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Extended Data  

Extended Data Fig. 1 

 

Extended Data Fig. 1. Benchmarking clustering metrics against OT-derived pseudo-labels. 

a, Normalized mutual information (NMI) between model-inferred clusters and pseudo-labels 

generated via optimal transport (OT). b, Adjusted Rand index (ARI), measuring similarity between 

pseudo-labels and predicted labels. c, Classification accuracy, the fraction of cells whose predicted 

labels match the OT pseudo-labels. Across panels, higher values indicate greater concordance with 

the OT reference. 



Extended Data Fig. 2 

 

Extended Data Fig. 2. Quantitative comparison of biological conservation and batch-effect 

correction across iterative LSI (Unintegrated), LIGER, Harmony, and scBIOT for scATAC-seq 

brain dataset with large-window peaks1. 



Extended Data Fig. 3 

 

Extended Data Fig. 3. a, UMAP embeddings colored by batch and scBIOT-defined clusters in 

the SNARE-seq datasets. b, ARI and NMI scores comparing three integration methods across the 

datasets2. 



Extended Data Fig. 4 

 

Extended Data Fig. 4. a, UMAP of the unpaired scRNA-seq and snATAC-seq datasets integrated 

with scBIOT, colored by batch (left) and by scBIOT-inferred clusters (right). b, Confusion matrix 

quantifying agreement between reference cell-type annotations and scBIOT-transferred labels 

from scRNA-seq to snATAC-seq3. 



Reference 

1. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. 

Nat Methods 19, 41–50 (2022). 

2. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and 

chromatin accessibility in the same cell. Nat Biotechnol 37, 1452–1457 (2019). 

3. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. 

Nature 598, 103–110 (2021). 

  



Extended Methods 

Batch-aware optimal-transport (OT) integration with rare-type protection 

Data and notation 

Let 𝑋0 ∈ 𝑅𝑁×𝑑 be the baseline embedding (e.g., PCA, LSI). Each cell 𝑖 has a batch label 𝑏𝑖 ∈

{1, . . . , 𝐵}. The algorithm iteratively updates the embedding 𝑋(𝑡) and returns the best iterate 𝑋∗. 

Reference and batch prototypes (rare-aware) 

For a chosen reference mode (largest batch or union), we compute prototypes by MiniBatch k-

means with sparsity weights: 
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𝑑‾𝑖

1
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∑ 𝑑‾𝑗
𝑁
𝑗=1
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Where 𝒩𝑘(𝑖) are k-nearest neighbors (kNN) in 𝑋(𝑡). 

Unbalanced entropic OT and barycentric projection 

Between a batch prototype set (𝐵ℓ) and the reference (𝑅), we solve unbalanced entropic OT with 

squared-Euclidean cost: 

𝐶𝑝𝑞   =  
∥ 𝑏𝑝 − 𝑟𝑞 ∥2

2

𝜎𝐶
2 ,  𝜎𝐶   =  𝑠𝑡𝑑(𝐶), (2) 

optionally clipping large entries to a chosen quantile to stabilize tails. 

Let 𝑎 ∈ Δ
𝐾batch-1

 and 𝑏 ∈ Δ
𝐾ref-1be uniform masses. We compute a coupling 𝑇 ∈ 𝑅+

𝐾𝑏𝑎𝑡𝑐ℎ×𝐾𝑟𝑒𝑓
 that 

minimizes 



ℒUOT(𝑇) = ⟨𝐶, 𝑇⟩ + 𝜀 𝐾𝐿(𝑇  ∥  𝟏) + 𝜆 𝐾𝐿(𝑇𝟏  ∥  𝑎) + 𝜆 𝐾𝐿(𝑇⊤𝟏  ∥  𝑏), (3) 

with entropic regularization e (reg) and marginal relaxation λ (reg_m). We use Sinkhorn scaling 

in log-space (GPU) with updates 

𝐾 = 𝑒−𝐶/𝜀 , 𝑢(𝑡+1) = (
𝑎

𝐾𝑣(𝑡)
)𝜏, 𝑣(𝑡+1) = (

𝑏

𝐾⊤𝑢(𝑡+1)
)𝜏,   𝜏 =

𝜆

𝜆 + 𝜀
, (4) 

until convergence in ‖log𝑢(𝑡+1) − log𝑢(𝑡)‖
∞

 and ‖log𝑣(𝑡+1) − log𝜈(𝑡)‖
∞

. 

Each prototype 𝑏𝑝is projected to the reference via the OT barycenter: 

𝑏̃𝑝   =  
∑ 𝑇𝑝𝑞𝑞  𝑟𝑞

∑ 𝑇𝑝𝑞𝑞
. (5) 

Prototype-to-cell displacement and bridge weighting 

Cells inherit the prototype displacement with adaptive weights: 

Δ𝑝
proto

= 𝑏̃𝑝 − 𝑏𝑝,  𝑠𝑝 =
1

1+∥ 𝛥𝑝
proto

∥2/𝜎𝛥

,  𝛼𝑖 = 𝑠𝑛(𝑖)(1 − 0.35 𝛽𝑖),  (6) 

where 𝜎𝛥 = 𝑠𝑡𝑑 (‖Δ𝑝
proto

‖
2

) and 𝛽𝑖 is the bridge score. The initial per-cell shift is 

𝐬𝑖 = 𝛼𝑖  𝛥𝑛(𝑖)
proto

. (7) 

Bridge score from batch mixing and sparsity 

Let 𝑝𝑖,𝑐 be the fraction of batch (c) among the kNN of cell i in 𝑋(𝑡). Define the neighbor batch 

entropy 

𝐻𝑖 = − ∑ 𝑝𝑖,𝑐

𝐵

𝑐=1

𝑙𝑜𝑔(𝑝𝑖,𝑐 + 10−12),  𝐻̂𝑖 =
𝐻𝑖

log𝐵
, (8) 



is combined with a normalized local sparsity score 𝜌̂𝑖 ∈ [0,1] (from Eq. 1) to form 

𝛽𝑖 = 0.5 𝐻̂𝑖 + 0.5 𝜌̂𝑖. (9) 

Larger 𝛽𝑖 down-weights the move (update) near inter-batch bridges and in very sparse regions. 

Cluster-sharpening field 

To encourage crisper clusters, we compute K pseudo-centers {𝑐𝑘}. For each cell i, let 𝑐1 and 𝑐2 

be the nearest and second-nearest centers with distances 𝑑1 < 𝑑2. Define a margin 

𝑚𝑖 =
𝑑2 − 𝑑1

median(𝑑2)
,  𝑔𝑖 =

1

1 + exp((𝑚𝑖 − 1)/0.8)
, (10) 

and a sharpening displacement 

𝐪𝑖 = 𝑝𝑢𝑙𝑙 (𝑐1 − 𝑥𝑖) + 𝑔𝑖  𝑝𝑢𝑠ℎ (𝑥𝑖 − 𝑐2). (11) 

The total proposed shift is 

𝐬̃𝑖 = 𝐬𝑖 + 𝛾sharp 𝐪𝑖. (12) 

Rare-aware kNN smoothing 

On the fixed kNN graph of 𝑋0 with neighbor set 𝒩0(𝑖), we smooth shifts but skip rare cells (top 

15% sparsest by 𝜌̂𝑖): 

𝐬̃𝑖 ← (1 − 𝜆) 𝐬̃𝑖 + 𝜆 
1

|𝒩0(𝑖)|
∑ 𝐬̃𝑗

𝑗∈𝒩0(𝑖)

. (13) 

Step capping and edge-stretch guards 

We cap each step size by the local baseline scale: 



𝒎𝒊 = 𝑐𝑙𝑖𝑝(𝜂 𝒔𝑖̃, ‖. ‖2 ≤ 𝜅 𝑑̅𝑖
(0)

), (14) 

with η the global step (step_lo→step_hi), κ = max_step_local, and  𝑑̅𝑖
(0)

from Eq. 1 computed in 

𝑋0. 

To prevent graph over-stretch/compression relative to the original geometry, we enforce for all 

(i, j) edges of the kNN graph in 𝑋0: 

𝑠𝑖
min ≤

∥ (𝑥𝑖 + 𝐦𝑖) − (𝑥𝑗 + 𝐦𝑗) ∥2

𝑑𝑖𝑗
(0)

≤ 𝑠𝑖
max, (15) 

with 𝑠𝑖
min, 𝑠𝑖

max interpolated by 𝛽𝑖 between bulk and bridge limits. If violated, moves are 

uniformly scaled to satisfy (15). 

The candidate embedding is updated as 

𝑋cand = 𝑋(𝑡) + 𝑀,  𝑀 = [𝐦1, … , 𝐦𝑁]⊤,  𝑋(𝑡+1) = 𝑃𝑜𝑠𝑡𝑆𝑐𝑎𝑙𝑒(𝑋cand; 𝜇0, 𝜎0), (16) 

where () recenters and rescales each dimension to match (𝜇0, 𝜎0) of 𝑋0. 

Metrics and selection objective 

At each iteration we evaluate: 

Batch-mixing (higher is better): mean neighbor-entropy 

𝑚𝑖𝑥(𝑋) =
1

𝑁
∑ 𝐻𝑖

𝑁

𝑖=1

(𝑋), (17) 

computed as in Eq. 8 with neighbors in 𝑋. 

 Neighborhood overlap with the baseline (higher is better): 



𝑜𝑣𝑙(𝑋0, 𝑋) = 𝔼𝑖 [
|𝒩𝑘

𝑋0(𝑖) ∩ 𝒩𝑘
𝑋(𝑖)|

𝑘
] , (18) 

Graph strain (lower is better): mean squared relative change of edge lengths, 

str(𝑋) = 𝐸(𝑖,𝑗) [(𝑐𝑙𝑖𝑝 (
‖𝑥𝑖 − 𝑥𝑗‖

2

𝑑𝑖𝑗
(0)

− 1, −𝑐, 𝑐))

2

] . (19) 

We select the best iterate by maximizing 

𝐽(𝑋) = [mix(𝑋) − mix(𝑋0)] + 𝑤ovl𝑜𝑣𝑙(𝑋0, 𝑋) − 𝑤str[str(𝑋) − str(𝑋0)] − 𝛤(𝑋), (20) 

with soft overlap penalties 

𝛤(𝑋) = 𝛾 [𝑚𝑎𝑥{0, 𝑜(𝑡) − 𝑜𝑣𝑙}]2 + 0.45 𝑚𝑎𝑥{0, ovl⋆ − 𝑜𝑣𝑙}, (21) 

where 𝒐(𝒕)is an annealed floor, 𝐨𝐯𝐥⋆ is the best-so-far overlap, and 𝒘𝐨𝐯𝐥, 𝒘𝐬𝐭𝐫, γ correspond to 

w_overlap, w_strain, penalty_gamma. The best 𝑿 across iterations (patience-based early 

stopping) is returned. 

Trustworthiness 

We also report trustworthiness TW on a subsample using the standard definition: 

TW(𝑘) = 1 −
2

𝑛𝑘(2𝑛 − 3𝑘 − 1)
∑  

𝑛

𝑖=1

∑ (𝑟𝑋0
(𝑖, 𝑗) − 𝑘)

𝑗∈𝒰𝑘(𝑖)

, (22) 

where 𝒰𝑘(𝑖) are points that appear in the kNN of i in X but not in 𝑋0; and 𝑟𝑋0
(𝑖, 𝑗) is one-based 

rank of j w.r.t. i in 𝑋0 (1 = nearest). 



Schedules and implementation 

We linearly anneal λ (graph smoothing), the global step η, the cost-clipping quantile, and the 

overlap floor across at most T iterations (default T = 15; max_iter). kNN uses FAISS on GPU 

when available; OT runs on GPU via the custom unbalanced Sinkhorn (ot_backend="torch"; 

POT fallback provided on CPU). 

Evaluation 

We report the final iteration index, the metrics in Eqs. 17–19, and trustworthiness 𝑇𝑊 on a 

random subsample using the standard definition implemented in scikit-learn 

(_trustworthiness_score). 

Typical hyperparameters 

𝜀 = 0.028, 𝜆/(𝜆 + 𝜀)  =  𝜏 =  0.40/(0.40 + 0.028), 𝐾𝑟𝑒𝑓 ≤ 1024, 𝐾𝑏𝑎𝑡𝑐ℎ ≤ 512, 𝑝𝑢𝑙𝑙 =

 0.78, 𝑝𝑢𝑠ℎ = 0.34; graph smoothing λ∈[0.38,0.52] (annealed); step η∈[0.78,0.96] (annealed); 

rare cutoff 85th percentile of 𝜌̂𝑖; guard limits 𝑠𝑚𝑖𝑛∈[0.72,0.88], 𝑠𝑚𝑎𝑥∈[1.24,1.65] (interpolated 

by β). 

  



 

Prototype-aware objective for dual-view VAE clustering 

We optimized dual-view VAEs augmented with prototype-aware clustering objectives. The 

models minimize the negative evidence lower bound (ELBO) for the β-VAE, extended with 

unsupervised and semi-supervised prototype losses that promote cluster consistency and 

separation. 

The basic VAE objective 

We minimized the negative evidence lower bound (ELBO) for the β-VAE loss: 

ℒ𝑣𝑎𝑒   =   = 𝐸𝑞𝜃(𝑧|𝑥)
[ − log 𝑝∅(𝑥|𝑧)] + 𝛽 · 𝐷𝐾𝐿( 𝑞𝜃(𝑧|𝑥)||𝑝(𝑧)), (1)   

where the first term is the reconstruction loss and the second term is the Kullback–Leibler (KL) 

divergence. For isotropic Gaussian priors, the KL term simplifies to a closed form. 

Prototype-aware contrastive learning 

Let 𝑧1, 𝑧2 ∈ 𝑅𝐵×𝑑 denote the embeddings of two complementary data views and 𝑧̃ = 𝑧 ∕ ‖𝑧‖2 

their normalized forms. A set of learnable prototypes 𝐶 = {𝐶𝑘}𝑘=1
𝐾  defines latent cluster centers. 

The prototype temperature τ controls the sharpness of cosine similarities. . For clustering we use 

the averaged embedding 𝑧𝑐 = 1 2⁄ (flatten(𝑧1) + flatten(𝑧2)). 

Cosine assignments 

logits
∗
(𝑖, 𝑘) =

𝑧̃∗(𝑖) ⋅ 𝐶̃𝑘

𝜏
,    (2) 



𝑞∗(𝑖) = softmax𝑘 (logits
∗
(𝑖, 𝑘)) , 𝑞(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (logits(𝑧𝑐(𝑖))).  (3) 

Deep embedding clustering (DEC) sharpening 

𝑓𝑘 = ∑ 𝑞

𝑖

(𝑖, 𝑘),  𝑝(𝑖, 𝑘) =
𝑞(𝑖, 𝑘)2/𝑓𝑘

∑ 𝑞𝑗 (𝑖, 𝑗)2/𝑓𝑗
. (4) 

 

Prototype losses 

1) DEC clustering. Aligns predictions with sharpened targets. 

ℒclust = 𝐾𝐿 (𝑝 ∥ softmax(logits(zc))) . (5) 

2) Soft prototype pull. Pulls embeddings toward prototypes using p-weights; ramp rcenter =

min(1, epoch/8). 

ℒcenter = 𝑟center𝔼𝑖 ∑ 𝑝

𝑘

(𝑖, 𝑘)   ∥ 𝑧̃𝑐(𝑖) − 𝐶̃𝑘 ∥2
2. (6) 

3) Prototype repulsion. Separates prototypes with a hinge on cosine similarity (target t). 

ℒrepulse = 𝔼𝑖≠𝑗[𝑚𝑎𝑥{0, 𝑐𝑜𝑠(𝐶̃𝑖, 𝐶̃𝑗) − 𝑡}]2. (7) 

4) CosFace margin on confident self‑labels. For samples with 𝑚𝑎𝑥𝑘𝑞(𝑖, 𝑘) ≥ conf_thr, 

shift the target logit by m; ramp r_sup =  min(1, epoch/5). 

ℒmargin = 𝐶𝐸(softmax(logits𝑚), ŷ), logits𝑚(i, y) = 𝑙𝑜𝑔𝑖𝑡𝑠(i, ŷ) − 𝑚. (8) 

5) Label‑smoothed supervised CE. Apply to available pseudo-labels 𝑦𝑝𝑠𝑒𝑢𝑑𝑜 ≥ 0 with 

smoothing ε. 

ℒsup = CEsmoothed 𝜀(logits(zc), 𝑦pseudo). (9) 



6) Cross-view assignment consistency. Stabilizes assignments across views. 

ℒcons = 1 2⁄ [KL(𝑞1 ∥ 𝑞2) + KL(𝑞2 ∥ 𝑞1)]. (10) 

Total objective 

The full training objective is the sum of the VAE term and the prototype-aware terms: 

ℒ𝑡𝑜𝑡𝑎𝑙   = ℒ𝑣𝑎𝑒   +  𝜆clust ℒclust + 𝜆center ℒcenter + 𝜆repulse ℒrepulse + 

(𝑟sup𝜆margin) ℒmargin + (𝑟sup𝜆sup) ℒsup + 𝜆cons ℒcons. (11) 

 

Hyperparameters 

τ (proto_tau), m (cosface_m), t (repulse_target), confidence threshold (conf_thr), and label 

smoothing ε (label_eps) govern the prototype dynamics. Weights λ∗ correspond to the respective 

terms; prototypes are updated by exponential moving average with momentum proto_ema_m. 


