
Accurate, scalable, and unified single-cell atlas

integration with scBIOT

Haihui Zhang1,2*, Peiwu Qin3

1Department of Orofacial Sciences, School of Dentistry, University of California San Francisco,

San Francisco, CA
2Cancer Biology and Immunology Laboratory, University of California San Francisco, San

Francisco, CA
3Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate

School, Tsinghua University, Shenzhen, Guangdong, China

*Correspondence should be addressed to Haihui Zhang (Haihui.Zhang@ucsf.edu).

Keywords: scBIOT, Optimal transport, Generative model, Transformer, VAE, Self-supervised

learning, Contrastive learning, Multi-omics, Single-cell integration

mailto:Haihui.Zhang@ucsf.edu

Extended Data

Extended Data Fig. 1

Extended Data Fig. 1. Benchmarking clustering metrics against OT-derived pseudo-labels.

a, Normalized mutual information (NMI) between model-inferred clusters and pseudo-labels

generated via optimal transport (OT). b, Adjusted Rand index (ARI), measuring similarity between

pseudo-labels and predicted labels. c, Classification accuracy, the fraction of cells whose predicted

labels match the OT pseudo-labels. Across panels, higher values indicate greater concordance with

the OT reference.

Extended Data Fig. 2

Extended Data Fig. 2. Quantitative comparison of biological conservation and batch-effect

correction across iterative LSI (Unintegrated), LIGER, Harmony, and scBIOT for scATAC-seq

brain dataset with large-window peaks1.

Extended Data Fig. 3

Extended Data Fig. 3. a, UMAP embeddings colored by batch and scBIOT-defined clusters in

the SNARE-seq datasets. b, ARI and NMI scores comparing three integration methods across the

datasets2.

Extended Data Fig. 4

Extended Data Fig. 4. a, UMAP of the unpaired scRNA-seq and snATAC-seq datasets integrated

with scBIOT, colored by batch (left) and by scBIOT-inferred clusters (right). b, Confusion matrix

quantifying agreement between reference cell-type annotations and scBIOT-transferred labels

from scRNA-seq to snATAC-seq3.

Reference

1. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics.

Nat Methods 19, 41–50 (2022).

2. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and

chromatin accessibility in the same cell. Nat Biotechnol 37, 1452–1457 (2019).

3. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.

Nature 598, 103–110 (2021).

Extended Methods

Batch-aware optimal-transport (OT) integration with rare-type protection

Data and notation

Let 𝑋0 ∈ 𝑅𝑁×𝑑 be the baseline embedding (e.g., PCA, LSI). Each cell 𝑖 has a batch label 𝑏𝑖 ∈

{1, . . . , 𝐵}. The algorithm iteratively updates the embedding 𝑋(𝑡) and returns the best iterate 𝑋∗.

Reference and batch prototypes (rare-aware)

For a chosen reference mode (largest batch or union), we compute prototypes by MiniBatch k-

means with sparsity weights:

𝑤𝑖   =  
𝑑‾𝑖

1
𝑁

∑ 𝑑‾𝑗
𝑁
𝑗=1

,  𝑑‾𝑖   =  
1

𝑘
∑ ∥

𝑗∈𝒩𝑘(𝑖)

𝑥𝑖 − 𝑥𝑗 ∥2, (1)

Where 𝒩𝑘(𝑖) are k-nearest neighbors (kNN) in 𝑋(𝑡).

Unbalanced entropic OT and barycentric projection

Between a batch prototype set (𝐵ℓ) and the reference (𝑅), we solve unbalanced entropic OT with

squared-Euclidean cost:

𝐶𝑝𝑞   =  
∥ 𝑏𝑝 − 𝑟𝑞 ∥2

2

𝜎𝐶
2 ,  𝜎𝐶   =  𝑠𝑡𝑑(𝐶), (2)

optionally clipping large entries to a chosen quantile to stabilize tails.

Let 𝑎 ∈ Δ
𝐾batch-1

 and 𝑏 ∈ Δ
𝐾ref-1be uniform masses. We compute a coupling 𝑇 ∈ 𝑅+

𝐾𝑏𝑎𝑡𝑐ℎ×𝐾𝑟𝑒𝑓
 that

minimizes

ℒUOT(𝑇) = ⟨𝐶, 𝑇⟩ + 𝜀 𝐾𝐿(𝑇  ∥  𝟏) + 𝜆 𝐾𝐿(𝑇𝟏  ∥  𝑎) + 𝜆 𝐾𝐿(𝑇⊤𝟏  ∥  𝑏), (3)

with entropic regularization e (reg) and marginal relaxation λ (reg_m). We use Sinkhorn scaling

in log-space (GPU) with updates

𝐾 = 𝑒−𝐶/𝜀 , 𝑢(𝑡+1) = (
𝑎

𝐾𝑣(𝑡)
)𝜏, 𝑣(𝑡+1) = (

𝑏

𝐾⊤𝑢(𝑡+1)
)𝜏,   𝜏 =

𝜆

𝜆 + 𝜀
, (4)

until convergence in ‖log𝑢(𝑡+1) − log𝑢(𝑡)‖
∞

 and ‖log𝑣(𝑡+1) − log𝜈(𝑡)‖
∞

.

Each prototype 𝑏𝑝is projected to the reference via the OT barycenter:

𝑏̃𝑝   =  
∑ 𝑇𝑝𝑞𝑞  𝑟𝑞

∑ 𝑇𝑝𝑞𝑞
. (5)

Prototype-to-cell displacement and bridge weighting

Cells inherit the prototype displacement with adaptive weights:

Δ𝑝
proto

= 𝑏̃𝑝 − 𝑏𝑝,  𝑠𝑝 =
1

1+∥ 𝛥𝑝
proto

∥2/𝜎𝛥

,  𝛼𝑖 = 𝑠𝑛(𝑖)(1 − 0.35 𝛽𝑖),  (6)

where 𝜎𝛥 = 𝑠𝑡𝑑 (‖Δ𝑝
proto

‖
2

) and 𝛽𝑖 is the bridge score. The initial per-cell shift is

𝐬𝑖 = 𝛼𝑖  𝛥𝑛(𝑖)
proto

. (7)

Bridge score from batch mixing and sparsity

Let 𝑝𝑖,𝑐 be the fraction of batch (c) among the kNN of cell i in 𝑋(𝑡). Define the neighbor batch

entropy

𝐻𝑖 = − ∑ 𝑝𝑖,𝑐

𝐵

𝑐=1

𝑙𝑜𝑔(𝑝𝑖,𝑐 + 10−12),  𝐻̂𝑖 =
𝐻𝑖

log𝐵
, (8)

is combined with a normalized local sparsity score 𝜌̂𝑖 ∈ [0,1] (from Eq. 1) to form

𝛽𝑖 = 0.5 𝐻̂𝑖 + 0.5 𝜌̂𝑖. (9)

Larger 𝛽𝑖 down-weights the move (update) near inter-batch bridges and in very sparse regions.

Cluster-sharpening field

To encourage crisper clusters, we compute K pseudo-centers {𝑐𝑘}. For each cell i, let 𝑐1 and 𝑐2

be the nearest and second-nearest centers with distances 𝑑1 < 𝑑2. Define a margin

𝑚𝑖 =
𝑑2 − 𝑑1

median(𝑑2)
,  𝑔𝑖 =

1

1 + exp((𝑚𝑖 − 1)/0.8)
, (10)

and a sharpening displacement

𝐪𝑖 = 𝑝𝑢𝑙𝑙 (𝑐1 − 𝑥𝑖) + 𝑔𝑖  𝑝𝑢𝑠ℎ (𝑥𝑖 − 𝑐2). (11)

The total proposed shift is

𝐬̃𝑖 = 𝐬𝑖 + 𝛾sharp 𝐪𝑖. (12)

Rare-aware kNN smoothing

On the fixed kNN graph of 𝑋0 with neighbor set 𝒩0(𝑖), we smooth shifts but skip rare cells (top

15% sparsest by 𝜌̂𝑖):

𝐬̃𝑖 ← (1 − 𝜆) 𝐬̃𝑖 + 𝜆 
1

|𝒩0(𝑖)|
∑ 𝐬̃𝑗

𝑗∈𝒩0(𝑖)

. (13)

Step capping and edge-stretch guards

We cap each step size by the local baseline scale:

𝒎𝒊 = 𝑐𝑙𝑖𝑝(𝜂 𝒔𝑖̃, ‖. ‖2 ≤ 𝜅 𝑑̅𝑖
(0)

), (14)

with η the global step (step_lo→step_hi), κ = max_step_local, and  𝑑̅𝑖
(0)

from Eq. 1 computed in

𝑋0.

To prevent graph over-stretch/compression relative to the original geometry, we enforce for all

(i, j) edges of the kNN graph in 𝑋0:

𝑠𝑖
min ≤

∥ (𝑥𝑖 + 𝐦𝑖) − (𝑥𝑗 + 𝐦𝑗) ∥2

𝑑𝑖𝑗
(0)

≤ 𝑠𝑖
max, (15)

with 𝑠𝑖
min, 𝑠𝑖

max interpolated by 𝛽𝑖 between bulk and bridge limits. If violated, moves are

uniformly scaled to satisfy (15).

The candidate embedding is updated as

𝑋cand = 𝑋(𝑡) + 𝑀,  𝑀 = [𝐦1, … , 𝐦𝑁]⊤,  𝑋(𝑡+1) = 𝑃𝑜𝑠𝑡𝑆𝑐𝑎𝑙𝑒(𝑋cand; 𝜇0, 𝜎0), (16)

where () recenters and rescales each dimension to match (𝜇0, 𝜎0) of 𝑋0.

Metrics and selection objective

At each iteration we evaluate:

Batch-mixing (higher is better): mean neighbor-entropy

𝑚𝑖𝑥(𝑋) =
1

𝑁
∑ 𝐻𝑖

𝑁

𝑖=1

(𝑋), (17)

computed as in Eq. 8 with neighbors in 𝑋.

 Neighborhood overlap with the baseline (higher is better):

𝑜𝑣𝑙(𝑋0, 𝑋) = 𝔼𝑖 [
|𝒩𝑘

𝑋0(𝑖) ∩ 𝒩𝑘
𝑋(𝑖)|

𝑘
] , (18)

Graph strain (lower is better): mean squared relative change of edge lengths,

str(𝑋) = 𝐸(𝑖,𝑗) [(𝑐𝑙𝑖𝑝 (
‖𝑥𝑖 − 𝑥𝑗‖

2

𝑑𝑖𝑗
(0)

− 1, −𝑐, 𝑐))

2

] . (19)

We select the best iterate by maximizing

𝐽(𝑋) = [mix(𝑋) − mix(𝑋0)] + 𝑤ovl𝑜𝑣𝑙(𝑋0, 𝑋) − 𝑤str[str(𝑋) − str(𝑋0)] − 𝛤(𝑋), (20)

with soft overlap penalties

𝛤(𝑋) = 𝛾 [𝑚𝑎𝑥{0, 𝑜(𝑡) − 𝑜𝑣𝑙}]2 + 0.45 𝑚𝑎𝑥{0, ovl⋆ − 𝑜𝑣𝑙}, (21)

where 𝒐(𝒕)is an annealed floor, 𝐨𝐯𝐥⋆ is the best-so-far overlap, and 𝒘𝐨𝐯𝐥, 𝒘𝐬𝐭𝐫, γ correspond to

w_overlap, w_strain, penalty_gamma. The best 𝑿 across iterations (patience-based early

stopping) is returned.

Trustworthiness

We also report trustworthiness TW on a subsample using the standard definition:

TW(𝑘) = 1 −
2

𝑛𝑘(2𝑛 − 3𝑘 − 1)
∑  

𝑛

𝑖=1

∑ (𝑟𝑋0
(𝑖, 𝑗) − 𝑘)

𝑗∈𝒰𝑘(𝑖)

, (22)

where 𝒰𝑘(𝑖) are points that appear in the kNN of i in X but not in 𝑋0; and 𝑟𝑋0
(𝑖, 𝑗) is one-based

rank of j w.r.t. i in 𝑋0 (1 = nearest).

Schedules and implementation

We linearly anneal λ (graph smoothing), the global step η, the cost-clipping quantile, and the

overlap floor across at most T iterations (default T = 15; max_iter). kNN uses FAISS on GPU

when available; OT runs on GPU via the custom unbalanced Sinkhorn (ot_backend="torch";

POT fallback provided on CPU).

Evaluation

We report the final iteration index, the metrics in Eqs. 17–19, and trustworthiness 𝑇𝑊 on a

random subsample using the standard definition implemented in scikit-learn

(_trustworthiness_score).

Typical hyperparameters

𝜀 = 0.028, 𝜆/(𝜆 + 𝜀) = 𝜏 = 0.40/(0.40 + 0.028), 𝐾𝑟𝑒𝑓 ≤ 1024, 𝐾𝑏𝑎𝑡𝑐ℎ ≤ 512, 𝑝𝑢𝑙𝑙 =

 0.78, 𝑝𝑢𝑠ℎ = 0.34; graph smoothing λ∈[0.38,0.52] (annealed); step η∈[0.78,0.96] (annealed);

rare cutoff 85th percentile of 𝜌̂𝑖; guard limits 𝑠𝑚𝑖𝑛∈[0.72,0.88], 𝑠𝑚𝑎𝑥∈[1.24,1.65] (interpolated

by β).

Prototype-aware objective for dual-view VAE clustering

We optimized dual-view VAEs augmented with prototype-aware clustering objectives. The

models minimize the negative evidence lower bound (ELBO) for the β-VAE, extended with

unsupervised and semi-supervised prototype losses that promote cluster consistency and

separation.

The basic VAE objective

We minimized the negative evidence lower bound (ELBO) for the β-VAE loss:

ℒ𝑣𝑎𝑒   =   = 𝐸𝑞𝜃(𝑧|𝑥)
[− log 𝑝∅(𝑥|𝑧)] + 𝛽 · 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝(𝑧)), (1)

where the first term is the reconstruction loss and the second term is the Kullback–Leibler (KL)

divergence. For isotropic Gaussian priors, the KL term simplifies to a closed form.

Prototype-aware contrastive learning

Let 𝑧1, 𝑧2 ∈ 𝑅𝐵×𝑑 denote the embeddings of two complementary data views and 𝑧̃ = 𝑧 ∕ ‖𝑧‖2

their normalized forms. A set of learnable prototypes 𝐶 = {𝐶𝑘}𝑘=1
𝐾 defines latent cluster centers.

The prototype temperature τ controls the sharpness of cosine similarities. . For clustering we use

the averaged embedding 𝑧𝑐 = 1 2⁄ (flatten(𝑧1) + flatten(𝑧2)).

Cosine assignments

logits
∗
(𝑖, 𝑘) =

𝑧̃∗(𝑖) ⋅ 𝐶̃𝑘

𝜏
,  (2)

𝑞∗(𝑖) = softmax𝑘 (logits
∗
(𝑖, 𝑘)) , 𝑞(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (logits(𝑧𝑐(𝑖))). (3)

Deep embedding clustering (DEC) sharpening

𝑓𝑘 = ∑ 𝑞

𝑖

(𝑖, 𝑘),  𝑝(𝑖, 𝑘) =
𝑞(𝑖, 𝑘)2/𝑓𝑘

∑ 𝑞𝑗 (𝑖, 𝑗)2/𝑓𝑗
. (4)

Prototype losses

1) DEC clustering. Aligns predictions with sharpened targets.

ℒclust = 𝐾𝐿 (𝑝 ∥ softmax(logits(zc))) . (5)

2) Soft prototype pull. Pulls embeddings toward prototypes using p-weights; ramp rcenter =

min(1, epoch/8).

ℒcenter = 𝑟center𝔼𝑖 ∑ 𝑝

𝑘

(𝑖, 𝑘)   ∥ 𝑧̃𝑐(𝑖) − 𝐶̃𝑘 ∥2
2. (6)

3) Prototype repulsion. Separates prototypes with a hinge on cosine similarity (target t).

ℒrepulse = 𝔼𝑖≠𝑗[𝑚𝑎𝑥{0, 𝑐𝑜𝑠(𝐶̃𝑖, 𝐶̃𝑗) − 𝑡}]2. (7)

4) CosFace margin on confident self‑labels. For samples with 𝑚𝑎𝑥𝑘𝑞(𝑖, 𝑘) ≥ conf_thr,

shift the target logit by m; ramp r_sup = min(1, epoch/5).

ℒmargin = 𝐶𝐸(softmax(logits𝑚), ŷ), logits𝑚(i, y) = 𝑙𝑜𝑔𝑖𝑡𝑠(i, ŷ) − 𝑚. (8)

5) Label‑smoothed supervised CE. Apply to available pseudo-labels 𝑦𝑝𝑠𝑒𝑢𝑑𝑜 ≥ 0 with

smoothing ε.

ℒsup = CEsmoothed 𝜀(logits(zc), 𝑦pseudo). (9)

6) Cross-view assignment consistency. Stabilizes assignments across views.

ℒcons = 1 2⁄ [KL(𝑞1 ∥ 𝑞2) + KL(𝑞2 ∥ 𝑞1)]. (10)

Total objective

The full training objective is the sum of the VAE term and the prototype-aware terms:

ℒ𝑡𝑜𝑡𝑎𝑙   = ℒ𝑣𝑎𝑒   +  𝜆clust ℒclust + 𝜆center ℒcenter + 𝜆repulse ℒrepulse +

(𝑟sup𝜆margin) ℒmargin + (𝑟sup𝜆sup) ℒsup + 𝜆cons ℒcons. (11)

Hyperparameters

τ (proto_tau), m (cosface_m), t (repulse_target), confidence threshold (conf_thr), and label

smoothing ε (label_eps) govern the prototype dynamics. Weights λ∗ correspond to the respective

terms; prototypes are updated by exponential moving average with momentum proto_ema_m.

