Accurate, scalable, and unified single-cell atlas

integration with scBIOT

Haihui Zhang'**, Peiwu Qin’

"Department of Orofacial Sciences, School of Dentistry, University of California San Francisco,

San Francisco, CA
2Cancer Biology and Immunology Laboratory, University of California San Francisco, San

Francisco, CA
3Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate

School, Tsinghua University, Shenzhen, Guangdong, China

*Correspondence should be addressed to Haihui Zhang (Haihui.Zhang@ucsf.edu).

Keywords: scBIOT, Optimal transport, Generative model, Transformer, VAE, Self-supervised

learning, Contrastive learning, Multi-omics, Single-cell integration


mailto:Haihui.Zhang@ucsf.edu

Extended Data

Extended Data Fig. 1

a b c
1.0 1.0 1.0
0.8 0.8+ > 0.8
= 061 — 0.6 © 0.6
0.4 1 0.4 o 04
<
0.2 —— Train 02 —— Train 02 —— Train
0.0 | ‘ _. Test 0.0 | | —‘ Test 0.0 | | —‘ Test
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epoch Epoch Epoch

Extended Data Fig. 1. Benchmarking clustering metrics against OT-derived pseudo-labels.
a, Normalized mutual information (NMI) between model-inferred clusters and pseudo-labels
generated via optimal transport (OT). b, Adjusted Rand index (ARI), measuring similarity between
pseudo-labels and predicted labels. ¢, Classification accuracy, the fraction of cells whose predicted
labels match the OT pseudo-labels. Across panels, higher values indicate greater concordance with

the OT reference.



Extended Data Fig. 2
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Extended Data Fig. 2. Quantitative comparison of biological conservation and batch-effect
correction across iterative LSI (Unintegrated), LIGER, Harmony, and scBIOT for scATAC-seq

brain dataset with large-window peaks!.



Extended Data Fig. 3
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Extended Data Fig. 3. a, UMAP embeddings colored by batch and scBIOT-defined clusters in
the SNARE-seq datasets. b, ARI and NMI scores comparing three integration methods across the

datasets?.



Extended Data Fig. 4
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Extended Data Fig. 4. a, UMAP of the unpaired scRNA-seq and snATAC-seq datasets integrated
with scBIOT, colored by batch (left) and by scBIOT-inferred clusters (right). b, Confusion matrix
quantifying agreement between reference cell-type annotations and scBIOT-transferred labels

from scRNA-seq to snATAC-seq’.
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Extended Methods

Batch-aware optimal-transport (OT) integration with rare-type protection

Data and notation
Let X, € RV*? be the baseline embedding (e.g., PCA, LSI). Each cell i has a batch label b; €

{1,..., B}. The algorithm iteratively updates the embedding X ® and returns the best iterate X*.

Reference and batch prototypes (rare-aware)
For a chosen reference mode (largest batch or union), we compute prototypes by MiniBatch -

means with sparsity weights:
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Where NV, (i) are k-nearest neighbors (kNN) in X®.

Unbalanced entropic OT and barycentric projection
Between a batch prototype set (B,) and the reference (R), we solve unbalanced entropic OT with

squared-Euclidean cost:

I by, — 1, 113
Cpq = p—qu Oc = Std(C), (2)
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optionally clipping large entries to a chosen quantile to stabilize tails.

) N . . Kpaten XK
Let a € Afven! and b € A%<"be uniform masses. We compute a coupling T € R AT that

minimizes



Luor(T) =(C, TY+ eKL(T | 1)+ AKL(T1 || @) + AKL(T1 || b),

(3)

with entropic regularization e (reg) and marginal relaxation A (reg_m). We use Sinkhorn scaling

in log-space (GPU) with updates
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until convergence in ||logu(+? — logu(t)”w and ||logv @+ — logv(t)”oo.
Each prototype byis projected to the reference via the OT barycenter:
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Prototype-to-cell displacement and bridge weighting
Cells inherit the prototype displacement with adaptive weights:
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where 0, = std (”A’;mtouz) and f; is the bridge score. The initial per-cell shift is
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Bridge score from batch mixing and sparsity

Let p; . be the fraction of batch (c) among the kNN of cell 7 in X ) Define the neighbor batch

entropy

B
H; = _Zpi,c log(p;c +10712), H = )
c=1

(4)
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(7)

(8)



is combined with a normalized local sparsity score p; € [0,1] (from Eq. 1) to form
Larger f8; down-weights the move (update) near inter-batch bridges and in very sparse regions.

Cluster-sharpening field
To encourage crisper clusters, we compute K pseudo-centers {c, }. For each cell i, let ¢; and ¢,

be the nearest and second-nearest centers with distances d1 < d2. Define a margin

d, —d; 1
= m' 9= 1+ exp((mi — 1)/0.8)' (10)
and a sharpening displacement
q; = pull (¢; — x;) + gi push (x; — ¢3). (11)
The total proposed shift is
Si = Si + Vsharp - (12)

Rare-aware KNN smoothing
On the fixed kNN graph of X, with neighbor set NV (i), we smooth shifts but skip rare cells (top
15% sparsest by p;):

- - 1 -
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Step capping and edge-stretch guards

We cap each step size by the local baseline scale:



m, = clip(n &, I, < xd®), (14)

with n the global step (step_lo—step hi), k = max_step local, and cfi(o)from Eq. 1 computed in

Xo.

To prevent graph over-stretch/compression relative to the original geometry, we enforce for all

(i, j) edges of the kNN graph in X:

min < ” (xi + ml-) — (x] + mj) "2
t - d(O)
ij

< s (15)
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with s;M", s;"%" interpolated by £; between bulk and bridge limits. If violated, moves are

uniformly scaled to satisfy (15).
The candidate embedding is updated as

xeand = x®O 4 M, M=[my,..my]T, XV = PostScale(X9; uy,0,),  (16)
where () recenters and rescales each dimension to match (ug, ay) of Xj.

Metrics and selection objective

At each 1teration we evaluate:

Batch-mixing (higher is better): mean neighbor-entropy

mix(X) = %Z H, (X), 17

computed as in Eq. 8 with neighbors in X.

Neighborhood overlap with the baseline (higher is better):



NFo(D) n ME(
ovl(Xo, X) = E; [' : ()k : ”'], (18)
Graph strain (lower is better): mean squared relative change of edge lengths,
_ (lxi - x,-||2
str(X) = Eq j || clip T -1,—¢cc . (19)
ij

We select the best iterate by maximizing
J(X) = [mix(X) — mix(Xy)] + wonovl(Xg, X) — we[str(X) — str(Xy)] — I'(X), (20)
with soft overlap penalties
r'(X) =y [max{0,0(t) — ovl}]* + 0.45 max{0, ovl* — ovl}, (21)

where o(t)is an annealed floor, ovl™ is the best-so-far overlap, and Wy, Wy, ¥ correspond to
w_overlap, w_strain, penalty gamma. The best X across iterations (patience-based early

stopping) is returned.

Trustworthiness

We also report trustworthiness 7/ on a subsample using the standard definition:

2 N )
TW(k)=1—nk(2n_3k_1)Z z (e, (i) — k), (22)

i=1 JjeUr(d)

where Uy (i) are points that appear in the kNN of 7 in X but not in X,; and ry, (i, j) is one-based

rank of j w.r.t. i in X (1 = nearest).



Schedules and implementation

We linearly anneal A (graph smoothing), the global step n, the cost-clipping quantile, and the

overlap floor across at most 7 iterations (default 7= 15; max_iter). KNN uses FAISS on GPU
when available; OT runs on GPU via the custom unbalanced Sinkhorn (ot backend="torch";

POT fallback provided on CPU).

Evaluation
We report the final iteration index, the metrics in Eqs. 17-19, and trustworthiness TW on a
random subsample using the standard definition implemented in scikit-learn

(_trustworthiness_score).
Typical hyperparameters

€=0.028,1/(A+¢) = t = 0.40/(0.40 + 0.028), Ky-oy < 1024, Kpgtcn < 512, pull =
0.78,push = 0.34; graph smoothing A€[0.38,0.52] (annealed); step n€[0.78,0.96] (annealed);
rare cutoff 85" percentile of p;; guard limits s™"€[0.72,0.88], s™3*€[1.24,1.65] (interpolated

by B).



Prototype-aware objective for dual-view VAE clustering

We optimized dual-view VAEs augmented with prototype-aware clustering objectives. The
models minimize the negative evidence lower bound (ELBO) for the B-VAE, extended with
unsupervised and semi-supervised prototype losses that promote cluster consistency and

separation.
The basic VAE objective

We minimized the negative evidence lower bound (ELBO) for the B-VAE loss:
Lyge = = Eq9(2|x)[ —logpy(x|2)] + B - DKL( de (le)”p(z)): (D

where the first term is the reconstruction loss and the second term is the Kullback—Leibler (KL)

divergence. For isotropic Gaussian priors, the KL term simplifies to a closed form.
Prototype-aware contrastive learning

Let z;, z, € RB*? denote the embeddings of two complementary data views and Z = z / ||z||,
their normalized forms. A set of learnable prototypes C = {C, }X_, defines latent cluster centers.
The prototype temperature T controls the sharpness of cosine similarities. . For clustering we use

the averaged embedding z, = 1/2 (flatten(z,) + flatten(z,)).

Cosine assignments

logits_(i, k) = M, (2)



q.(i) = softmax; (logits*(i, k)), q(i) = softmax (logits(zc(i))). (3)

Deep embedding clustering (DEC) sharpening

Prototype losses

1))

2)

3)
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DEC clustering. Aligns predictions with sharpened targets.
Loust = KL (p [ softmax(logits(zc))). (5)

Soft prototype pull. Pulls embeddings toward prototypes using p-weights; ramp I'eepier =

min(1, epoch/8).

Lcenter = rcenter[Ei z p (i' k) Il Zc(i) - C~k "% (6)
k

Prototype repulsion. Separates prototypes with a hinge on cosine similarity (target t).

Liepuise = Eizj[max{0, cos(C;, (:']) — t}]2. (7)

CosFace margin on confident self-labels. For samples with max;q(i, k) = conf_thr,
shift the target logit by m; ramp r_sup = min(1, epoch/5).

Linargin = CE(softmax(logits™), §), logits™(i,y) = logits(i,§) — m. (8)

Label-smoothed supervised CE. Apply to available pseudo-labels ypseyq0 = 0 with

smoothing €.

Lsup = CEsmoothed £ (logits (ZC)' ypseUdO)' (9)



6) Cross-view assignment consistency. Stabilizes assignments across views.

Lcons = 1/2 [KL(Q1 ” CIZ) + KL(QZ " Q1)] (10)

Total objective

The full training objective is the sum of the VAE term and the prototype-aware terms:

Ltotal = Lvae + Aclust Lclust + Acenter Lcenter + Arepulse Lrepulse +

(rsuplmargin) Lmargin + (rsuplsup) *Csup + )lcons *Ccons- (1 1)

Hyperparameters

T (proto_tau), m (cosface m), ¢ (repulse target), confidence threshold (conf thr), and label
smoothing € (label eps) govern the prototype dynamics. Weights A+ correspond to the respective

terms; prototypes are updated by exponential moving average with momentum proto_ema_m.



