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Supplementary information:

A Structural Principle for Macroscopic Neural Dynamics
Correlations
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1 Details of theoretical analysis

As is mentioned in the Methods part of the main text, our theoretical analysis can
be divided into three steps: 1) calculating the generating functional of the dynamical
process with the path integral method, 2) deriving the dynamical mean-field theory
equations from the generating functional via saddle-point approximation, and 3) ana-
lyzing the dynamical properties from the DMFT equations. Here we present additional
details for the previous two steps.

1.1 Calculation of the generating functional Zj and averaged
generating functional Z

The derivation started from the generating functional Zj of dynamical process for
a given coupling matrix J, which provided a thorough description of the dynamical
properties. Then, Z is calculated as the averaged generating functional over the ran-
dom realizations of the coupling matrix. Unlike Zy that is affected by the specific
realization of the coupling matrix, Z will reveal the dynamical properties that only
depend on the structural statistics of J (e.g., coupling correlation). Here, unlike the
conventional random neural networks that only considered the expectation and vari-
ance of the coupling matrix elements, we introduced the coupling correlation that is
the seond-order mixed moment that reads E(J;;Jj,) = r;-]ja?j. As the coupling corre-
lation remain invariant across random network realizations, the averaged generating
functional Z is expected to reveal how this network statistics shapes the dynamics.

We discretized the systems described by equation (1) in the main text while adding
the perturbation field j;(¢):

dt

= —xi(t) + Z Jijolz; ()] + s:(t) + 7i(t), (S1)

by dividing the time intervals of interest [to, ¢] into nr segments of length 0t such that
TLT(St =1 — to:

N
w0 — a2l = —alSt+ Y Ji¢90t+ sP6t + jeot + a5k (S2)
j=1
Here ¢4 is the abbreviation of ¢[x;(ta)], and 6% is the Kronecker delta that sets the
initial condition at to to be ?. The discretization allows for a convenient expression
of the probability density of the dynamical path {z{};, c[s,, under the constraint of
equation (1), which is given by

Platla = [ pla£)asioles™ = at + (af = 3 Jya)ot = stbt - 25t~ a6 (89
J

where the Dirac § function indicates that the dynamics of a unit ¢ at time ¢, takes
the probability density of 1 if it satisfies the differential equation, and 0 other wise.



48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

The subscript J indicates that the probability density is a function of the specific
realization of the coupling matrix J. Then, probability density of the whole dynamical
path is calculated as the product of different units at different time points, with
Plz]y =1, , P[z}]3. The Fourier representation of the é-function yields

2
. a a a a Os.~a a T
x)y = /H L exp{—i#0 [z — 28 + (2 — E Jij#5)ot — - i 5t — ot — 226K},
j
(54)

where the conjugate variable Z; is naturally introduced. Therefore, the generating
functional reads

H dz¢ P[z%)y exp{—iz?;2}
da¢dzd ¢t — o Osa .o 04
/H L exp{—i&} [ ZJ”¢ —m —j3 - &0 10t
+ (izd5¢ + 1xfg;‘)5t}

Then, taking the continuum limit nr — oo, we got the generating functional
Z[4,jls for continuous systems as the integral over all possible paths of z; and #; as
in equation (2) in the main text:

JJJ—/HDmeZeXp{ DSl + (i), (59

with the functional integral measure defined as Dz; = limy, o0 [[, d2z§ and Dz; =

limy, ;00 Ha 5. B
The averaged generating functional Z[s, §] is then calculated as

~ [ TI Do Elexp(~ 3 Slaw.ailp) exp{(3-10152 +1a8)). (56)

Since Slz;, &;] = 3,188 (2f + xf — 3, Jij¢§ — Fidf — 2040), the above step is
essentially a calculation of the average of exp{z i.; Jijid{ ¢} over random realizations
of the coupling matrix J. Given the multivariate Gaussian distribution of J;;, the
result reads



E(exp{ZJiji:%qu —exp{z lezaqsa
xexp{Y 0L el oS ilob). 7

i#j k b

By interchanging the order of summation, we got
2
DNy g : a
E(exp{izj Jijizi o5 }) = exp{# Zb ;m 1x Z ¢ ¢b
0‘
5 20 riatie) Q) oie) (58)

a,b i#j

To simplify the non-local interaction term, we introduced the following change of
variables X* = Qg?, x* = Qy?® ,_] Ql“ and j* = Ql?, which leads to

le izt = Zlyl ig?, (S9)
rizd 1a: =) (N — D)igig?, (S10)
7 .

i#]
> i (@ + af — 200a0) = Y i (C+yf — y00a0), (S11)
> (g +ixe) =Y (g + iyfls), (S12)
i,a i,a

where the columns of Q are the eigenvectors of the coupling correlation matrix, and \;
is the ¢-th eigenvalue. The generating functional of the latent system can be calculated
from equation (3) in the main text following the above procedure, or alternatively by
substituting the latent variables into the expression of Z [j,j'] for the original system.
Here, we show the latter approach, substituting equations (S9-S12) into equation (S6)
so that the averaged generating functional is expressed as

2
717 7 ~ saafa a Os..a
Zl, 1] =/|Q|2 [ [ DyiDgi expl—> i (4 + v — =216 — y26a0)
[ i,a

2
2
+ z@ N5y 650%)
i J

+ Z 1yala + iyl%)) (S13)
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that yields equation (5) in the main text:

20,1} = / QI [T DyiD exp{= 3" Fly i) + S Go0t8 + i)}, (S14)

1.2 Derivation of the DMFT equations via saddle-point
approximation

We then employed the equality C® = + 3", ¢2¢? to simplify Z[1,1] by using the
Hubbard-Stratonovich transformation

- / AC™ (G /27) exp [iCP(Co0 — 3 460N, (S15)
As a result, Eq. 5 is transformed into

20,0 = / DCDCNVICEiL], (S16)

with

A 7 N : Aab ~ab A 7
NU[C,C;1,1] = Ezlc c® + NV[C,C;1,1], (S17)
ab
NVI[C,C;1,1) = In{ / HDyingieZiw[%’g“C’é] X

x i Lo (L HY )Y (S18)

and

2
A o
Wlyi, 945 C, C| = i59(49 + 4@ — 22iga — 496,
[y Y ] §1yz (yz + Yi B 1Y, Yi 0)
1 s Avab ia abs ~as ~
- 52[10 b¢z‘ ¢$ + A\ C blyi 1yf} (S19)
a,b

In the thermodynamic limit (N >> 1), the saddle-point approximation ensures that

Z1,1) ~ Zo[l, 1) = eNUICo-Coitl] (S20)

due to the exponential decay of the value of eNUIC,CiL] away from eNUI[Co,Cosl,] mag-

nified by large IV, where U|[Co, Co; 1, i] in the exponent is the value of U at the point
C§v =1/N > (¢260),C5P = 1/N 3" (ig¢iy?) that satisfies

8 ~ A
%U[C03 COv l7 l] |C:Co,é:éo = O’
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o .
=UlCo, Cos Ll oy o=y = 0- (S21)

Due to the normalization condition Z[I,[ = 0] = Z[j,j = 0] = 1, and the cor-
relation functions that involve only ¢ can be calculated as the derivative of Z[l,0]
over [, C§* = 1/N Y. (i§2i§?)o must vanish to 0. Therefore, we have the value of

U[C’O,CA'O;Z,ZA} as
UlCy, Co: 1,1] = ln{H/DyingieW[y“ﬁ“CO’o]*E (iyfl?ﬂyﬁ?)} (S22)

Z[l, Z], as the approximation of the averaged generating functional of the dynamics
of the whole system, can be subsequently viewed as the product of N individual
generating functionals of single-site dynamics:

where
Zili,0] = / DDy 6o 0145, (51 +iv? ) ($24)
Based on the equality

epoA “igfigh) = exp (3 A %8 (525)

a

where v* is a Gaussian white noise with (y*?**); = g2C¢®, we notice that

AR </Dysz T 9 (57 =M P97 = T 9 o) o

% e2q (0517 +Hyf i ... (526)
This indicates Z;]l, f] is the generating functional of the stochastic process

UL~ g+ 8000) + A2 (1) 4 1), (527)

where §;(t) is the external drive, )\3/ 27*(15) is the mean-field term representing the
internal interactions, and ;(t) is the perturbation field used for DMFT derivation.
Finally, a linear transformation of the mean-field equations for latent dynamics

yields the DMFT equations for the original dynamics x as equation (7) in the main
text:

d.IfL' « .

1 =—x; + Sl(t) +n; (t) + ]i(t) (828)
with the Gaussian white noise field 7} =3, sz)\k fyk The perturbation field j;(¢)
is then taken as zero in the following part.
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2 The bulk spectrum of the sample correlation
matrix of Gaussian random matrix

When simulating the dynamics of correlated random neural networks in the main
analysis, we construct the coupling correlation matrix as the sample correlation
of a Gaussian random matrix. In random matrix theory, such a matrix corre-
sponds to a (normalized) Wishart matrix, whose eigenvalue spectrum follows the
Marchenko—Pastur distribution in the large-N limit. The Marchenko—Pastur distribu-
tion has a characteristic bounded support, with the eigenvalue density being nonzero
only within a finite interval [A_, A\, ] and vanishing outside this range. The probability
density f(x) of the eigenvalue reads

Vs — o)
= 529
/(@) 2roi Az (529)
for A <z < A4, and f(z) = 0 otherwise. When C is the sample correlation
matrix of N x N square matrix J, we have A = & = 1 with A\x = 02(1 + V)2

N
(Supplementary Fig.1).

3
[ Simulation
oL —— Theory
pdf
1k
0

0 1 2 3 4
Eigenvalue

Supplementary Fig. 1 The bulk spectral distribution of the sample correlation matrix of
Gaussian random matrix. The gray histogram is the distribution of eigenvalues of simulated sam-
ple correlation matrices, and the red line is the theoretical Marchenko-Pastur distribution. Notably,
the distribution is bulk-like, with eigenvalues bounded between A_ =0 and A =4 (oy = 1)
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3 Numerical simulation of the condition for
size-invariant correlation magnitude

We consider the spectra that follow Log-normal distribution controlled by a dispersion
parameter o). The detailed simulation procedure is provided in Methods, and is
visualized here step-by-step to enhance clarity. The goal is to learn how the dispersion
parameter o) must scale with system size N to ensure coupling correlation scale op
remains size-invariant (Supplementary Fig.2).

a b
0.8 |-
0.6

E(oy?) E(oz?)
0.4+
0.2 +
0.0 1

-1 1.0
log,,(0,)
d e 0.2

E(oy) E(0,2)0.1

n_n

log,q(0)) log,(N)

Supplementary Fig. 2 Numerical simulation of the condition for size-invariant correla-
tion magnitude. a, Dependence of the coupling correlation scale or on the dispersion parameter
o, with darker colors indicating larger system sizes (ranging from N = 100 to 3301). Each point
represents the mean 0'12% averaged over multiple random coupling matrix realizations. b, Smoothing
spline fits (lines) to the or—o) relationship for each N (circles with the same color). ¢, A detailed
view confirming the accuracy of the fits. d, Inverse mapping from a target og = 0.3 (dashed line,
corresponding to E[o%] = 0.09) to the required o for each N. e, Close-up of the intersections (red
crosses) indicating the o value for each system size. f, The resulting scaling of o with N.
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4 The relationship between c; i

spectral distributions

and c;f”j under different

Our numerical simulations reveal a consistent relationship between coupling and
dynamical correlation that is largely independent of the specific spectral distribu-
tion: it remains precisely linear under bulk-like distributions and approximately linear
under long-tailed ones. This result not only validates the effectiveness of DMFT for
bulk distributions but also indicates that a common origin may be responsible for its
failure in long-tailed cases (Supplementary Fig.3).
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Supplementary Fig. 3 The relationship between c;.]. and cf; under different spectral
distributions. a-d, The simulated relationship when the spectral distribution are Cauchy, Uniform,
Exponential and Gamma, respectively. The Cauchy case closely matches the Log-normal results
reported in the main text. On the other hand, the other three distributions exhibit a consistently

linear relationship between c;.]j and cfj, despite variations in the magnitude of coupling correlation.
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5 The relationship between \; and o; under different
spectral distributions

A key premise for establishing DMFT is that the latent dynamics y;(t) experience
homogeneous collective interaction 7;(t). This premise can be tested by examining
whether the latent dynamics scale o; scales proportionally with the square root of
corresponding eigenvalue ;. Simulations confirm that this proportionality holds for
bulk-like spectral distributions but breaks down under long-tailed ones, thereby pro-
viding a unified explanation for the domain of DMFT’s validity (Supplementary
Fig.4).
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Supplementary Fig. 4 The relationship between \; and o; under different spectral dis-
tributions. The left panels (a—d) show the relationship between the latent dynamics scale o; (y-axis)

and the corresponding eigenvalue square root )\,}/ 2 (z-axis) for the Cauchy, uniform, exponential, and
gamma distributions, respectively. The right panels (e—h) present the same relationships on a log-log

scale.
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6 Normalization of constructed correlation matrix

When constructing the coupling correlation matrix via the spectral decomposition
approach, we apply a normalization step C = D~1/2CoD~1/2, where D = diag(Cy),
and Co = U"1AU is formed by directly combining randomly generated eigenvectors
U and eigenvalues A. Here, we demonstrate that the applied normalization has neg-
ligible effect on the spectral density, as the eigenvalue probability density function
remains fundamentally unaltered throughout the transformation (Supplementary
Fig.5).
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Supplementary Fig. 5 The spectral distribution is conserved after normalization of
coupling correlation matrix. The upper panels (a—e) compare the initially sampled eigenvalues
(Asample) against their normalized counterparts (Anorm) for Cauchy, log-normal, uniform, exponential,
and gamma spectral distributions, respectively. Although Anorm occasionally deviates from Agample,
particularly in the long-tailed cases (a,b), their relationship is well-approximated by the line y = x.
The corresponding lower panels (f—j) display the probability distributions of both Asample and Anorm-
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