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fMRIPrep Preprocessing 

Results included in this manuscript come from preprocessing performed 

using fMRIPrep 20.2.0 [1, 2, RRID:SCR_016216], which is based on Nipype 1.5.1 [3, 4, 

RRID:SCR_002502]. 

Anatomical data preprocessing/ 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The 

T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 

with N4BiasFieldCorrection [5] distributed with ANTs 2.3.3 [6, RRID:SCR_004757], and used 

as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with 

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast [FSL 

5.0.9, RRID:SCR_002823, 7]. Brain surfaces were reconstructed using recon-all [FreeSurfer 

6.0.1, RRID:SCR_001847, 8], and the brain mask estimated previously was refined with a 

custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations 

of the cortical gray-matter of Mindboggle [RRID:SCR_002438, 9]. Volume-based spatial 

normalization to two standard spaces (MNI152NLin6Asym, MNI152NLin2009cAsym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template. The following templates were 

selected for spatial normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric 

Average Brain Stereotaxic Registration Model [10, RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical template version 2009c [11, 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing. 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Susceptibility distortion correction 

(SDC) was omitted. The BOLD reference was then co-registered to the T1w reference 

using bbregister (FreeSurfer) which implements boundary-based registration [12]. Co-

registration was configured with six degrees of freedom. Head-motion parameters with respect to 

the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt [FSL 5.0.9, 13]. The 

BOLD time-series (including slice-timing correction when applied) were resampled onto their 

original, native space by applying the transforms to correct for head-motion. These resampled 

BOLD time-series will be referred to as preprocessed BOLD in original space, or 

just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating 

a preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-

stripped version were generated using a custom methodology of fMRIPrep. Several confounding 

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 

DVARS and three region-wise global signals. FD was computed using two formulations 



following Power (absolute sum of relative motions) [14], and Jenkinson (relative root mean 

square displacement between affines) [13]. FD and DVARS are calculated for each functional 

run, both using their implementations in Nipype (following the definitions by [14]). The three 

global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a 

set of physiological regressors were extracted to allow for component-based noise 

correction [CompCor, 15]. Principal components are estimated after high-pass filtering 

the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the 

two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 2% variable voxels within the brain mask. For 

aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in 

anatomical space. The implementation differs from that of [14] in that instead of eroding the 

masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that 

likely contain a volume fraction of GM. This mask is obtained by dilating a GM mask extracted 

from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted from 

voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD 

space and binarized by thresholding at 0.99 (as in the original implementation). Components are 

also calculated separately within the WM and CSF masks. For each CompCor decomposition, 

the k components with the largest singular values are retained, such that the retained components’ 

time series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 

combined, or temporal). The remaining components are dropped from consideration. The head-

motion estimates calculated in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each [16]. 

Frames that exceeded a threshold of 0.2 mm FD or 1.5 standardised DVARS were annotated as 

motion outliers. All resamplings can be performed with a single interpolation step by composing 

all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels [17]. Non-gridded 

(surface) resamplings were performed using mri_vol2surf (FreeSurfer). Many internal operations 

of fMRIPrep use Nilearn 0.6.2 [18, RRID:SCR_001362], mostly within the functional processing 

workflow. For more details of the pipeline, see the section corresponding to workflows 

in fMRIPrep’s documentation. 
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Table S1. TMT Duration Results (corrected and uncorrected) 

 
 

 

 

Figure S1.  

A.TMT Accuracy Main Effect (uncorrected results) 

 
 

 

 

 

 

 

 

Effect Network ROI 1 ROI 2 T Statistic (df) p-unc p-FDR 

TMT Duration × Group DAN R IPS L FEF 2.24 (68) 0.028 0.994

TMT Accuracy Main Effect DAN-SN R FEF L SMG 2.42 (68) 0.018 0.711

DAN-SN R FEF R SMG 2.24 (68) 0.028 0.711

DAN-SN L IPS L SMG 2.19 (68) 0.032 0.711

DAN L IPS R FEF 2.11 (68) 0.038 0.711

DAN-FPN L IPS R LPFC 2.07 (68) 0.042 0.711

DAN-SN R FEF L RPFC 2.02 (68) 0.047 0.711

TMT Duration Main Effect DAN-SN R IPS L SMG -3.07 (68) 0.003 0.246

DAN-SN L IPS L SMG -2.83 (68) 0.006 0.246

DAN-FPN R FEF R LPFC -2.59 (68) 0.012 0.246

DAN-SN R FEF L SMG -2.54 (68) 0.013 0.246

DAN-FPN R FEF L LPFC -2.52 (68) 0.014 0.246

DAN-FPN R IPS R LPFC -2.52 (68) 0.014 0.246

SN-FPN ACC L PPC 2.44 (68) 0.017 0.246

DAN-SN R FEF L RPFC -2.41 (68) 0.019 0.246

DAN-SN L FEF L SMG -2.34 (68) 0.022 0.259

DAN-FPN R IPS L LPFC -2.14 (68) 0.036 0.340

DAN-SN R FEF R SMG -2.12 (68) 0.038 0.340

DAN R IPS R FEF -2.11 (68) 0.039 0.340

FPN R PPC L LPFC 2.02 (68) 0.047 0.376



Figure S2. 

A. TMT Task Duration (RT) Main Effect (uncorrected results) 

 

 
 

B. TMT Duration x Group (Healthy Controls vs. cMDD) Effect (uncorrected results) 
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