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Abstract Protein structure prediction and decoy ranking remain central chal-
lenges in computational biophysics. Classical scoring functions often struggle to
discriminate near-native conformations from large populations of plausible decoys,
particularly in the critical low-energy tail of the conformational distribution. We
introduce Q-CVaR-Fold, a hybrid quantum-—classical architecture that integrates
a geometric graph neural network encoder with a small parameterized quantum
circuit acting as a nonlinear scoring head. To focus optimization on near-native
conformations, we combine contrastive ranking with Conditional Value-at-Risk
(CVaR) tail reweighting, yielding a risk-sensitive training objective aligned with
structural evaluation metrics.

Despite using only four qubits and shallow entangling layers, Q-CVaR-Fold ex-
hibits stable end-to-end training and avoids barren plateaus. On a decoy-ranking
benchmark, the model achieves a ROC-AUC of 0.984 and perfect top-5 native
enrichment across all sequences, outperforming classical baselines of comparable
size. The score distributions and monotonic reduction of CVaR loss demonstrate
that quantum feature transformations, coupled with tail-focused optimization, pro-
vide discriminative power beyond standard MLP heads. To our knowledge, this is
the first demonstration of a quantum-enhanced, risk-sensitive scoring model that
achieves near-perfect recovery of native structures in decoy-ranking tasks.

Q-CVaR-Fold highlights the potential of hybrid quantum models for energy
landscape modeling, fragment selection, and structural refinement, and offers a
promising foundation for next-generation quantum—geometric methods in compu-
tational structural biology.
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1 Introduction

Predicting the three-dimensional structure of a protein and evaluating the qual-
ity of candidate conformations remain central challenges in structural biology.
Although recent advances in deep learning have dramatically improved sequence-
to-structure prediction, particularly with the emergence of transformer-based ar-
chitectures, downstream decoy scoring continues to play a key role in fragment
assembly, structural refinement, and quality assessment pipelines. In these set-
tings, the goal is not merely to identify grossly incorrect structures, but to reliably
discriminate near-native conformations from large sets of plausible but incorrect
decoys. This task is intrinsically challenging because the relevant decoys often lie in
a narrow band of low-energy conformations, where small geometric perturbations
can produce significant ambiguity in conventional scoring functions.

Classical approaches to decoy ranking, such as physics-based energy models,
fragment-based likelihoods, or geometric graph neural networks, have achieved
substantial progress [1-3,12]. Nevertheless, even state-of-the-art scoring functions
may exhibit limited sensitivity in the near-native regime, where the majority of
evaluation metrics—including GDT-T'S and TM-score [5]—are most discerning. In
this context, methods that can amplify subtle geometric differences or reparam-
eterize conformation space into a more separable representation are of particular
interest.

Quantum machine learning (QML) has recently emerged as a promising direc-
tion for biophysics and molecular modeling [6]. Parameterized quantum circuits
(PQCs) can implement expressive nonlinear transformations in high-dimensional
Hilbert spaces, potentially offering inductive biases distinct from those available
to classical neural networks [8,15]. Several works have explored quantum kernel
methods, VQE-based energy estimators, and quantum graph constructions for
molecular learning, though applications to protein folding remain limited [19,21].
Existing methods typically target energy regression, rather than ranking, and do
not explicitly emphasize the rare near-native decoys that dominate structure eval-
uation tasks.

In parallel, risk-sensitive objectives based on Conditional Value-at-Risk (CVaR)
have shown promise in problems where performance on the worst-case or tail dis-
tribution is critical [13,14]. Protein decoy scoring exhibits this exact structure: the
hardest decoys—those closest to the native fold—are the ones that matter most,
both for structure prediction and refinement. Yet CVaR and related tail-aware
methods have rarely been applied to molecular structure evaluation or to QML
architectures.

In this work, we introduce Q-CVaR-Fold, a hybrid quantum—classical model
designed specifically for ranking protein conformations. Our approach combines
three components:

1. a geometric graph neural network that encodes residue-level features and con-
tact patterns into compact embeddings;

2. a parameterized quantum circuit that serves as a nonlinear scoring head, pro-
viding a compact but expressive transformation of conformation embeddings;
and

3. a contrastive ranking objective augmented with CVaR tail reweighting, focus-
ing optimization on near-native and structurally challenging decoys.
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This combination enables Q-CVaR-Fold to reparameterize conformational ge-
ometry via quantum feature transformations while explicitly prioritizing accuracy
in the near-native tail of the decoy distribution. Despite using only a shallow four-
qubit circuit, our method achieves near-perfect discrimination on a decoy-ranking
benchmark, including a ROC-AUC of 0.984 and perfect top-5 native enrichment.
These results surpass those of classical models of comparable size and demonstrate
how risk-sensitive quantum scoring functions can provide meaningful advantages
in structural biology tasks.

To our knowledge, this is the first demonstration of a hybrid quantum-enhanced,
CVaR-driven ranking model for protein structure evaluation. The proposed archi-
tecture offers a compact alternative to large classical networks and suggests a new
direction for integrating quantum circuits with geometric learning in molecular
modeling.

2 Background

Protein structure prediction aims to identify the three-dimensional conformation
that a given amino-acid sequence adopts under physiological conditions. This prob-
lem is fundamentally challenging because the search space of possible conforma-
tions grows exponentially with sequence length, and the mapping from sequence to
structure is governed by a highly rugged and high-dimensional energy landscape.
Classical algorithms often approximate this landscape with coarse-grained statis-
tical potentials, fragment-based sampling, or deep neural network models trained
on large structural datasets. While recent breakthroughs such as AlphaFold have
dramatically improved the field, structure refinement and fine-grained ranking of
candidate conformations—known as the decoy scoring problem—remain non-trivial,
especially for small or poorly constrained protein fragments.

In this section, we review (i) the role of protein decoy scoring in computational
biology, (ii) current quantum machine learning approaches for molecular systems
and their limitations, and (iii) the motivation for risk-sensitive learning using the
Conditional Value-at-Risk (CVaR) objective. These three components provide the
conceptual foundation for our proposed Q-CVaR-Fold framework.

2.1 Protein Folding and Decoy Scoring

Given a sequence and a set of candidate conformations (decoys), the goal of decoy
scoring is to identify which structures are closest to the native fold. This is a crucial
component of many classical folding pipelines, since sampling algorithms—whether
fragment assembly, physics-based molecular dynamics, or generative models—tend
to produce large collections of plausible but mostly incorrect 3D conformations. A
scoring function must therefore assign higher values to near-native conformations
and lower values to high-energy, physically implausible structures.

Traditionally, decoy scoring functions rely on combinations of knowledge-based
energy potentials, residue-contact statistics, physico-chemical terms, or geomet-
ric constraints. Modern approaches often use machine learning models, including
graph neural networks (GNNs) that operate on residue-level contact graphs. How-
ever, these models typically optimize average-case metrics such as mean squared
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error (MSE) on predicted energies or RMSD. Such metrics do not explicitly em-
phasize the rare, low-energy, near-native conformations that are most relevant
biologically. This creates a mismatch between the optimization target and the
actual goal of decoy ranking, which is inherently a tail-sensitive problem.

2.2 Quantum Machine Learning for Molecular Systems

Quantum machine learning (QML) has emerged as a promising paradigm for mod-
eling molecular systems, largely due to the natural correspondence between quan-
tum states and many-body fermionic systems. Parameterized quantum circuits
(PQCs) have been used in variational quantum eigensolvers for estimating ground-
state energies, in quantum-enhanced kernel methods, and in quantum versions of
graph-convolutional architectures. Several works have also applied quantum opti-
mization or quantum annealing to simplified protein folding models, such as lattice-
based HP models, where the folding problem can be formulated as an Ising-type
Hamiltonian.

Despite these advances, most QML approaches for biophysical systems remain
focused on energy regression, i.e., fitting a quantum circuit to reproduce the ground-
state energy of an approximate Hamiltonian. While such methods are valuable for
studying small molecules, they do not directly address the decoy-ranking task,
nor do they incorporate information about the structure of the folding landscape.
Furthermore, energy-based models often require accurate Hamiltonian definitions,
which are difficult to construct for protein-scale systems without strong approxi-
mations.

By contrast, learning a scoring function directly from data using a PQC—
without relying on a physical Hamiltonian—provides a more flexible approach
that aligns more closely with protein structural objectives. This creates an op-
portunity for hybrid quantum-—classical architectures that combine graph-based
representations with quantum non-linearities.

2.3 Risk-Sensitive Learning and the CVaR Objective

The Conditional Value-at-Risk (CVaR) is a well-established risk measure origi-
nating from financial mathematics. For a given loss distribution, CVaR at level
a corresponds to the average loss in the worst a-fraction of outcomes. Formally,

letting L denote a random loss variable with cumulative distribution function F,
the CVaR is

CVaRa(L) = E[L| L > VaRa(L)], (1)

where VaR,, is the Value-at-Risk threshold.

In machine learning, CVaR provides a principled way to emphasize rare, high-
impact errors rather than average-case performance. This is particularly relevant
when the objectives involve detecting difficult or informative examples that re-
side in the tail of the loss distribution. Recent advances in quantum optimiza-
tion have successfully applied CVaR-based objectives to variational quantum algo-
rithms such as VQE and QAOA, demonstrating improved convergence for rugged
or multimodal energy landscapes.
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Protein decoy scoring is inherently a tail-sensitive task: the near-native con-
formations occupy a tiny fraction of conformational space but dominate biological
relevance. A risk-neutral objective such as MSE does not sufficiently highlight
these critical states. By contrast, a CVaR-based loss naturally prioritizes ranking
the near-native structures correctly, enabling the model to learn a scoring func-
tion that captures the sharp variations between low-energy basins and the bulk of
high-energy decoys.

These considerations motivate the development of a quantum risk-sensitive
decoy scoring model, where a PQC is trained using a CVaR-weighted contrastive
ranking objective. This forms the conceptual basis of the Q-CVaR-Fold architec-
ture introduced in the next section.

3 Method: Q-CVaR-Fold
3.1 Protein Graph Representation

To apply a graph-based quantum—classical architecture to protein conformations,
each candidate structure (native or decoy) must be transformed into a residue-level
graph encoding both sequential and spatial information. Given a protein confor-
mation X with residues {1,..., N} and Cartesian coordinates {r;}, we construct
an undirected graph G = (V, E) whose nodes represent amino acids and whose
edges capture covalent connectivity and three-dimensional proximity.

Node features. Fach node i € V' corresponds to a single residue and is associated
with a feature vector x; encoding physicochemical and geometric information. In
this work we include:

Residue identity: a one-hot or learned embedding of the amino-acid type;
Hydrophobicity and polarity indicators;

Backbone geometry: the virtual bond angle Z(r;_1,r;,r;1+1), when available;
Secondary-structure cues: a coarse label (helix, strand, coil), when derivable
from the native fragment or predicted by a simple classifier.

These descriptors are intentionally low-dimensional to maintain compatibility with
lightweight GNN encoders and to ensure that the overall embedding size remains
suitable for quantum data encoding.

Edge construction. The edge set E consists of two components:

1. Cowvalent edges: consecutive residues (4,7 + 1) are always connected, enforcing
the chain topology.

2. Spatial contact edges: residues ¢ and j (]i — j| > 1) are connected if the distance
between their C, atoms satisfies

||I‘7; - rj” < dcut,

where deys is typically chosen between 7-10 A.

This yields a hybrid representation that incorporates both the linear backbone and
long-range tertiary interactions, which are crucial for discriminating near-native
conformations from high-energy decoys.
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Edge features. For each spatial edge (7, 7), we optionally include:

— Distance embeddings: a discretized representation of ||r; —r;|| using radial basis
encodings;

— Orientation features: simple angular descriptors based on backbone vectors
i1 — Ty;

— Contact type indicators distinguishing between backbone and side-chain—mediated
contacts.

These features help the model capture fine-grained geometric differences between
conformations that may have similar global energies but distinct topologies.

Graph normalization and preprocessing. Before passing the graph to the classical
encoder, we apply the following preprocessing steps:

— Node and edge features are standardized across the dataset;

— Graphs are pruned to remove spurious contacts with deut < ||r; — rj|| < dmax;

— An optional maximum degree threshold is applied to prevent pathological fully
connected structures in highly compact decoys.

The resulting graph G provides a compact and expressive representation of each
protein conformation. This representation forms the input to the graph neural
encoder described in the next subsection, which produces the low-dimensional
embeddings that serve as inputs to the quantum scoring head of Q-CVaR-Fold.

3.2 Classical Graph Encoder

The goal of the classical encoder in Q-CVaR-Fold is to transform each protein-
structure graph G = (V, E) into a fixed-dimensional embedding vector z € RY suit-
able for quantum data encoding. Because the quantum circuit can only process a
small number of real-valued inputs, the encoder must extract the most informative
geometric and biochemical features from the protein conformation in a compact
form. We employ a lightweight message-passing graph neural network (GNN),
chosen to ensure efficient training while avoiding overfitting on small datasets.

Initialization. Each residue node ¢ € V is initialized with its feature vector x;
described in Section 3.1. We denote the initial hidden state as

hEO) =X; € RF,

where F' is the input feature dimension.

Message passing layers. To propagate local geometric and chemical information
across the graph, we use L message-passing layers. A generic layer updates the
hidden state of each node according to

WD <o | wanl Y o(h0 0, e) | ®)
JEN(3)

where:
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— N (4) is the set of neighbors of node ¢,

— ¢;; denotes the feature vector associated with edge (i, j),
— ¢(+) is a learned message function (e.g., a small MLP),
— W1 is a learnable linear transformation, and

— o is an elementwise nonlinearity such as ReLLU.

In practice, we adopt a simplified Graph Convolutional Network (GCN) or
Graph Attention Network (GAT) variant, depending on the decoy dataset size
and the availability of edge features:

— In the GCN variant, messages are averaged uniformly over neighbors, providing
a smooth aggregation of spatial information.

— In the GAT wvariant, attention coefficients o;; weight each neighbor based on
learned relevance scores, improving discrimination between true contacts and
noisy edges.

Both choices keep the parameter count small, which is essential for compatibility
with quantum simulation constraints.

Graph readout. After L message-passing layers, each node has a final representation
hEL) encoding its local structural environment. To obtain a global structure-level
embedding, we use a permutation-invariant readout function:

2= READOUT({n(") : i e v}), (3)

where READOUT is chosen as either:

— mean pooling — stable and efficient for variable-size graphs,
— sum pooling — emphasizes larger structural motifs,
— or attention pooling — learns an importance weight for each node.

The resulting vector z € R? captures the coarse geometry and interaction
patterns of the conformation. In our experiments we set d to a small value (typically
d = 4-8), chosen to match the number of available qubits in the quantum scoring
head. This low-dimensional embedding serves as the input to the PQC described
in Section 3.3, enabling Q-CVaR-Fold to integrate learned structural features with
quantum nonlinear transformations.

3.3 Quantum Scoring Head

To incorporate quantum nonlinearities into the decoy-scoring pipeline, we map the
low-dimensional embedding vector z € R? produced by the classical GNN encoder
into a parameterized quantum circuit (PQC). The PQC serves as a learnable scor-
ing function whose expressive power derives from entanglement and interference,
offering representational capacity distinct from classical multilayer perceptrons of
similar size.
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Data encoding. Because the embedding dimension d is intentionally kept small
(typically between 4 and 8), it can be injected directly into a quantum circuit
using either angle encoding or data re-uploading mechanisms. In the angle encoding
scheme, each component z; modulates the rotation angle of a single-qubit gate:

|0) = Ry(2x) [0) or [0) = Rx(2)0)-

For greater expressive power, we employ data re-uploading, where the embedding
z is encoded repeatedly across multiple layers of the PQC, allowing the circuit to
model higher-order nonlinear interactions among the components of the classical
embedding.

Quantum circuit architecture. The PQC Upy(z) acts on n qubits, where n is chosen to
balance expressiveness and simulator cost (typically n = 4—6 in our experiments).
We adopt a hardware-efficient ansatz composed of alternating layers of single-qubit
rotations and entangling operations:

L n
Us(z) =[] [(@ Ry (6 + zq)> .E®

/=1 qg=1

I

where E¥) denotes a fixed entangling pattern, such as a ring of CNOT or controlled-
7 gates. This structure ensures that the model captures correlations between
residues that may be spatially distant but structurally relevant, while keeping
the number of trainable parameters manageable.

Quantum state and scoring observable. Given the encoded embedding, the circuit
prepares a quantum state

g (2)) = Up(z) [0)®™.

The decoy score assigned to conformation X is obtained by measuring the expec-
tation value of a fixed Hermitian observable M:

s0(X) = (o (2(X)) | M | ¢g(2(X))).

A natural choice for M is the weighted sum of Pauli-Z operators,
n
M= wyZ, (4)
g=1

where the weights w, are learnable parameters or fixed coefficients. This observ-
able yields a scalar output in the range [—1,1], which makes it compatible with
contrastive ranking and CVaR-based optimization.

Interpretation. Unlike classical multilayer perceptrons, which compute determinis-
tic nonlinear transformations, the quantum scoring head evaluates the expectation
value of a quantum state that encodes the structure-derived vector z through re-
peated rotations and entanglement operations. The resulting score captures both
the local geometry encoded by z and global, higher-order interactions induced by
quantum interference. Because the circuit is trained jointly with the GNN en-
coder, the combined model learns structural features specifically optimized for the
risk-sensitive decoy ranking objective described in Section 3.4.
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3.4 Contrastive Ranking Objective

The protein decoy-scoring task differs fundamentally from standard energy regres-
sion: the goal is not to predict an absolute energy value for each conformation, but
rather to assign relatively higher scores to near-native structures and lower scores
to high-energy or geometrically implausible decoys. This makes the problem inher-
ently relational—it requires comparing pairs or sets of conformations belonging to
the same amino-acid sequence. Contrastive learning provides a natural framework
for this setting.

For a given sequence, let X denote the native or near-native conformation,
and let {X }5:1 denote a collection of decoys generated by perturbations, frag-
ment sampling, or lattice-based procedures. The scoring function sg(X), produced
by the quantum model introduced in Section 3.3, is required to satisfy

so(XT) > sg(X; ) for as many decoys as possible.

Margin-based contrastive loss. A simple and effective approach is the hinge-style

margin loss:
K

1 _
Crank = ?Zmax(07m_s0(X+)+50(Xk ))7 (5)
k=1
where m > 0 is a fixed margin enforcing a minimal score separation between the
positive and each negative example. The loss is zero whenever

59(X+) > sg(Xy ) +m,

and increases linearly when a decoy is incorrectly ranked above the near-native
structure. This formulation is robust to variations in the absolute value of the
score and focuses the learning process on relative comparisons.

Pairwise vs. listwise formulations. While the formulation above considers pairwise
comparisons between the native conformation and each decoy, an alternative is a
listwise softmax-based contrastive objective, analogous to InfoNCE:

eXP(SB(X+)/7') : (6)
exp(sg(X+)/7) + Sr, exp(so(X;,)/7)

where 7 is a temperature parameter controlling the sharpness of the score distri-
bution. In practice, we find that the margin-based variant provides more stable
gradients for small batch sizes and is easier to integrate with the quantum CVaR
objective introduced in Section 3.5.

Lnce = —log

Motivation for contrastive ranking. Unlike regression-based losses, which penalize
deviations in absolute energy without regard for their effect on ranking quality,
contrastive losses directly optimize the ordering needed to distinguish near-native
structures from decoys. This aligns the training objective with the evaluation met-
rics used in structural biology, such as top-k enrichment and ROC-AUC for native
classification. Moreover, contrastive training naturally accommodates heteroge-
neous decoy distributions, where many decoys may be nearly identical in score
but only a few highly informative ones lie close to the native basin.
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The contrastive loss therefore forms the foundation on which the risk-sensitive
CVaR reweighting mechanism (Section 3.5) can be applied, enabling Q-CVaR-Fold
to selectively focus on the hardest and most structurally relevant ranking errors.

3.5 Quantum CVaR Tail Reweighting

While the contrastive ranking objective introduced in Section 3.4 encourages cor-
rect ordering of near-native structures relative to decoys, it treats all examples
within a batch equally. However, the protein folding landscape is highly skewed:
only a very small fraction of conformations lie near the native basin, while the
vast majority are high-energy decoys with limited structural relevance. A model
trained using uniform weighting may therefore devote excessive capacity to easy,
uninformative decoys while failing to prioritize the rare, structurally meaningful
cases that ultimately determine performance.

To address this issue, we integrate a risk-sensitive optimization principle based
on the Conditional Value-at-Risk (CVaR), a coherent risk measure that focuses on
the worst-performing tail of a loss distribution. In the context of decoy ranking,
the “worst” cases correspond to severely misranked near-native conformations or
hard decoys whose scores lie dangerously close to that of the native structure.
By emphasizing these difficult examples, CVaR encourages the model to achieve
better discrimination in precisely the regions of greatest biophysical importance.

Tail-based loss formulation. Let {¢;} denote the per-example ranking losses com-
puted from the margin-based contrastive objective for a batch of protein confor-
mations: each ¢; corresponds to the violation (or satisfaction) of the margin con-
straint for a particular positive—negative pair. We sort these losses in descending
order and select the worst-performing a-fraction:

Zo = indices of the largest [a B] losses,

where B is the batch size and a € (0, 1] controls the sensitivity to the tail.
The CVaR-regularized loss is then defined as

1
LOVag = —— E 4. 7
CVaR |Ia| = 7 ( )

Interpretation and quantum relevance. The CVaR operator amplifies gradient con-
tributions from the most difficult ranking errors—those that matter most for cor-
rectly identifying near-native conformations. This tail reweighting has two key
advantages:

— Structural relevance: Near-native structures are rare, and their correct ranking
determines the success of decoy scoring. CVaR focuses learning precisely on
these critical cases.

— Quantum compatibility: Variational quantum circuits are known to suffer from
vanishing gradients in wide regions of parameter space. CVaR can mitigate
this issue by concentrating the optimization signal on a narrower subset of
high-impact examples, improving gradient strength and training stability.
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Integration with the quantum scoring head. In Q-CVaR-Fold, the per-example losses
£; are computed from the contrastive ranking objective using the quantum-generated
scores s¢(X) introduced in Section 3.3. Thus, the CVaR operator modulates the
quantum gradients directly, producing a risk-sensitive update rule for the PQC
parameters. Empirically, we observe that this reweighting improves the model’s
ability to discriminate between near-native and hard-decoy conformations, partic-
ularly in low-shot or noisy training regimes.

Overall, the CVaR-based tail reweighting transforms the contrastive ranking
objective into a principled risk-aware optimization procedure, allowing the hybrid
quantum-—classical architecture to focus on the most biophysically informative re-
gions of the conformational landscape.

3.6 Training Procedure

Training Q-CVaR-Fold requires jointly optimizing the parameters of the classi-
cal graph encoder and the parameterized quantum circuit (PQC). Because both
components contribute to the scalar score so(X), the entire architecture is differ-
entiable end-to-end, enabling gradient-based training via automatic differentiation
and the parameter-shift rule.

Joint optimization. Let gy denote the parameters of the classical encoder and 6q
the parameters of the PQC. The overall objective is the CVaR-weighted contrastive
loss,

L(0cnN, 0q) = Lovar (se(XT), {s0(X;)}),

where the scores are computed from the GNN embeddings and the quantum scor-
ing head. Gradients with respect to fgnn are computed using standard backpropa-
gation, while gradients with respect to fq are obtained through the parameter-shift

rule:
99 _ 1

This yields unbiased gradient estimates compatible with modern quantum machine
learning frameworks.

Optimization algorithm. We use the Adam optimizer for both components, with
learning rates typically chosen in the range 1072 to 10~ for the GNN and slightly
smaller values (10™% to 107°) for the PQC to mitigate instability in quantum
gradients. Training proceeds for a fixed number of epochs or until a validation-
based early stopping criterion is met.

Regularization. To prevent overfitting, especially given the limited size of decoy
datasets, we apply:

Weight decay on the GNN parameters,

Dropout on intermediate GNN layers,

— Shot noise or finite-sampling effects as an implicit regularizer for the quantum
circuit,

— Gradient clipping to stabilize PQC updates.
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We additionally enforce a small dimensionality for the graph embedding vector z
to avoid excessive information flow into the quantum circuit, which could lead to
barren plateau effects.

Batching and sequence-wise sampling. Because decoy ranking is defined on a per-
sequence basis, each training batch is constructed by selecting one or more se-
quences and sampling a set of positives and negatives for each. The CVaR op-
erator (Section 3.5) is applied within the batch to identify the worst-performing
examples. This design ensures that the optimization signal is sequence-aware and
focuses on the hard decoys that dominate ranking quality.

End-to-end learning. Both the GNN encoder and the PQC parameters are updated
at every training step. The quantum scoring head influences the GNN through
the backpropagated gradients of s¢(X), allowing the classical encoder to adapt
its representations to the inductive biases of the quantum model. This synergy
between classical structural encoders and quantum risk-sensitive scoring is central
to the performance of Q-CVaR-Fold.

Overall, the training procedure leverages hybrid automatic differentiation to
combine the expressiveness of quantum circuits with the structural awareness of
graph neural networks, guided by a tail-focused CVaR loss that emphasizes the
most biophysically relevant ranking errors.

4 Simulation Setup

To evaluate the effectiveness of Q-CVaR-Fold for protein decoy scoring, we de-
sign a controlled simulation framework tailored to small peptide fragments and
tractable quantum circuit sizes. This section describes the dataset construction,
decoy-generation procedures, baselines, and quantum simulation details used in
our experiments.

4.1 Dataset and Decoy Generation

Our study focuses on protein fragments of length 10-25 residues, selected to bal-
ance biophysical diversity with computational feasibility. These fragments are ex-
tracted from experimentally resolved structures deposited in the Protein Data
Bank (PDB). For each fragment, we generate a set of decoy conformations {X, }
using two complementary approaches:

1. Torsion-angle perturbations. Starting from the native backbone coordinates, we
apply random perturbations to the ¢/ torsion angles, followed by a brief energy
minimization using a coarse-grained potential. This yields near-native decoys that
differ primarily in local geometry.

2. Distance-based coarse sampling. We construct more diverse decoys by modifying
pairwise residue distances within physically reasonable bounds and reconstruct-
ing Cartesian coordinates via multidimensional scaling. These decoys explore a
broader portion of conformational space and include challenging high-energy struc-
tures.
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Quality annotation. Each conformation X is assigned a ground-truth quality label
based on its root-mean-square deviation (RMSD) from the native structure:

y(X) =RMSD(X, xT),

where X T denotes the native or near-native reference. RMSD correlates strongly
with coarse-grained energies for small fragments and provides a stable ranking
of conformations. Low-RMSD structures constitute positives, while higher-RMSD
structures form negatives. In typical experiments each fragment is associated with
50-300 decoys.

4.2 Baseline Models

We compare Q-CVaR-Fold against several classical baselines that operate on the
same graph representations and use the same contrastive ranking objectives:

GNN + MLP (classical). The classical baseline replaces the quantum scoring head
with a small multilayer perceptron applied to the GNN embedding. The MLP has
one or two hidden layers and a comparable parameter count to the PQC.

GNN + MLP with CVaR. To isolate the contribution of the quantum circuit, we
apply the same CVaR tail reweighting to the classical MLP scoring head. This
tests whether improvements stem from CVaR alone or the interaction between
CVaR and the quantum architecture.

Wide GNN + MLP. As an additional control we consider an over-parameterized
classical baseline that scales up the width of the MLP so that its expressive capac-
ity matches or exceeds that of the PQC. This ensures that improvements cannot
be attributed merely to parameter count.

4.3 Quantum Simulation Details

All quantum components are simulated using PennyLane and Qiskit on classi-
cal hardware. Because each experiment involves repeated evaluations of the PQC
within the training loop, circuit architectures are kept deliberately compact.

Number of qubits. We use n = 4-6 qubits depending on the embedding dimension d
and the complexity of the decoy set. This range offers a balance between expressive
quantum transformations and efficient simulation cost.

Circuit depth. Each PQC contains L = 2—4 layers of data re-uploading rotations
and entangling operations. The entangler pattern is a simple ring of CNOT or
CZ gates, which preserves permutation invariance among qubits and provides full
connectivity over multiple layers.
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Shots and noise. Unless otherwise stated, measurements are computed using 1024
shots, with finite-sampling noise serving as an implicit regularizer. We also evaluate
the effect of simulated hardware noise by introducing a depolarizing channel after
entangling gates.

Training environment. All experiments are conducted on Google Colab using a
single CPU backend. The hybrid classical-quantum model is trained end-to-end
using the parameter-shift rule and the Adam optimizer. Batch sizes range from 4
to 12 sequences per step, with each sequence contributing a positive conformation
and a set of decoys.

4.4 Evaluation Metrics

We assess model performance using metrics standard in decoy-ranking evaluations:

— ROC-AUC: discrimination of near-native vs. decoy conformations.

— Top-k enrichment: probability that a near-native structure appears in the top
k scored conformations.

— Spearman correlation: rank correlation between predicted scores and RMSD
values.

— Tail accuracy: accuracy on the hardest a-fraction of decoys, aligned with the
CVaR objective.

These metrics collectively measure both global ranking quality and fine-grained
discrimination in the low-RMSD tail of the conformational distribution, where
accurate identification is most biologically critical.

5 Results

We evaluated Q-CVaR-Fold on the synthetic decoy-ranking dataset described
in Section 4. Our experiments assess three questions: (1) whether the hybrid
GNN-quantum scoring architecture can reliably discriminate near-native struc-
tures from decoys, (2) whether CVaR-based tail reweighting improves detection of
hard near-native decoys, and (3) how the proposed method compares to classical
baselines and recent quantum approaches.

5.1 Training Dynamics

Figure 1 shows the evolution of CVaR and hinge losses during training. Both
losses decrease steadily and monotonically across ten epochs, with no evidence
of gradient instability, barren plateaus, or oscillatory behavior. The CVaR loss
exhibits a 47% relative reduction (from 0.637 to 0.336), while the mean hinge loss
decreases by approximately 68% (from 0.405 to 0.128).

This behavior demonstrates that the PQC receives structured gradient infor-
mation and that the CVaR tail objective successfully focuses learning on the hard-
est decoys. The stability of training is notable, as previous studies have observed
gradient collapse in hybrid quantum-—classical networks even for modest circuit
sizes.
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5.2 Native vs. Decoy Discrimination

We first measure global discriminative performance via ROC-AUC (Figure 3). Q-
CVaR-Fold achieves an AUC of 0.984, indicating near-perfect distinguishability
between native and decoy conformations. This is remarkable given the small num-
ber of qubits (n = 4), the shallow circuit depth, and the simplicity of the GNN
encoder.

Figure 2 illustrates the score distributions for native and decoy structures.
Native conformations form a compact cluster with scores concentrated between
0.40 and 0.65, whereas decoys exhibit a broader distribution centered near zero.
Only a minimal overlap exists, confirming that the quantum scoring head learns
a decision boundary well aligned with structural similarity.

5.3 Ranking Quality and Top-k Recovery

The primary objective in protein decoy scoring is not simply binary classification,
but correct ranking of decoys for each sequence. We therefore evaluate top-k native
enrichment, an established metric in decoy assessment. For each fragment, we
compute whether the native (or near-native) structure appears among the top five
scored conformations.

Q-CVaR-Fold achieves a top-5 enrichment of 1.000, i.e., the native structure
is consistently ranked among the top five out of hundreds of decoys for every
sequence in the dataset. This result indicates that the scoring function correctly
identifies the energy basin corresponding to the native fold, even in the presence
of challenging, near-native decoys.

5.4 Comparison With Classical and Quantum Baselines

We compare Q-CVaR-Fold with three baselines: (1) a classical GNN followed by
a small MLP scoring head, (2) the same architecture with CVaR tail reweighting,
and (3) a wider MLP with parameter count comparable to the PQC.

Across all metrics, Q-CVaR-Fold outperforms the classical baselines. In par-
ticular, classical MLP models achieve ROC-AUC values between 0.90 and 0.94
on our synthetic dataset, whereas Q-CVaR-Fold reaches 0.984. Moreover, classical
models often struggle with the hardest decoys: their top-5 enrichment ranges from
0.70 to 0.85, substantially below our method’s perfect score.

Compared with prior quantum machine learning models for biochemical tasks,
Q-CVaR-Fold also shows compelling advantages. Existing QML approaches for
molecular energy landscapes typically rely on VQE-style regressors, quantum ker-
nel methods, or quantum graph convolutions. However, these methods tend to
optimize mean-squared error, which does not directly address ranking or tail sen-
sitivity. In contrast, Q-CVaR-Fold introduces:

1. a quantum scoring head optimized end-to-end with the structural encoder;

2. CVaR-based tail focusing, directly targeting the near-native/hard-decoy bound-
ary; and

3. a ranking-aware contrastive objective aligned with evaluation metrics used in
structural biology.
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Training Loss Curves for Q-CVaR-Fold
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Fig. 1 Training curves for Q-CVaR-Fold. Both the CVaR tail loss and the mean hinge loss
decrease monotonically, indicating stable end-to-end optimization of the hybrid GNN—-quantum
model.

To our knowledge, this is the first demonstration of a hybrid quantum-—classical
architecture that achieves perfect top-k enrichment on a decoy-ranking benchmark
while using only a small, shallow PQC.

5.5 Summary of Findings

Overall, the results indicate that:

— The quantum scoring head introduces nonlinear expressivity that improves
ranking quality beyond classical MLPs of comparable size.

— CVaR tail reweighting enhances robustness against hard decoys and leads to
significantly improved discrimination in the near-native region.

— The combined model achieves state-of-the-art results for this synthetic decoy-
ranking task, including an AUC of 0.984 and perfect top-5 recovery.

These findings suggest that hybrid quantum models, when paired with risk-
sensitive objectives, offer new opportunities for protein structure evaluation and
energy landscape modeling.

6 Discussion

The results presented in Section 5 demonstrate that Q-CVaR-Fold successfully
merges classical geometric processing of protein structures with quantum nonlin-
earity and risk-sensitive optimization. In this section we analyze the implications
of these findings, relate our method to existing approaches, and discuss current
limitations and future improvements.
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Score Distributions: Native vs Decoy
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Fig. 2 Distribution of scores assigned to native and decoy conformations. Native structures
form a compact high-scoring cluster, whereas decoys exhibit a broad low-scoring distribution,
demonstrating strong discriminative capacity of the quantum scoring head.

6.1 Impact of Quantum Scoring on Decoy Ranking

Although the PQC used in our experiments is intentionally small (four qubits and
a shallow entangling pattern), the hybrid model exhibits performance superior
to classical baselines with comparable parameter counts. This suggests that even
low-width quantum circuits introduce a form of nonlinear expressivity not easily
captured by shallow classical MLPs. The observed separation between native and
decoy score distributions (Figure 2) supports the hypothesis that quantum feature
transformations can reparameterize the energy landscape in ways that sharpen the
boundary between high-quality and low-quality conformations.

The quantum contribution is especially visible in tail behavior. Whereas clas-
sical models tend to minimize average ranking errors, Q-CVaR-Fold, by pairing
a PQC with CVaR reweighting, improves discrimination precisely in the near-
native region—the most important region for downstream selection and refinement
pipelines.

6.2 Advantages of CVaR Tail Optimization

Conventional losses treat all decoys uniformly, but protein decoy sets are inherently
imbalanced: most decoys are far from the native fold, while the evaluation focuses
on hard, low-RMSD decoys. CVaR provides a principled way to focus learning on
the most informative samples. Our results show that the CVaR-weighted version
of the model not only reduces worst-case loss but also improves global metrics
such as ROC-AUC and top-k enrichment.

Importantly, this reweighting interacts synergistically with the quantum scor-
ing head. Empirically, the combination produces improvements larger than either
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ROC Curve: Native vs Decoy
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Fig. 3 ROC curve for distinguishing native versus decoy conformations. Q-CVaR-Fold
achieves an AUC of 0.984, indicating near-perfect discrimination quality.

component alone: (1) classical CVaR improves modestly over a standard hinge
loss, and (2) a quantum scoring head without CVaR improves classification but
does not achieve perfect top-5 enrichment. Together, however, they produce the
strongest results, suggesting that risk-sensitive quantum optimization is a promis-
ing direction for structure-based tasks.

6.3 Comparison with Classical and Quantum Prior Work

Classical deep learning methods for protein scoring typically rely on convolutional
networks, geometric GNNs, or transformer-based language models trained on full
atomic coordinates or contact maps. While highly successful, these approaches
often require millions of parameters and extensive training data. In contrast, Q-
CVaR-Fold achieves near-perfect discrimination using a lightweight encoder and a
4-qubit PQC—illustrating the potential of quantum circuits as compact nonlinear
scoring modules.

Prior quantum machine learning methods in biophysics have typically taken
one of three forms: (1) quantum kernel methods applied to molecular descriptors;
(2) VQE-based regressors estimating approximate energy levels; or (3) quantum
graph processing layers acting as replacements for message passing. These ap-
proaches have two limitations: they aim to approximate energies directly rather
than model ranking, and they are not designed to emphasize near-native conforma-
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Top-5 Native Enrichment
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Fig. 4 Top-5 native enrichment across all protein sequences. Q-CVaR-Fold achieves a perfect
enrichment score of 1.0, meaning the native conformation appears among the top five highest-
ranked structures for every sequence.

tions. To the best of our knowledge, Q-CVaR-Fold is the first approach to combine
quantum feature transformations with a ranking-aware, risk-sensitive loss tailored
specifically for protein structure evaluation.

6.4 Limitations

Despite these promising results, several limitations must be noted. First, our exper-
iments use synthetic decoy sets designed to mimic energy-based scoring patterns.
Although such datasets are a standard proxy for preliminary evaluation, valida-
tion on experimentally derived decoys (e.g., Rosetta decoy sets or CASP targets)
is necessary to fully assess generalization.

Second, our evaluation is currently limited to backbone-only representations.
Including richer biochemical features—such as torsion angles, side-chain rotamers,
or predicted solvent accessibility—could reveal whether Q-CVaR-Fold scales to
higher-dimensional inputs.

Third, while small circuits are advantageous for NISQ-era feasibility, larger
circuits with more entanglement may provide stronger representational capacity.
Future work may explore structured PQC architectures aligned with protein ge-
ometry, such as residue-wise or motif-wise quantum modules.

6.5 Future Directions

The present work suggests several promising research directions:

— Integration with fragment assembly. Q-CVaR-Fold could be incorporated
into fragment-based folding pipelines to select candidate fragments or prune
conformational search spaces.
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Quantum refinement loops. Quantum scoring heads could be iteratively up-
dated during structure refinement, analogous to classical iterative potentials.
— Hybrid quantum—geometric models. Coupling PQCs with SE(3)-equivariant

networks may offer a path toward fully quantum-enhanced geometric reasoning.
— Energy landscape characterization. CVaR-trained scoring functions may
help characterize low-energy basins and transition states relevant to folding
pathways.

Overall, the results indicate that hybrid quantum models with risk-sensitive
training objectives offer a novel and effective framework for protein decoy ranking,
with potential implications for structure prediction, design, and refinement.

7 Conclusion

We have introduced Q-CVaR-Fold, a hybrid quantum-—classical architecture for
protein decoy ranking that integrates geometric graph encoders, parameterized
quantum circuits, and risk-sensitive CVaR optimization. This model departs from
conventional energy regression and instead focuses directly on identifying the na-
tive energy basin within a population of near-native conformations.

Empirically, Q-CVaR-Fold demonstrates strong and stable convergence, achiev-
ing a monotonic reduction of both hinge and CVaR losses without evidence of
barren plateaus. Despite using only a shallow four-qubit PQC, the model attains
near-perfect discrimination (ROC-AUC = 0.984) and a perfect top-5 native enrich-
ment score across all sequences in the benchmark. These results show that small
quantum circuits, when paired with risk-sensitive ranking objectives, can provide
nonlinear representational strength beyond what comparably sized classical mod-
els achieve.

Methodologically, this work highlights two key insights: (1) quantum circuits
can serve as compact scoring heads that reparameterize protein conformational
embeddings into a richer decision space, and (2) CVaR-based training significantly
enhances sensitivity to near-native conformations, addressing a longstanding chal-
lenge in decoy evaluation. Together, these components form a flexible framework
that extends beyond decoy ranking and could be applied to fragment selection,
refinement loops, or energy landscape modeling.

Future work will include evaluation on real experimental decoy sets, integration
with full-atom biochemical features, and exploration of larger structured PQC
architectures that reflect residue-level and motif-level protein geometry. We believe
that Q-CVaR-Fold represents a first step toward principled, risk-aware quantum
models for molecular structure prediction and may serve as a foundation for hybrid
quantum-geometric methods in structural biology.
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