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1 Details of theoretical analysis18

As is mentioned in the Methods part of the main text, our theoretical analysis can19

be divided into three steps: 1) calculating the generating functional of the dynamical20

process with the path integral method, 2) deriving the dynamical mean-field theory21

equations from the generating functional via saddle-point approximation, and 3) ana-22

lyzing the dynamical properties from the DMFT equations. Here we present additional23

details for the previous two steps.24

1.1 Calculation of the generating functional ZJ and averaged25

generating functional Z̄26

The derivation started from the generating functional ZJ of dynamical process for27

a given coupling matrix J, which provided a thorough description of the dynamical28

properties. Then, Z̄ is calculated as the averaged generating functional over the ran-29

dom realizations of the coupling matrix. Unlike ZJ that is affected by the specific30

realization of the coupling matrix, Z̄ will reveal the dynamical properties that only31

depend on the structural statistics of J (e.g., coupling correlation). Here, unlike the32

conventional random neural networks that only considered the expectation and vari-33

ance of the coupling matrix elements, we introduced the coupling correlation that is34

the seond-order mixed moment that reads E(JikJjk) = rJijσ
2
J . As the coupling corre-35

lation remain invariant across random network realizations, the averaged generating36

functional Z̄ is expected to reveal how this network statistics shapes the dynamics.37

We discretized the systems described by equation (1) in the main text while adding38

the perturbation field ji(t):39

dxi(t)

dt
= −xi(t) +

∑
j

Jijϕ[xj(t)] + si(t) + ji(t), (S1)

by dividing the time intervals of interest [t0, t] into nT segments of length δt such that40

nT δt = t− t0:41

xa+1
i − xa

i = −xa
i δt+

N∑
j=1

Jijϕ
a
j δt+ sai δt+ jai δt+ x0

i δ
Kr
a0 . (S2)

Here ϕa
j is the abbreviation of ϕ[xj(ta)], and δKr

a0 is the Kronecker delta that sets the42

initial condition at t0 to be x0
i . The discretization allows for a convenient expression43

of the probability density of the dynamical path {xa
i }ta∈[t0,t] under the constraint of44

equation (1), which is given by45

P [xa
i ]J =

∫
p(sai )ds

a
i δ[x

a+1
i − xa

i + (xa
i −

∑
j

Jijϕ
a
j )δt− sai δt− jai δt− x0

i δ
Kr
a0 ] (S3)

where the Dirac δ function indicates that the dynamics of a unit i at time ta takes46

the probability density of 1 if it satisfies the differential equation, and 0 other wise.47
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The subscript J indicates that the probability density is a function of the specific48

realization of the coupling matrix J. Then, probability density of the whole dynamical49

path is calculated as the product of different units at different time points, with50

P [x]J =
∏

i,a P [xa
i ]J. The Fourier representation of the δ-function yields51

P [x]J =

∫ ∏
i,a

dĥa
i

2π
exp{−ix̂a

i [x
a+1
i − xa

i + (xa
i −

∑
j

Jijϕ
a
j )δt−

σ2
s

2
ix̂a

i δt− jai δt− x0
i δ

Kr
a0 ]},

(S4)

where the conjugate variable x̂i is naturally introduced. Therefore, the generating52

functional reads53

Z[j, ĵ]J =

∫ ∏
i,a

dxa
i P [xa

i ]J exp{−ixa
i ĵ

a
i }

=

∫ ∏
i,a

dxa
i dx̂

a
i

2π
exp{−ix̂a

i [
xa+1
i − xa

i

δt
+ xa

i −
∑
j

Jijϕ
a
j −

σ2
s

2
ix̂a

i − jai − x0
i δ

Kr
a0

δt
]δt

+ (ix̂a
i j

a
i + ixa

i ĵ
a
i )δt}.

Then, taking the continuum limit nT → ∞, we got the generating functional54

Z[j, ĵ]J for continuous systems as the integral over all possible paths of xi and x̂i as55

in equation (2) in the main text:56

Z[j, ĵ]J =

∫ ∏
i

DxiDx̂i exp{−
∑
i

S[xi, x̂i] +
∑
i,a

(ix̂a
i j

a
i + ixa

i ĵ
a
i )}, (S5)

with the functional integral measure defined as Dxi ≡ limnT→∞
∏

a dx
a
i and Dx̂i ≡57

limnT→∞
∏

a
dx̂a

i

2π .58

The averaged generating functional Z̄[s, ŝ] is then calculated as59

Z̄[j, ĵ] = E(Z[j, ĵ]J)

=

∫ ∏
i

DxiDx̂iE(exp{−
∑
i

S[xi, x̂i]}) exp{
∑
i,a

(ix̂a
i j

a
i + ixa

i ĵ
a
i )}. (S6)

Since S[xi, x̂i] =
∑

a ix̂
a
i (ẋ

a
i + xa

i −
∑

j Jijϕ
a
j − σ2

s

2 ix̂a
i − x0

i δa0), the above step is60

essentially a calculation of the average of exp{
∑

i,j Jij ix̂
a
i ϕ

a
j } over random realizations61

of the coupling matrix J. Given the multivariate Gaussian distribution of Jij , the62

result reads63
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E(exp{
∑
i,j

Jij ix̂
a
i ϕ

a
j }) = exp{

∑
i,j

σ2
J

2
(
∑
a

ix̂a
i ϕ

a
j )

2}×

× exp{
∑
i̸=j

∑
k

rJijσ
2
J

2
(
∑
a

ix̂a
i ϕ

a
k)(

∑
b

ix̂b
jϕ

b
k)}, (S7)

By interchanging the order of summation, we got64

E(exp{
∑
i,j

Jij ix̂
a
i ϕ

a
j }) = exp{σ

2
J

2

∑
a,b

(
∑
i

ix̂a
i ix̂

b
i )(

∑
j

ϕa
jϕ

b
j)

+
σ2
J

2

∑
a,b

(
∑
i̸=j

rJij ix̂
a
i ix̂

b
j)(

∑
k

ϕa
kϕ

b
k)} (S8)

.65

To simplify the non-local interaction term, we introduced the following change of66

variables x̂a = Qŷa, xa = Qya, ĵa = Ql̂a and ja = Qla, which leads to67 ∑
i

ix̂a
i ix̂

b
i =

∑
i

iŷai iŷ
b
i , (S9)∑

i̸=j

rJij ix̂
a
i ix̂

b
j =

∑
i

(λi − 1)iŷai iŷ
b
i , (S10)

∑
i,a

ix̂a
i (ẋ

a
i + xa

i − x0
i δa0) =

∑
i,a

iŷai (
a
i+yai − y0i δa0), (S11)

∑
i,a

(ix̂a
i j

a
i + ixa

i ĵ
a
i ) =

∑
i,a

(iŷai l
a
i + iyai l̂

a
i ), (S12)

where the columns of Q are the eigenvectors of the coupling correlation matrix, and λi68

is the i-th eigenvalue. The generating functional of the latent system can be calculated69

from equation (3) in the main text following the above procedure, or alternatively by70

substituting the latent variables into the expression of Z̄[j, ĵ] for the original system.71

Here, we show the latter approach, substituting equations (S9-S12) into equation (S6)72

so that the averaged generating functional is expressed as73

Z̄[l, l̂] =

∫
|Q|2

∏
i

DyiDŷi exp[−
∑
i,a

iŷai (ẏ
a
i + yai − σ2

s

2
iŷai − y0i δa0)

+
σ2
J

2

∑
a,b

(
∑
i

λiiŷ
a
i iŷ

b
j)(

∑
j

ϕa
jϕ

b
j)

+
∑
i,a

(iŷai l
a
i + iyai l̂

a
i )] (S13)
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that yields equation (5) in the main text:74

Z̄[l, l̂] =

∫
|Q|2

∏
i

DyiDŷi exp{−
∑
i

F [yi, ŷi] +
∑
i,a

(iŷai l
a
i + iyai l̂

a
i )}. (S14)

1.2 Derivation of the DMFT equations via saddle-point75

approximation76

We then employed the equality Cab ≡ 1
N

∑
i ϕ

a
i ϕ

b
i to simplify Z̄[l, l̂] by using the77

Hubbard-Stratonovich transformation78

1 =

∫
dCab(dĈab/2π) exp [−iĈab(Cab −

∑
i

ϕa
i ϕ

b
i/N)]. (S15)

As a result, Eq. 5 is transformed into79

Z̄[l, l̂] =

∫
DCDĈeNU [C,Ĉ;l,l̂], (S16)

with80

NU [C, Ĉ; l, l̂] =
N

2

∑
ab

iĈabCab +NV [C, Ĉ; l, l̂], (S17)

NV [C, Ĉ; l, l̂] = ln {
∫ ∏

i

DyiDŷie
∑

i W [yi,ŷi;C,Ĉ]×

× e
∑

i

∑
a(iŷ

a
i l

a
i +iya

i l̂
a
i )}, (S18)

and81

W [yi, ŷi;C, Ĉ] =
∑
a

iŷai (ẏ
a
i + yai − σ2

s

2
iŷai − y0i δa0)

− 1

2

∑
a,b

[iĈabϕa
i ϕ

b
i + λiC

abiŷai iŷ
b
i ] (S19)

In the thermodynamic limit (N ≫ 1), the saddle-point approximation ensures that82

Z̄[l, l̂] ≈ Z̄0[l, l̂] = eNU [C0,Ĉ0;l,l̂] (S20)

due to the exponential decay of the value of eNU [C,Ĉ;l,l̂] away from eNU [C0,Ĉ0;l,l̂] mag-83

nified by large N , where U [C0, Ĉ0; l, l̂] in the exponent is the value of U at the point84

Cab
0 = 1/N

∑
i⟨ϕa

i ϕ
b
i ⟩, Ĉab

0 = 1/N
∑

i⟨iŷai iŷbi ⟩ that satisfies85

∂

∂C
U [C0, Ĉ0; l, l̂]|C=C0,Ĉ=Ĉ0

= 0,
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∂

∂Ĉ
U [C0, Ĉ0; l, l̂]|C=C0,Ĉ=Ĉ0

= 0. (S21)

Due to the normalization condition Z̄[l, l̂ = 0] = Z̄[j, ĵ = 0] = 1, and the cor-86

relation functions that involve only ŷ can be calculated as the derivative of Z̄[l, 0]87

over l, Ĉab
0 = 1/N

∑
i⟨iŷai iŷbi ⟩0 must vanish to 0. Therefore, we have the value of88

NU [C0, Ĉ0; l, l̂] as89

NU [C0, Ĉ0; l, l̂] = ln {
∏
i

∫
DyiDŷie

W [yi,ŷi;C0,0]+
∑

a(iŷ
a
i l

a
i +iya

i l̂
a
i )} (S22)

Z̄0[l, l̂], as the approximation of the averaged generating functional of the dynamics90

of the whole system, can be subsequently viewed as the product of N individual91

generating functionals of single-site dynamics:92

Z̄0[l, l̂] =
∏
i

Zi[l, l̂], (S23)

where93

Zi[l, l̂] =

∫
DyiDŷie

W [yi,ŷi;C0,0]+
∑

a(iŷ
a
i l

a
i +iya

i l̂
a
i ) (S24)

.94

Based on the equality95

exp [
∑
a,b

λiC
ab
0 iŷai iŷ

b
i ] = ⟨exp [

∑
a

λ
1/2
i iŷai γ

∗a]⟩t (S25)

where γ∗ is a Gaussian white noise with ⟨γ∗aγ∗b⟩t = g2Cab
0 , we notice that96

Zi[l, l̂] = ⟨
∫

DyiDŷie
∑

a iŷa
i (ẏ

a
i +ya

i −λ
1/2
i γ∗a−σ2

s
2 iŷa

i −y0
i δa0)×

× e
∑

a(iŷ
a
i l

a
i +iya

i l̂
a
i )⟩εi . (S26)

This indicates Zi[l, l̂] is the generating functional of the stochastic process97

dyi
dt

= −yi(t) + ŝi(t) + λ
1/2
i γ∗(t) + li(t), (S27)

where ŝi(t) is the external drive, λ
1/2
i γ∗(t) is the mean-field term representing the98

internal interactions, and li(t) is the perturbation field used for DMFT derivation.99

Finally, a linear transformation of the mean-field equations for latent dynamics100

yields the DMFT equations for the original dynamics x as equation (7) in the main101

text:102

dxi

dt
= −xi + si(t) + η∗i (t) + ji(t) (S28)

with the Gaussian white noise field η∗i =
∑

k Qikλ
1/2
k γ∗

k . The perturbation field ji(t)103

is then taken as zero in the following part.104
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2 The bulk spectrum of the sample correlation105

matrix of Gaussian random matrix106

When simulating the dynamics of correlated random neural networks in the main107

analysis, we construct the coupling correlation matrix as the sample correlation108

of a Gaussian random matrix. In random matrix theory, such a matrix corre-109

sponds to a (normalized) Wishart matrix, whose eigenvalue spectrum follows the110

Marchenko–Pastur distribution in the large-N limit. The Marchenko–Pastur distribu-111

tion has a characteristic bounded support, with the eigenvalue density being nonzero112

only within a finite interval [λ−, λ+] and vanishing outside this range. The probability113

density f(x) of the eigenvalue reads114

f(x) =

√
(λ+ − x)(x− λ−)

2πσ2
Jλx

(S29)

for λ− ≤ x ≤ λ+, and f(x) = 0 otherwise. When C is the sample correlation115

matrix of N × N square matrix J, we have λ = N
N = 1 with λ± = σ2

J(1 ±
√
λ)2116

(Supplementary Fig.1).117
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Supplementary Fig. 1 The bulk spectral distribution of the sample correlation matrix of
Gaussian random matrix. The gray histogram is the distribution of eigenvalues of simulated sam-
ple correlation matrices, and the red line is the theoretical Marchenko-Pastur distribution. Notably,
the distribution is bulk-like, with eigenvalues bounded between λ− = 0 and λ+ = 4 (σJ = 1)

.

7



3 Numerical simulation of the condition for118

size-invariant correlation magnitude119

We consider the spectra that follow Log-normal distribution controlled by a dispersion120

parameter σλ. The detailed simulation procedure is provided in Methods, and is121

visualized here step-by-step to enhance clarity. The goal is to learn how the dispersion122

parameter σλ must scale with system size N to ensure coupling correlation scale σR123

remains size-invariant (Supplementary Fig.2).124
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Supplementary Fig. 2 Numerical simulation of the condition for size-invariant correla-
tion magnitude. a, Dependence of the coupling correlation scale σR on the dispersion parameter
σλ, with darker colors indicating larger system sizes (ranging from N = 100 to 3301). Each point
represents the mean σ2

R averaged over multiple random coupling matrix realizations. b, Smoothing
spline fits (lines) to the σR–σλ relationship for each N (circles with the same color). c, A detailed
view confirming the accuracy of the fits. d, Inverse mapping from a target σR = 0.3 (dashed line,
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R] = 0.09) to the required σλ for each N . e, Close-up of the intersections (red
crosses) indicating the σλ value for each system size. f, The resulting scaling of σλ with N .

.
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4 The relationship between cJij and cxij under different125

spectral distributions126

Our numerical simulations reveal a consistent relationship between coupling and127

dynamical correlation that is largely independent of the specific spectral distribu-128

tion: it remains precisely linear under bulk-like distributions and approximately linear129

under long-tailed ones. This result not only validates the effectiveness of DMFT for130

bulk distributions but also indicates that a common origin may be responsible for its131

failure in long-tailed cases (Supplementary Fig.3).132
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5 The relationship between λi and σi under different133

spectral distributions134

A key premise for establishing DMFT is that the latent dynamics yi(t) experience135

homogeneous collective interaction γi(t). This premise can be tested by examining136

whether the latent dynamics scale σi scales proportionally with the square root of137

corresponding eigenvalue λi. Simulations confirm that this proportionality holds for138

bulk-like spectral distributions but breaks down under long-tailed ones, thereby pro-139

viding a unified explanation for the domain of DMFT’s validity (Supplementary140

Fig.4).141
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Supplementary Fig. 4 The relationship between λi and σi under different spectral dis-
tributions. The left panels (a–d) show the relationship between the latent dynamics scale σi (y-axis)
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gamma distributions, respectively. The right panels (e–h) present the same relationships on a log–log
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6 Normalization of constructed correlation matrix142

When constructing the coupling correlation matrix via the spectral decomposition143

approach, we apply a normalization step C = D−1/2C0D
−1/2, where D = diag(C0),144

and C0 = U−1ΛU is formed by directly combining randomly generated eigenvectors145

U and eigenvalues Λ. Here, we demonstrate that the applied normalization has neg-146

ligible effect on the spectral density, as the eigenvalue probability density function147

remains fundamentally unaltered throughout the transformation (Supplementary148

Fig.5).149
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