

1 Supplementary information:

Correlations

4 Contents

5	1	Details of theoretical analysis	2
6	1.1	Calculation of the generating functional Z_J and averaged generating	2
7		functional \bar{Z}	2
8	1.2	Derivation of the DMFT equations via saddle-point approximation . . .	5
9	2	The bulk spectrum of the sample correlation matrix of Gaussian	7
10		random matrix	7
11	3	Numerical simulation of the condition for size-invariant correlation	8
12		magnitude	8
13	4	The relationship between c_{ij}^J and c_{ij}^x under different spectral distri-	9
14		butions	9
15	5	The relationship between λ_i and σ_i under different spectral distribu-	10
16		tions	10
17	6	Normalization of constructed correlation matrix	12

¹⁸ **1 Details of theoretical analysis**

¹⁹ As is mentioned in the **Methods** part of the main text, our theoretical analysis can
²⁰ be divided into three steps: 1) calculating the generating functional of the dynamical
²¹ process with the path integral method, 2) deriving the dynamical mean-field theory
²² equations from the generating functional via saddle-point approximation, and 3) ana-
²³ lyzing the dynamical properties from the DMFT equations. Here we present additional
²⁴ details for the previous two steps.

²⁵ **1.1 Calculation of the generating functional Z_J and averaged**
²⁶ **generating functional \bar{Z}**

²⁷ The derivation started from the generating functional Z_J of dynamical process for
²⁸ a given coupling matrix \mathbf{J} , which provided a thorough description of the dynamical
²⁹ properties. Then, \bar{Z} is calculated as the averaged generating functional over the ran-
³⁰ dom realizations of the coupling matrix. Unlike Z_J that is affected by the specific
³¹ realization of the coupling matrix, \bar{Z} will reveal the dynamical properties that only
³² depend on the structural statistics of \mathbf{J} (e.g., coupling correlation). Here, unlike the
³³ conventional random neural networks that only considered the expectation and vari-
³⁴ ance of the coupling matrix elements, we introduced the coupling correlation that is
³⁵ the second-order mixed moment that reads $E(J_{ik}J_{jk}) = r_{ij}^J\sigma_J^2$. As the coupling corre-
³⁶ lation remain invariant across random network realizations, the averaged generating
³⁷ functional \bar{Z} is expected to reveal how this network statistics shapes the dynamics.

³⁸ We discretized the systems described by equation (1) in the main text while adding
³⁹ the perturbation field $j_i(t)$:

$$\frac{dx_i(t)}{dt} = -x_i(t) + \sum_j J_{ij}\phi[x_j(t)] + s_i(t) + j_i(t), \quad (\text{S1})$$

⁴⁰ by dividing the time intervals of interest $[t_0, t]$ into n_T segments of length δt such that
⁴¹ $n_T\delta t = t - t_0$:

$$x_i^{a+1} - x_i^a = -x_i^a\delta t + \sum_{j=1}^N J_{ij}\phi_j^a\delta t + s_i^a\delta t + j_i^a\delta t + x_i^0\delta_{a0}^{Kr}. \quad (\text{S2})$$

⁴² Here ϕ_j^a is the abbreviation of $\phi[x_j(t_a)]$, and δ_{a0}^{Kr} is the Kronecker delta that sets the
⁴³ initial condition at t_0 to be x_i^0 . The discretization allows for a convenient expression
⁴⁴ of the probability density of the dynamical path $\{x_i^a\}_{t_a \in [t_0, t]}$ under the constraint of
⁴⁵ equation (1), which is given by

$$P[x_i^a]_{\mathbf{J}} = \int p(s_i^a)ds_i^a \delta[x_i^{a+1} - x_i^a + (x_i^a - \sum_j J_{ij}\phi_j^a)\delta t - s_i^a\delta t - j_i^a\delta t - x_i^0\delta_{a0}^{Kr}] \quad (\text{S3})$$

⁴⁶ where the Dirac δ function indicates that the dynamics of a unit i at time t_a takes
⁴⁷ the probability density of 1 if it satisfies the differential equation, and 0 other wise.

48 The subscript **J** indicates that the probability density is a function of the specific
 49 realization of the coupling matrix **J**. Then, probability density of the whole dynamical
 50 path is calculated as the product of different units at different time points, with
 51 $P[x]_{\mathbf{J}} = \prod_{i,a} P[x_i^a]_{\mathbf{J}}$. The Fourier representation of the δ -function yields

$$P[x]_{\mathbf{J}} = \int \prod_{i,a} \frac{d\hat{h}_i^a}{2\pi} \exp\{-i\hat{x}_i^a[x_i^{a+1} - x_i^a + (x_i^a - \sum_j J_{ij}\phi_j^a)\delta t - \frac{\sigma_s^2}{2}i\hat{x}_i^a\delta t - j_i^a\delta t - x_i^0\delta_{a0}^{Kr}]\}, \quad (\text{S4})$$

52 where the conjugate variable \hat{x}_i is naturally introduced. Therefore, the generating
 53 functional reads

$$\begin{aligned} Z[j, \hat{j}]_{\mathbf{J}} &= \int \prod_{i,a} dx_i^a P[x_i^a]_{\mathbf{J}} \exp\{-ix_i^a j_i^a\} \\ &= \int \prod_{i,a} \frac{dx_i^a d\hat{x}_i^a}{2\pi} \exp\{-i\hat{x}_i^a [\frac{x_i^{a+1} - x_i^a}{\delta t} + x_i^a - \sum_j J_{ij}\phi_j^a - \frac{\sigma_s^2}{2}i\hat{x}_i^a - j_i^a - \frac{x_i^0\delta_{a0}^{Kr}}{\delta t}]\delta t \\ &\quad + (i\hat{x}_i^a j_i^a + ix_i^a \hat{j}_i^a)\delta t\}. \end{aligned}$$

54 Then, taking the continuum limit $n_T \rightarrow \infty$, we got the generating functional
 55 $Z[j, \hat{j}]_{\mathbf{J}}$ for continuous systems as the integral over all possible paths of x_i and \hat{x}_i as
 56 in equation (2) in the main text:

$$Z[j, \hat{j}]_{\mathbf{J}} = \int \prod_i Dx_i D\hat{x}_i \exp\{-\sum_i S[x_i, \hat{x}_i] + \sum_{i,a} (i\hat{x}_i^a j_i^a + ix_i^a \hat{j}_i^a)\}, \quad (\text{S5})$$

57 with the functional integral measure defined as $Dx_i \equiv \lim_{n_T \rightarrow \infty} \prod_a dx_i^a$ and $D\hat{x}_i \equiv$
 58 $\lim_{n_T \rightarrow \infty} \prod_a \frac{d\hat{x}_i^a}{2\pi}$.

59 The averaged generating functional $\bar{Z}[s, \hat{s}]$ is then calculated as

$$\begin{aligned} \bar{Z}[j, \hat{j}] &= E(Z[j, \hat{j}]_{\mathbf{J}}) \\ &= \int \prod_i Dx_i D\hat{x}_i E(\exp\{-\sum_i S[x_i, \hat{x}_i]\}) \exp\{\sum_{i,a} (i\hat{x}_i^a j_i^a + ix_i^a \hat{j}_i^a)\}. \end{aligned} \quad (\text{S6})$$

60 Since $S[x_i, \hat{x}_i] = \sum_a i\hat{x}_i^a(\dot{x}_i^a + x_i^a - \sum_j J_{ij}\phi_j^a - \frac{\sigma_s^2}{2}i\hat{x}_i^a - x_i^0\delta_{a0})$, the above step is
 61 essentially a calculation of the average of $\exp\{\sum_{i,j} J_{ij}i\hat{x}_i^a\phi_j^a\}$ over random realizations
 62 of the coupling matrix **J**. Given the multivariate Gaussian distribution of J_{ij} , the
 63 result reads

$$\begin{aligned}
E(\exp\{\sum_{i,j} J_{ij} i\hat{x}_i^a \phi_j^a\}) &= \exp\{\sum_{i,j} \frac{\sigma_J^2}{2} (\sum_a i\hat{x}_i^a \phi_j^a)^2\} \times \\
&\times \exp\{\sum_{i \neq j} \sum_k \frac{r_{ij}^J \sigma_J^2}{2} (\sum_a i\hat{x}_i^a \phi_k^a) (\sum_b i\hat{x}_j^b \phi_k^b)\},
\end{aligned} \quad (S7)$$

64 By interchanging the order of summation, we got

$$\begin{aligned}
E(\exp\{\sum_{i,j} J_{ij} i\hat{x}_i^a \phi_j^a\}) &= \exp\{\frac{\sigma_J^2}{2} \sum_{a,b} (\sum_i i\hat{x}_i^a i\hat{x}_i^b) (\sum_j \phi_j^a \phi_j^b) \\
&+ \frac{\sigma_J^2}{2} \sum_{a,b} (\sum_{i \neq j} r_{ij}^J i\hat{x}_i^a i\hat{x}_j^b) (\sum_k \phi_k^a \phi_k^b)\}
\end{aligned} \quad (S8)$$

65 .

66 To simplify the non-local interaction term, we introduced the following change of
67 variables $\hat{\mathbf{x}}^a = \mathbf{Q}\hat{\mathbf{y}}^a$, $\mathbf{x}^a = \mathbf{Q}\mathbf{y}^a$, $\hat{\mathbf{j}}^a = \mathbf{Q}\hat{\mathbf{l}}^a$ and $\mathbf{j}^a = \mathbf{Q}\mathbf{l}^a$, which leads to

$$\sum_i i\hat{x}_i^a i\hat{x}_i^b = \sum_i i\hat{y}_i^a i\hat{y}_i^b, \quad (S9)$$

$$\sum_{i \neq j} r_{ij}^J i\hat{x}_i^a i\hat{x}_j^b = \sum_i (\lambda_i - 1) i\hat{y}_i^a i\hat{y}_i^b, \quad (S10)$$

$$\sum_{i,a} i\hat{x}_i^a (\dot{x}_i^a + x_i^a - x_i^0 \delta_{a0}) = \sum_{i,a} i\hat{y}_i^a (\dot{y}_i^a + y_i^a - y_i^0 \delta_{a0}), \quad (S11)$$

$$\sum_{i,a} (i\hat{x}_i^a j_i^a + i\hat{x}_i^a \hat{j}_i^a) = \sum_{i,a} (i\hat{y}_i^a l_i^a + i\hat{y}_i^a \hat{l}_i^a), \quad (S12)$$

68 where the columns of \mathbf{Q} are the eigenvectors of the coupling correlation matrix, and λ_i
69 is the i -th eigenvalue. The generating functional of the latent system can be calculated
70 from equation (3) in the main text following the above procedure, or alternatively by
71 substituting the latent variables into the expression of $\bar{Z}[j, \hat{j}]$ for the original system.
72 Here, we show the latter approach, substituting equations (S9-S12) into equation (S6)
73 so that the averaged generating functional is expressed as

$$\begin{aligned}
\bar{Z}[l, \hat{l}] &= \int |\mathbf{Q}|^2 \prod_i D\mathbf{y}_i D\hat{\mathbf{y}}_i \exp\left[-\sum_{i,a} i\hat{y}_i^a (\dot{y}_i^a + y_i^a - \frac{\sigma_s^2}{2} i\hat{y}_i^a - y_i^0 \delta_{a0})\right. \\
&+ \frac{\sigma_J^2}{2} \sum_{a,b} (\sum_i \lambda_i i\hat{y}_i^a i\hat{y}_i^b) (\sum_j \phi_j^a \phi_j^b) \\
&\left. + \sum_{i,a} (i\hat{y}_i^a l_i^a + i\hat{y}_i^a \hat{l}_i^a)\right]
\end{aligned} \quad (S13)$$

74 that yields equation (5) in the main text:

$$\bar{Z}[l, \hat{l}] = \int |\mathbf{Q}|^2 \prod_i D y_i D \hat{y}_i \exp \left\{ - \sum_i F[y_i, \hat{y}_i] + \sum_{i,a} (i \hat{y}_i^a l_i^a + i y_i^a \hat{l}_i^a) \right\}. \quad (\text{S14})$$

75 **1.2 Derivation of the DMFT equations via saddle-point
76 approximation**

77 We then employed the equality $C^{ab} \equiv \frac{1}{N} \sum_i \phi_i^a \phi_i^b$ to simplify $\bar{Z}[l, \hat{l}]$ by using the
78 Hubbard-Stratonovich transformation

$$1 = \int dC^{ab} (d\hat{C}^{ab}/2\pi) \exp [-i\hat{C}^{ab}(C^{ab} - \sum_i \phi_i^a \phi_i^b/N)]. \quad (\text{S15})$$

79 As a result, Eq. 5 is transformed into

$$\bar{Z}[l, \hat{l}] = \int DCD\hat{C} e^{NU[C, \hat{C}; l, \hat{l}]}, \quad (\text{S16})$$

80 with

$$NU[C, \hat{C}; l, \hat{l}] = \frac{N}{2} \sum_{ab} i\hat{C}^{ab} C^{ab} + NV[C, \hat{C}; l, \hat{l}], \quad (\text{S17})$$

$$NV[C, \hat{C}; l, \hat{l}] = \ln \left\{ \int \prod_i D y_i D \hat{y}_i e^{\sum_i W[y_i, \hat{y}_i; C, \hat{C}]} \times e^{\sum_i \sum_a (i \hat{y}_i^a l_i^a + i y_i^a \hat{l}_i^a)} \right\}, \quad (\text{S18})$$

81 and

$$W[y_i, \hat{y}_i; C, \hat{C}] = \sum_a i \hat{y}_i^a (\hat{y}_i^a + y_i^a - \frac{\sigma_s^2}{2} i \hat{y}_i^a - y_i^0 \delta_{a0}) - \frac{1}{2} \sum_{a,b} [i\hat{C}^{ab} \phi_i^a \phi_i^b + \lambda_i C^{ab} i \hat{y}_i^a i \hat{y}_i^b] \quad (\text{S19})$$

82 In the thermodynamic limit ($N \gg 1$), the saddle-point approximation ensures that

$$\bar{Z}[l, \hat{l}] \approx \bar{Z}_0[l, \hat{l}] = e^{NU[C_0, \hat{C}_0; l, \hat{l}]} \quad (\text{S20})$$

83 due to the exponential decay of the value of $e^{NU[C, \hat{C}; l, \hat{l}]}$ away from $e^{NU[C_0, \hat{C}_0; l, \hat{l}]}$ mag-
84 nified by large N , where $U[C_0, \hat{C}_0; l, \hat{l}]$ in the exponent is the value of U at the point
85 $C_0^{ab} = 1/N \sum_i \langle \phi_i^a \phi_i^b \rangle$, $\hat{C}_0^{ab} = 1/N \sum_i \langle i \hat{y}_i^a i \hat{y}_i^b \rangle$ that satisfies

$$\frac{\partial}{\partial C} U[C_0, \hat{C}_0; l, \hat{l}]|_{C=C_0, \hat{C}=\hat{C}_0} = 0,$$

$$\frac{\partial}{\partial \hat{C}} U[C_0, \hat{C}_0; l, \hat{l}]|_{C=C_0, \hat{C}=\hat{C}_0} = 0. \quad (\text{S21})$$

86 Due to the normalization condition $\bar{Z}[l, \hat{l} = 0] = \bar{Z}[j, \hat{j} = 0] = 1$, and the cor-
 87 relation functions that involve only \hat{y} can be calculated as the derivative of $\bar{Z}[l, 0]$
 88 over l , $\hat{C}_0^{ab} = 1/N \sum_i \langle i\hat{y}_i^a i\hat{y}_i^b \rangle_0$ must vanish to 0. Therefore, we have the value of
 89 $NU[C_0, \hat{C}_0; l, \hat{l}]$ as

$$NU[C_0, \hat{C}_0; l, \hat{l}] = \ln \left\{ \prod_i \int \mathcal{D}y_i \mathcal{D}\hat{y}_i e^{W[y_i, \hat{y}_i; C_0, 0] + \sum_a (i\hat{y}_i^a l_i^a + i\hat{y}_i^a \hat{l}_i^a)} \right\} \quad (\text{S22})$$

90 $\bar{Z}_0[l, \hat{l}]$, as the approximation of the averaged generating functional of the dynamics
 91 of the whole system, can be subsequently viewed as the product of N individual
 92 generating functionals of single-site dynamics:

$$\bar{Z}_0[l, \hat{l}] = \prod_i Z_i[l, \hat{l}], \quad (\text{S23})$$

93 where

$$Z_i[l, \hat{l}] = \int \mathcal{D}y_i \mathcal{D}\hat{y}_i e^{W[y_i, \hat{y}_i; C_0, 0] + \sum_a (i\hat{y}_i^a l_i^a + i\hat{y}_i^a \hat{l}_i^a)} \quad (\text{S24})$$

94 .
 95 Based on the equality

$$\exp \left[\sum_{a,b} \lambda_i C_0^{ab} i\hat{y}_i^a i\hat{y}_i^b \right] = \langle \exp \left[\sum_a \lambda_i^{1/2} i\hat{y}_i^a \gamma^{*a} \right] \rangle_t \quad (\text{S25})$$

96 where γ^* is a Gaussian white noise with $\langle \gamma^{*a} \gamma^{*b} \rangle_t = g^2 C_0^{ab}$, we notice that

$$\begin{aligned} Z_i[l, \hat{l}] = & \left\langle \int \mathcal{D}y_i \mathcal{D}\hat{y}_i e^{\sum_a i\hat{y}_i^a (y_i^a + y_i^a - \lambda_i^{1/2} \gamma^{*a} - \frac{c_s^2}{2} i\hat{y}_i^a - y_i^0 \delta_{a0})} \times \right. \\ & \left. \times e^{\sum_a (i\hat{y}_i^a l_i^a + i\hat{y}_i^a \hat{l}_i^a)} \right\rangle_{\varepsilon_i}. \end{aligned} \quad (\text{S26})$$

97 This indicates $Z_i[l, \hat{l}]$ is the generating functional of the stochastic process

$$\frac{dy_i}{dt} = -y_i(t) + \hat{s}_i(t) + \lambda_i^{1/2} \gamma^*(t) + l_i(t), \quad (\text{S27})$$

98 where $\hat{s}_i(t)$ is the external drive, $\lambda_i^{1/2} \gamma^*(t)$ is the mean-field term representing the
 99 internal interactions, and $l_i(t)$ is the perturbation field used for DMFT derivation.

100 Finally, a linear transformation of the mean-field equations for latent dynamics
 101 yields the DMFT equations for the original dynamics x as equation (7) in the main
 102 text:

$$\frac{dx_i}{dt} = -x_i + s_i(t) + \eta_i^*(t) + j_i(t) \quad (\text{S28})$$

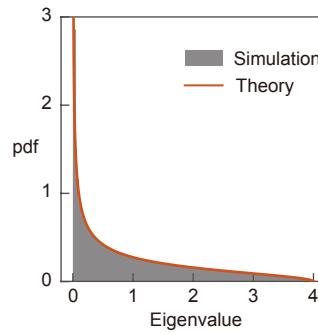
103 with the Gaussian white noise field $\eta_i^* = \sum_k Q_{ik} \lambda_k^{1/2} \gamma_k^*$. The perturbation field $j_i(t)$
 104 is then taken as zero in the following part.

105 **2 The bulk spectrum of the sample correlation**
 106 **matrix of Gaussian random matrix**

107 When simulating the dynamics of correlated random neural networks in the main
 108 analysis, we construct the coupling correlation matrix as the sample correlation
 109 of a Gaussian random matrix. In random matrix theory, such a matrix corre-
 110 sponds to a (normalized) Wishart matrix, whose eigenvalue spectrum follows the
 111 Marchenko–Pastur distribution in the large- N limit. The Marchenko–Pastur distribu-
 112 tion has a characteristic bounded support, with the eigenvalue density being nonzero
 113 only within a finite interval $[\lambda_-, \lambda_+]$ and vanishing outside this range. The probability
 114 density $f(x)$ of the eigenvalue reads

$$f(x) = \frac{\sqrt{(\lambda_+ - x)(x - \lambda_-)}}{2\pi\sigma_J^2\lambda x} \quad (\text{S29})$$

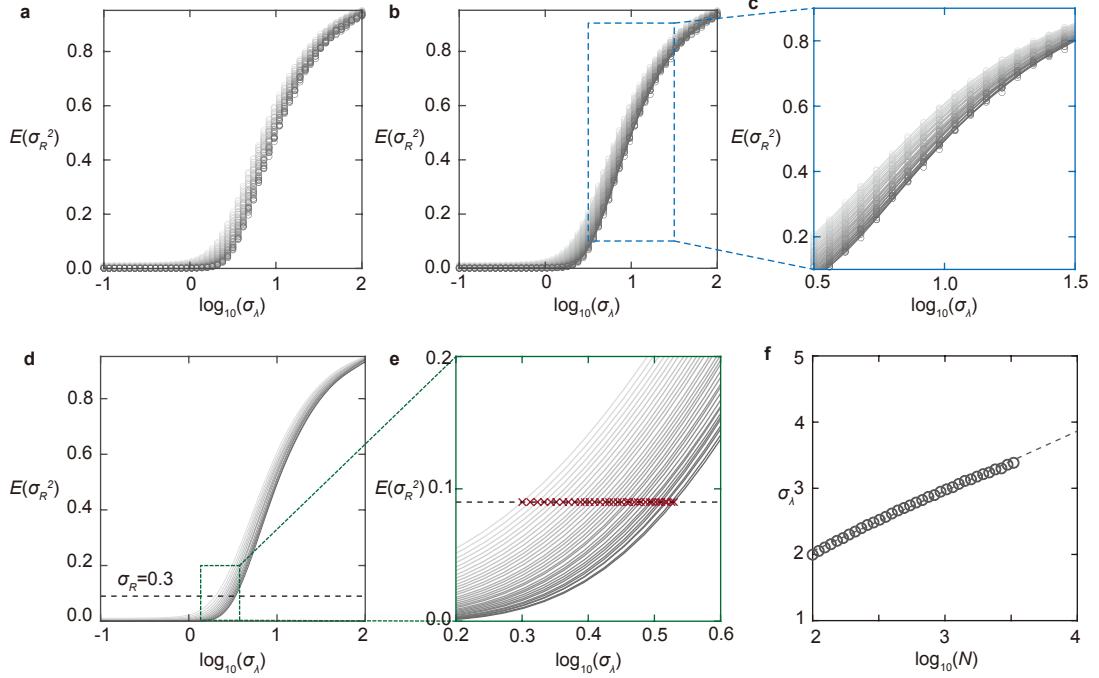
115 for $\lambda_- \leq x \leq \lambda_+$, and $f(x) = 0$ otherwise. When \mathbf{C} is the sample correlation
 116 matrix of $N \times N$ square matrix \mathbf{J} , we have $\lambda = \frac{N}{N} = 1$ with $\lambda_{\pm} = \sigma_J^2(1 \pm \sqrt{\lambda})^2$
 117 (**Supplementary Fig.1**).



Supplementary Fig. 1 The bulk spectral distribution of the sample correlation matrix of Gaussian random matrix. The gray histogram is the distribution of eigenvalues of simulated sample correlation matrices, and the red line is the theoretical Marchenko-Pastur distribution. Notably, the distribution is bulk-like, with eigenvalues bounded between $\lambda_- = 0$ and $\lambda_+ = 4$ ($\sigma_J = 1$)

3 Numerical simulation of the condition for size-invariant correlation magnitude

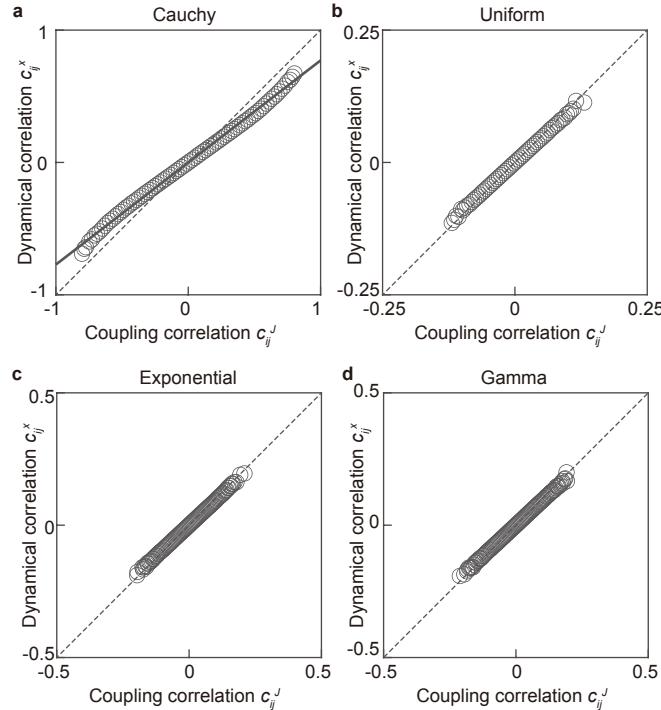
We consider the spectra that follow Log-normal distribution controlled by a dispersion parameter σ_λ . The detailed simulation procedure is provided in **Methods**, and is visualized here step-by-step to enhance clarity. The goal is to learn how the dispersion parameter σ_λ must scale with system size N to ensure coupling correlation scale σ_R remains size-invariant (**Supplementary Fig.2**).



Supplementary Fig. 2 Numerical simulation of the condition for size-invariant correlation magnitude. **a**, Dependence of the coupling correlation scale σ_R on the dispersion parameter σ_λ , with darker colors indicating larger system sizes (ranging from $N = 100$ to 3301). Each point represents the mean σ_R^2 averaged over multiple random coupling matrix realizations. **b**, Smoothing spline fits (lines) to the σ_R - σ_λ relationship for each N (circles with the same color). **c**, A detailed view confirming the accuracy of the fits. **d**, Inverse mapping from a target $\sigma_R = 0.3$ (dashed line, corresponding to $\mathbb{E}[\sigma_R^2] = 0.09$) to the required σ_λ for each N . **e**, Close-up of the intersections (red crosses) indicating the σ_λ value for each system size. **f**, The resulting scaling of σ_λ with N .

125 **4 The relationship between c_{ij}^J and c_{ij}^x under different**
 126 **spectral distributions**

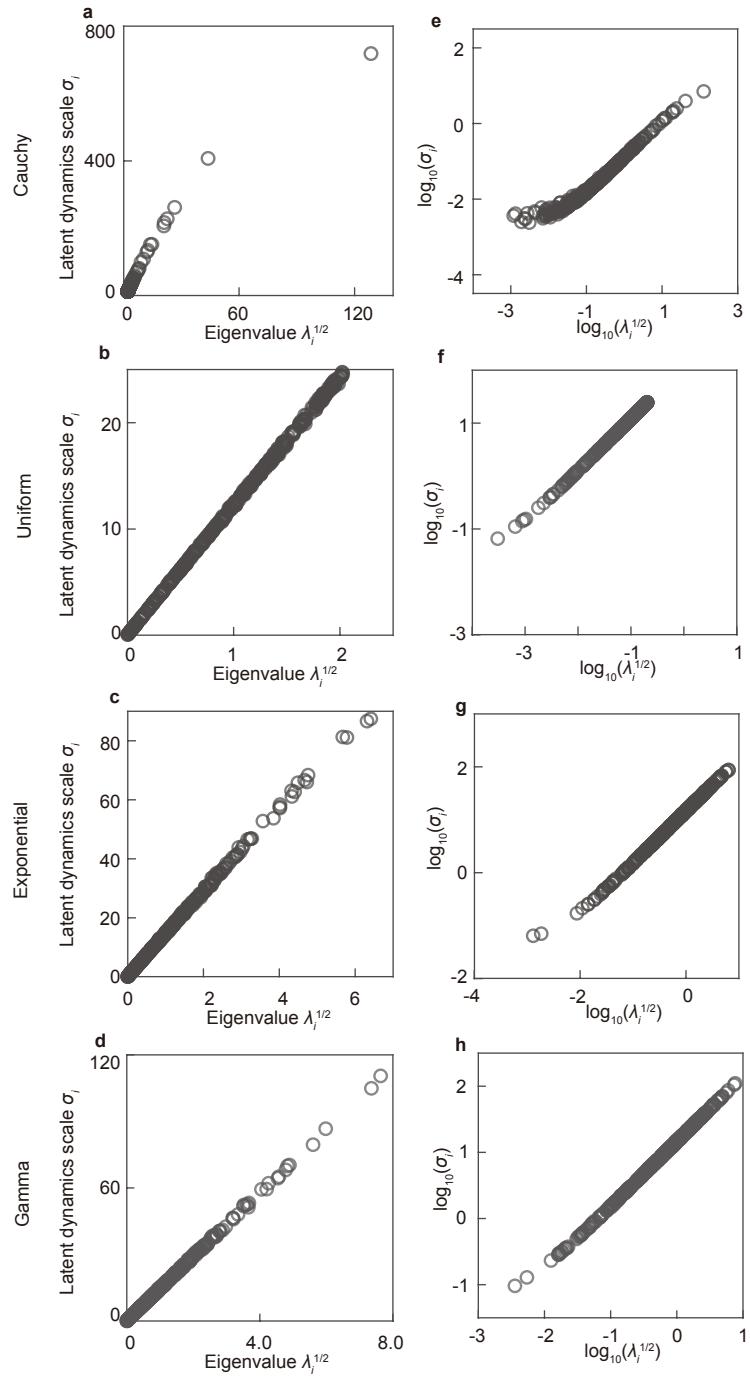
127 Our numerical simulations reveal a consistent relationship between coupling and
 128 dynamical correlation that is largely independent of the specific spectral distribu-
 129 tion: it remains precisely linear under bulk-like distributions and approximately linear
 130 under long-tailed ones. This result not only validates the effectiveness of DMFT for
 131 bulk distributions but also indicates that a common origin may be responsible for its
 132 failure in long-tailed cases (**Supplementary Fig.3**).



Supplementary Fig. 3 The relationship between c_{ij}^J and c_{ij}^x under different spectral distributions. a-d, The simulated relationship when the spectral distribution are Cauchy, Uniform, Exponential and Gamma, respectively. The Cauchy case closely matches the Log-normal results reported in the main text. On the other hand, the other three distributions exhibit a consistently linear relationship between c_{ij}^J and c_{ij}^x , despite variations in the magnitude of coupling correlation.

133 **5 The relationship between λ_i and σ_i under different**
134 **spectral distributions**

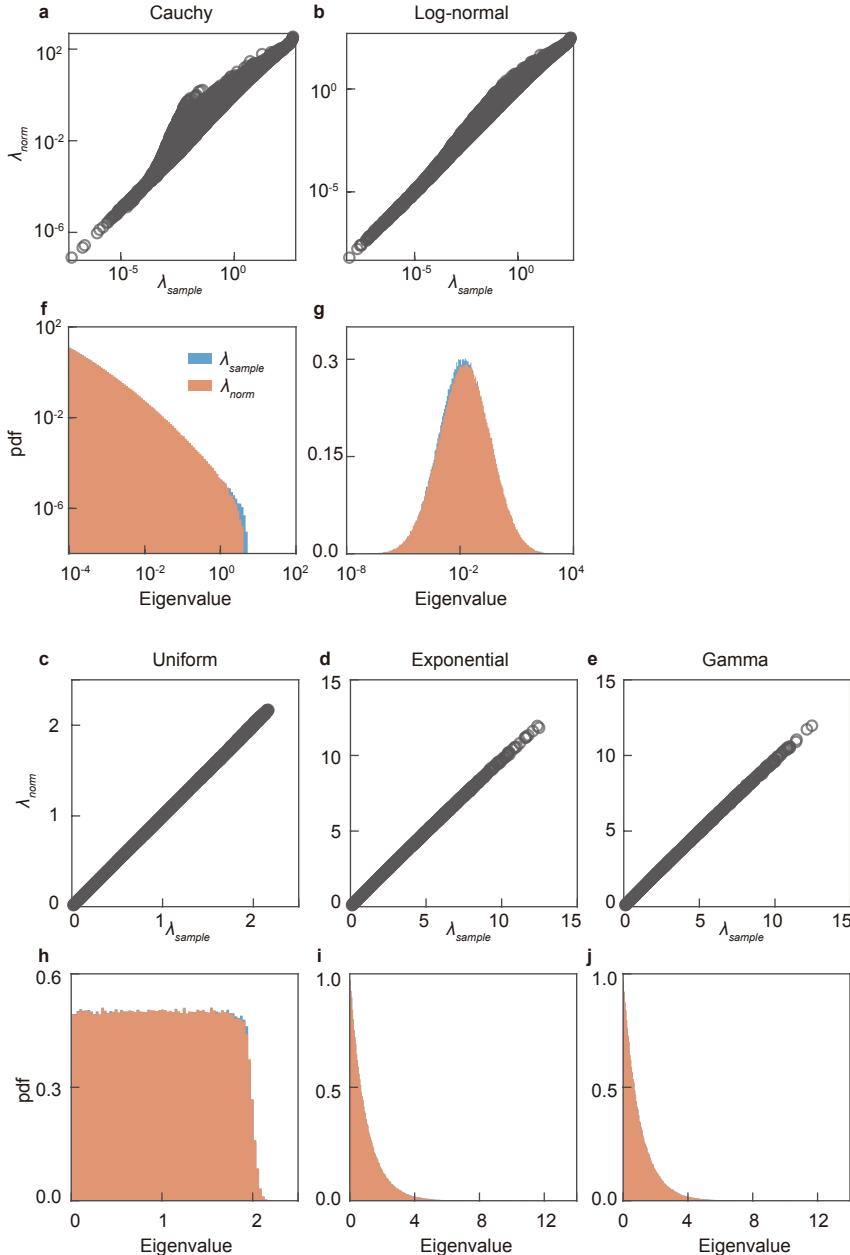
135 A key premise for establishing DMFT is that the latent dynamics $y_i(t)$ experience
136 homogeneous collective interaction $\gamma_i(t)$. This premise can be tested by examining
137 whether the latent dynamics scale σ_i scales proportionally with the square root of
138 corresponding eigenvalue λ_i . Simulations confirm that this proportionality holds for
139 bulk-like spectral distributions but breaks down under long-tailed ones, thereby pro-
140 viding a unified explanation for the domain of DMFT's validity (**Supplementary**
141 **Fig.4**).



Supplementary Fig. 4 The relationship between λ_i and σ_i under different spectral distributions. The left panels (a-d) show the relationship between the latent dynamics scale σ_i (y-axis) and the corresponding eigenvalue square root $\lambda_i^{1/2}$ (x-axis) for the Cauchy, uniform, exponential, and gamma distributions, respectively. The right panels (e-h) present the same relationships on a log-log scale.

142 6 Normalization of constructed correlation matrix

143 When constructing the coupling correlation matrix via the spectral decomposition
144 approach, we apply a normalization step $\mathbf{C} = \mathbf{D}^{-1/2}\mathbf{C}_0\mathbf{D}^{-1/2}$, where $\mathbf{D} = \text{diag}(\mathbf{C}_0)$,
145 and $\mathbf{C}_0 = \mathbf{U}^{-1}\mathbf{\Lambda}\mathbf{U}$ is formed by directly combining randomly generated eigenvectors
146 \mathbf{U} and eigenvalues $\mathbf{\Lambda}$. Here, we demonstrate that the applied normalization has neg-
147 ligible effect on the spectral density, as the eigenvalue probability density function
148 remains fundamentally unaltered throughout the transformation (**Supplementary**
149 **Fig.5**).



Supplementary Fig. 5 The spectral distribution is conserved after normalization of coupling correlation matrix. The upper panels (a–e) compare the initially sampled eigenvalues (λ_{sample}) against their normalized counterparts (λ_{norm}) for Cauchy, log-normal, uniform, exponential, and gamma spectral distributions, respectively. Although λ_{norm} occasionally deviates from λ_{sample} , particularly in the long-tailed cases (a,b), their relationship is well-approximated by the line $y = x$. The corresponding lower panels (f–j) display the probability distributions of both λ_{sample} and λ_{norm} .