a permutation matrix P such that P(x) = y. Hence,
we have

P−1 TPs(x) = x

Now by Lemma I.8, we have

P−1 TPs = Q

where Q is of the form (I.9). That is

TPs = P Q (I.25)

We have

P QK(P Q)−1 = P QKQ−1 P−1 = Kσ (I.26)

by Lemma I.11 and property of P. Thus, we get

T Ks T
−1 = TPs K(TPs)

−1 = P QKQ−1 P−1 = Kσ (I.27)

by (I.25) and (I.26).

II. ESTIMATING THE NUMBER OF COMMUNITIES

Let K be as in (I.1) with Ni = N for all i and αi = α for all i. Let {λ1, λ2, . . . λNM} be the eigenvalues of K
sorted in a descending order by their absolute values. We introduce a new NM ×NM matrix L whose (i, j)th entry
is defined by

Lij =
1

|λi − λj |+ 1
. (II.1)

We also introduce the row sum vector R and difference vector D. R is a NM × 1 vector defined by

Ri =

NM∑
j=1

Tij (II.2)

whereas D is a (NM − 1)× 1 vector defined by

Di = Ri −Ri+1 (II.3)

With the above notations in mind, we have the following
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Lemma II.1. Assuming that (I.5) holds, the index corresponding to the largest (in absolute value) entry of Di is M .

Proof. By Lemma I.2 and Lemma I.3, the eigenvalues λi for i from M +1 to MN are all −α. The eigenvalues λi for i
from 1 to M on the other hand are eigenvalues of the matrix K which again is a circulant matrix in this case. It follows
from the Circulant Diagonalisation Theorem that λ1 = (M − 1)α +N(M − 1)β and λi = (M − 1)α + (NM −N)β
for i from 2 through to M . Hence the only nonzero entries of D are at index 1 and index M . Furthermore, we have

DM = (M − 1) +
1

|λ1 − λ2|+ 1
+

NM −N

|λ2 − λM+1|+ 1

− M − 1

|λ2 − λM+1|
− 1

|λ1 − λM |+ 1
− (NM −N)

> (N − 1)(M − 1)

and

D1 = 1 +
M − 11

|λ1 − λ2|+ 1
+

NM −N

|λ1 − λM+1|+ 1

− (M − 1)− 1

|λ1 − λ2|+ 1
− NM −N

|λ2 − λM+1|+ 1

< (N − 1)(M − 1).

This finishes the proof.

III. NOISE AND ERROR

Consider a network with N nodes and apparent community structure, as discussed in the previous sections. We now
make the adjacency matrix K noisy by adding to each element some noise drawn from a standard normal distribution,
η. Formally,

Kδ = K+δF,

where Kδ is the adjacency matrix after adding noise, δ is a non-negative real number and F is a matrix of order N
with elements drawn from a standard normal distribution.

We quantify the amount of added noise with respect to the difference between the inter-community and intra-
community connection strengths. Noise levels that are small compared to this difference largely preserve the com-
munity structure, but noise on the order of this difference would disrupt the structure completely. Here, we add
increasing amounts of noise, ranging from very low (δ = 0.05) to high (δ = 0.5), while remaining in the regime where
community structure is preserved so that the approach is still applicable.

We then randomly relabel the nodes, so that the adjacency matrix loses its distinct block structure. The method
(Section II of that main text) is then applied to these matrices; i.e. we sort the sum of eigenvectors corresponding to
the largest M eigenvalues of these scrambled matrices where M is obtained by using the method in section III of the
main text and apply the same sorting operator to the matrices.

Importantly, the choice of noise regime was not arbitrary. It was guided by a threshold in the overlap score, which
as its name suggests, quantifies the extent of overlap between inter- and intra-connection strengths (Fig. S1). We first
define a common range to identify the global minimum and maximum values across all inter- and intra-samples. This
common range is then discretized into bins of fixed width (10−6). The overlap was calculated for each noise level as
the sum of counts in bins that contained contributions from both inter- and intra-distributions, and normalized by
the total number of samples. This yielded a score between 0 and 1, where higher values indicate greater overlap and
hence lower separability of inter- and intra-connections.

Having established how the noise regime is determined, we now turn to quantifying the performance of the method
under these conditions. To do so, we formalize the notion of error in order to better understand its relationship with
noise. The most natural definition of error, denoted by ϵ, is the fraction of nodes that are misplaced:

ϵ =
Number of misplaced nodes

Total number of nodes
.
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Figure S1. Visual representation of overlap score at various noise levels In the network of Figure 4 of the main text,
an overlap score is computed to quantify the extent of overlap between intra and inter-connection strengths.

IV. LFR BENCHMARK

The LFR (Lancichinetti–Fortunato–Radicchi) Benchmark, introduced by Andrea Lancichinetti, Santo Fortunato,
and Francesco Radicchi in their 2008 paper [3], is one of the most widely used synthetic benchmarks for evaluating
community detection algorithms. The LFR benchmark extends earlier models like the Girvan–Newman benchmark
[4] by introducing heterogeneity in the distributions of node degree and community size to reflect the structure of
real-world complex networks more realistically. In particular, both the degree distribution and the community size
distribution follow a power law, capturing the heavy-tailed nature commonly observed in empirical networks.

The mixing parameter for topology µt controls the fraction of each node’s edges that connect to nodes outside its
community. Lower values of µt indicate well-separated communities, while higher values correspond to overlapping
communities. The minus exponent for the degree sequence, t1, determines the shape of the power-law degree distri-
bution. Smaller values of t1 result in a heavier tail, which means the network will contain more high-degree nodes or
hubs. Similarly, the minus exponent for the community size distribution t2 governs the skewness in the distribution
of community sizes, with smaller values producing more large communities and a broader range of sizes. The mixing
parameter for weights µw controls how the total edge weight of a node is distributed between its own community and
the rest of the network.

We applied our method to a wide range of parameters of the LFR Benchmark and the model performed well in all
the cases. (Fig. S2)
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Figure S2. The method does well on applicable cases of the LFR benchmark. Specifically, changing parameters: Mixing
parameter for topology ((a) µt = 0.5, (b) µt = 0.8), minus exponent for the degree sequence (t1), minus exponent for the
community size distribution (t2) has little effect on the error when plotted against mixing parameter for weights (µw).
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V. SCANS

Next, we quantified the effect of each parameter on the accuracy of the approach (Fig. S3). To do so, we followed a
similar simulation procedure as outlined above, this time varying one parameter at a time, while fixing all others. Fig.
S3(a) demonstrates how error changes with intra-connection strength, α. We start with a network of size, N = 600
with M = 6 communities of sizes 100 each. The inter-connection strength, β is 0.2 and the intra-connection strength,
α is same throughout different communities. We add a noise level, δ = 0.1. As expected, the error decrease with
increase in α. Larger α means intra-connections weights are much stronger than inter-connections weights and so the
community structure is much stronger. Mathematically, larger α implies larger difference between α and β and less
noise percentage with respect to this difference.

a c d
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Figure S3. Relation between various parameters and error: A network with 6 communities of size 100 each with intra-
community connection strength 1.2, inter-community connection strength 0.2 and noise level of 0.1 is used with varying one
parameter at a time. Error is plotted against y-axis with. (a) Along the x-axis are the various intra-community strengths α.
The error decreases as α increases, since a larger gap between α and β makes the communities more distinct. (b) Along the
x-axis are the various inter-community strengths β. The error increases as β increases, since a larger gap between α and β
makes the communities less distinct.(c) Along the x-axis are the various number of communities. The error increases as the
number of communities increases since the inequality (I.5) is violated. (d) Along the x-axis are the various community sizes.
Error decreases as community size increases.

In Fig. S3(b), we see how error changes with inter-connection strength, β. We start with a network of size, N = 600
with M = 6 communities of sizes 100 each. The intra-connection strength, α is 1.2 and the intra-connection strength,
β is uniform throughout the network. We add a noise level, δ = 0.1. The error increases with increase in β. Increase in
β means inter-connections weights are getting stronger but the intra-connections weights remains the same and so the
community structure is getting weaker. In other words, larger β implies smaller difference between α and β and high
noise percentage with respect to this difference. In Fig. S3(c), we see how error changes with number of communities,
M . We start with a network of size, N = 600 with M communities of sizes 100 each. The intra-connection strength,
α is 1.2 and the intra-connection strength, β is 0.2. We add a noise level, δ = 0.1. The error increases with increase
in M . This can be easily explained by the inequality (I.5) as increasing M while keeping α and β constant does not
satisfy the bounds in this condition.

In Fig. S3(d), we see how error changes with community size, N . We start with a network of size, N with M = 6
communities of sizes 100 each. The intra-connection strength, α is 1.2 and the intra-connection strength, β is 0.2. We
add a noise level, δ = 0.1. The error decreases with increase in N . Increasing N while keeping M constant increases

the community sizes Nk. This decreases the quantity
1

Nk − 1
maxi∈[M ](|αi|). This, in turn implies that the inequality

(I.5) is satisfied more often, thus improving the efficacy of the approach.
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VI. RANDOM GRAPHS

When applied on random graph obtained from LFR benchmark graphs(Fig. S4a), the method detects only one
community in all the 100 iterations (Fig. S4d). Hence, only the first eigenvector is used for sorting and there are no
sharp jumps in the eigenvector (Fig. S4b). This shows that our approach is robust and doesn’t detect communities
where there are none.
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Figure S4. Community detection on random graphs (a) We begin with a random graph of 100 nodes generated using
the LFR benchmark (b) The estimated number of communities in this case is 1(c) Along the x-axis are the various number of
communities. The error increases as the number of communities increases since the inequality (I.5) is violated. (d) In all 100
iterations, only a single community is detected, demonstrating the robustness of our approach.

VII. “STEP 2”

Our method reorders nodes according to the sorted sum of M leading eigenvectors, where nodes belonging to the
same community are positioned next to one another and community boundaries are revealed by “jumps” in the value
of the sorted sum. The intuition behind this approach is that, when nodes are ordered in this way, each of the leading
eigenvectors displays block structure that distinguishes one or more of the communities (see for example Fig. 6a,b
of the main text). Single eigenvectors rarely describe the full community structure, which instead is revealed more
robustly through the combination of M leading eigenvectors. However, in cases where this sum is ambiguous (for
example, due to the presence of noise) (Figs. S5a, b), individual eigenvectors may help to refine the ordering of nodes
(Figs. S5c, d). We demonstrate this idea by introducing a simple “Step 2”, which uses targeted resorting to further
align nodes belonging to the same community (Section 5 of the main text).

“Step 2” inspects the ordering at a finer scale by analysing small spectral “gaps” i.e., differences between consecutive
values of the sorting variable: small differences correspond to internally homogeneous portions of a community,
while larger jumps signal potential boundaries between communities. Using a percentile threshold, we identify these
tentative boundaries and partition the sorted node list into segments. Within each segment, we measure the standard
deviation of the first eigenvector’s entries, which acts as a good marker of whether nodes in that segment belong to the
same underlying community. Segments with unusually large variation compared to others are flagged as potentially
containing inter-community mixing. For these flagged segments, we perform a local re-sorting using only the first
eigenvector, which provides a finer separation of nodes (Fig. S5e). Segments that show no such irregularity are left
unchanged. The output of this refined procedure is a permutation that improves the block-structure alignment of
the adjacency matrix beyond what is achieved in the initial method (Fig. S5f). In our current implementation, we
consider only the leading eigenvector for simplicity, however, inspecting each of the M eigenvectors contributing to
the sum could further refine this procedure.
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Figure S5. Step 2: targeted resorting. (a) The adjacency matrix of an example network with four communities (where the
community membership of each node is indicated in colour code below the plot). (b) The sum of the 4 leading eigenvectors,
plotted with each entry coloured according to the corresponding node’s community membership. Here, the purple and green
communities have similar values in the eigenvector sum: sorting thus obscures these two communities (as in panel d). (c)
However, these two communities are well-separated in the first eigenvector. Here, the leading eigenvector is plotted with
entries coloured by the corresponding node’s community membership. We can leverage this separation to re-sort the section
of the eigenvector sum corresponding to the purple and green communities, thus distinguishing the two communities. (d) The
sorted sum of the 4 leading eigenvectors (from panel b), plotted with entries coloured by the corresponding node’s community
membership. Here, the blue and yellow communities are clustered as desired, but the purple and green communities are mixed
together, as expected from panel b. Dashed lines indicate large jumps between consecutive entries of the sorted sum (exceeding
a percentile threshold). These tentative boundaries are used to identify regions where a targeted resorting may be beneficial.
(e) The leading eigenvector displays large variance in the segment corresponding to the green and purple nodes (as expected
from panel c). Resorting within each segment (dashed lines) according to the leading eigenvector reveals a clear jump in this
segment that was previously obscured. (f) The re-sorted sum of the 4 leading eigenvectors, now plotted with node positions
determined by the targeted resorting procedure in panel e. The green and purple communities are now distinguished.
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VIII. NETWORKS OF KURAMOTO OSCILLATORS

The dynamics of a network of Kuramoto oscillators is defined by

θ̇i(t) = ω + ϵ

N−1∑
j=0

Aij sin
(
θj(t)− θi(t)− ϕij

)
, (VIII.1)

where θi(t) is the phase of the ith oscillator at time t, ω is the natural frequency of oscillation, N is the number of
oscillators in the network, ϵ is the coupling strength, Aij represents the elements of the adjacency matrix that defines
the connectivity in the network, and ϕij is the phase-lag in the interaction between oscillator i and j. We consider a
network of identical oscillators, and we set ω = 0 without loss of generality.
For the analyses in Fig. 6 of the main text, we integrate Eq. (VIII.1) using Euler method with timestep dt = 0.001,

where we start the system with random initial conditions uniformly distributed in [−π, π]. For the original network,
Fig. 6a of the main text represents the adjacency matrix and no phase-lag is considered in the coupling, i.e. ϕij = 0.
Using the insights from our recent work [5–7], we obtain a rewired network, such that the argument of the leading
eigenvector displays three communities, so that the dynamics will display synchronized clusters. The adjacency matrix
in this case is represented in Fig. 6f of the main text, and there is also phase-lag in the coupling which follow a similar
pattern as the adjacency matrix.
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