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Supplementary Tables
Table S1 | Performance of eight machine-learning classifiers for COPD prediction in the internal validation set. 
Discrimination and classification metrics for decision tree (DT), k-nearest neighbours (KNN), LightGBM (LGBM), logistic regression (LR), naïve Bayes (NBM), random forest (RF), support vector machine (SVM) and XGBoost (XGB) trained on the 16-compound VOC panel in the derivation cohort and evaluated in the internal validation set. Metrics include area under the receiver-operating-characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and F1-score.
	Predictive models
	AUC
	Sensitivity
	Specificity
	PPV
	NPV
	Accuracy
	F1 score

	XGB
	0.996
	0.974
	0.939
	0.958
	0.963
	0.957
	0.966

	RF
	0.995
	1.000
	0.890
	0.929
	1.000
	0.945
	0.963

	KNN
	0.955
	0.974
	0.866
	0.912
	0.959
	0.920
	0.942

	DT
	0.949
	0.916
	0.900
	0.932
	0.878
	0.908
	0.924

	LR
	0.934
	0.957
	0.756
	0.848
	0.925
	0.857
	0.900

	SVM
	0.927
	0.957
	0.768
	0.855
	0.926
	0.863
	0.903

	NBM
	0.860
	0.855
	0.671
	0.787
	0.764
	0.763
	0.820

	LGBM
	0.638
	0.598
	0.622
	0.693
	0.520
	0.610
	0.642

	






Table S2 | Performance of eight machine-learning classifiers in the external validation cohort. 
Diagnostic performance of the same eight classifiers applied to the external cohort (Cohort 2) using the locked 16-compound VOC fingerprint. Reported metrics are AUC, sensitivity, specificity, PPV, NPV, accuracy and F1-score
	Model
	AUC
	Sensitivity
	Specificity
	PPV
	NPV
	Accuracy
	F1 score

	SVM
	0.865
	0.763
	0.809
	0.851
	0.705
	0.786
	0.804

	KNN
	0.851
	0.742
	0.838
	0.867
	0.695
	0.790
	0.800

	RF
	0.832
	0.526
	0.868
	0.850
	0.562
	0.697
	0.650

	LR
	0.829
	0.711
	0.765
	0.812
	0.650
	0.738
	0.758

	XGB
	0.819
	0.577
	0.868
	0.862
	0.590
	0.722
	0.691

	NBM
	0.766
	0.649
	0.750
	0.787
	0.600
	0.700
	0.712

	LGBM
	0.716
	0.619
	0.721
	0.759
	0.570
	0.670
	0.682

	DT
	0.687
	0.865
	0.540
	0.464
	0.897
	0.703
	0.604

	






Table S3 | DeLong test for pairwise AUC differences in the internal validation set. 
Pairwise comparisons of AUCs between all machine-learning models in the internal validation set using DeLong’s test. For each baseline–new model pair, the table reports AUCs, AUC difference and P value.
	Baseline model-New model
	Baseline model
	New model
	Difference of AUC
	P

	XGB-RF
	0.996
	0.995
	0.001
	0.621

	XGB-KNN
	0.996
	0.955
	0.041
	0.0101

	XGB-DT
	0.996
	0.949
	0.047
	0.00201

	XGB-LR
	0.996
	0.934
	0.062
	0.000563

	XGB-SVM
	0.996
	0.927
	0.069
	0.000302

	XGB-NBM
	0.996
	0.860
	0.136
	< 0.0001

	XGB-LGBM
	0.996
	0.638
	0.358
	< 0.0001

	RF-KNN
	0.995
	0.955
	0.040
	0.0118

	RF-DT
	0.995
	0.949
	0.046
	0.00314

	RF-LR
	0.995
	0.934
	0.061
	0.000678

	RF-SVM
	0.995
	0.927
	0.068
	0.000297

	RF-NBM
	0.995
	0.860
	0.135
	< 0.0001

	RF-LGBM
	0.995
	0.638
	0.357
	< 0.0001

	KNN-DT
	0.955
	0.949
	0.006
	0.767

	KNN-LR
	0.955
	0.934
	0.021
	0.380

	KNN-SVM
	0.955
	0.927
	0.028
	0.113

	KNN-NBM
	0.955
	0.860
	0.095
	0.0289

	KNN-LGBM
	0.955
	0.638
	0.317
	< 0.0001

	DT-LR
	0.949
	0.934
	0.015
	0.532

	DT-SVM
	0.949
	0.927
	0.022
	0.344

	DT-NBM
	0.949
	0.860
	0.089
	0.0598

	DT-LGBM
	0.949
	0.638
	0.311
	< 0.0001

	LR-SVM
	0.934
	0.927
	0.007
	0.792

	LR-NBM
	0.934
	0.860
	0.074
	0.248

	LR-LGBM
	0.934
	0.638
	0.296
	< 0.0001

	SVM-NBM
	0.927
	0.860
	0.067
	0.425

	SVM-LGBM
	0.927
	0.638
	0.289
	< 0.0001

	NBM-LGBM
	0.860
	0.638
	0.222
	< 0.0001

	






Table S4 | Performance of eight machine-learning models combining VOC ions with basic clinical risk factors. 
Diagnostic performance in the internal validation set when age, sex, BMI and smoking status are added to the 16-compound VOC panel as predictors. Metrics include AUC, sensitivity, specificity, PPV, NPV, accuracy and F1-score.
	Model
	AUC
	Sensitivity
	Specificity
	PPV
	NPV
	Accuracy
	F1 score

	XGB
	0.995
	0.983
	0.951
	0.966
	0.975
	0.967
	0.975

	RF
	0.992
	0.974
	0.902
	0.934
	0.961
	0.938
	0.954

	DT
	0.949
	0.916
	0.900
	0.932
	0.878
	0.908
	0.924

	LR
	0.941
	0.872
	0.817
	0.872
	0.817
	0.844
	0.872

	SVM
	0.936
	0.957
	0.768
	0.855
	0.926
	0.863
	0.903

	KNN
	0.909
	0.932
	0.805
	0.872
	0.892
	0.868
	0.901

	NBM
	0.872
	0.829
	0.695
	0.795
	0.740
	0.762
	0.812

	LGBM
	0.648
	0.590
	0.610
	0.683
	0.510
	0.600
	0.633






Table S5 | Performance of the KNN classifier for GOLD I–IV COPD prediction in internal and external validation sets. 
Discrimination and classification metrics for the 16-DM/KNN model by GOLD stage (I–IV) in the internal validation set and in the external cohort. AUC, sensitivity, specificity, PPV, NPV, accuracy and F1-score are reported for each stage and for grouped stages (for example GOLD I+II, GOLD III+IV)
	Model
	AUC
	Sensitivity
	Specificity
	PPV
	NPV
	Accuracy
	F1 score

	Internal validation set
	
	
	
	
	
	

	GOLD I 
	0.941
	0.867
	0.866
	0.542
	0.973
	0.866
	0.667

	GOLD II 
	0.960
	1.000
	0.866
	0.825
	1.000
	0.933
	0.904

	GOLD Ⅲ 
	0.956
	0.971
	0.866
	0.756
	0.986
	0.919
	0.850

	GOLD Ⅳ 
	0.961
	1.000
	0.866
	0.577
	1.000
	0.933
	0.732

	External validation set
	
	
	
	
	
	

	GOLD I+II 
	0.861
	0.717
	0.838
	0.776
	0.792
	0.778
	0.745

	GOLD I 
	0.783
	0.333
	0.838
	0.154
	0.934
	0.586
	0.211

	GOLD II 
	0.870
	0.766
	0.838
	0.766
	0.838
	0.802
	0.766

	GOLD Ⅲ+Ⅳ 
	0.839
	0.773
	0.838
	0.756
	0.851
	0.805
	0.764

	GOLD Ⅲ 
	0.823
	0.735
	0.838
	0.694
	0.864
	0.787
	0.714

	GOLD Ⅳ 
	0.893
	0.900
	0.838
	0.450
	0.983
	0.869
	0.600

	






Table S6 | Performance of logistic regression for COPD severity grading. 
Macro- and micro-averaged performance of the 11-compound logistic-regression model (11-CM) for GOLD I–IV classification in training and validation sets of COPD cases, including AUC, sensitivity, specificity, Youden index, and positive and negative likelihood ratios.
	Predictive models
	AUC
	Sensitivity
	Specificity
	Youden
	Positive
	Negative

	Training set

	GOLD Ⅰ
	0.875
	0.840
	0.770
	0.600
	3.580
	0.210

	GOLD Ⅱ
	0.805
	0.900
	0.530
	0.430
	1.910
	0.180

	GOLD Ⅲ
	0.806
	0.650
	0.800
	0.450
	3.200
	0.430

	GOLD Ⅳ
	0.789
	0.580
	0.870
	0.450
	4.410
	0.480

	Macro
	0.819
	0.690
	0.760
	0.450
	2.870
	0.410

	Micro
	0.854
	0.790
	0.770
	0.560
	3.490
	0.270

	Validation set

	GOLD Ⅰ
	0.827
	0.650
	0.930
	0.580
	9.350
	0.380

	GOLD Ⅱ
	0.787
	0.760
	0.690
	0.450
	2.430
	0.350

	GOLD Ⅲ
	0.792
	0.900
	0.580
	0.480
	2.150
	0.180

	GOLD Ⅳ
	0.840
	0.860
	0.760
	0.620
	3.600
	0.190

	Macro
	0.811
	0.790
	0.670
	0.460
	2.380
	0.310

	Micro
	0.849
	0.880
	0.680
	0.560
	2.750
	0.170






Table S7 | Putative chemical identities of the 11 VOC ions used for COPD grading. 
Tentative assignments for the 11 VOC ions comprising the severity model, including m/z, candidate compound name, molecular weight and molecular formula. Annotations are based on accurate mass, the Human Breathomics Database and prior literature.
	m/z 
	Volatile organic compounds
	Molecular weight
	Molecular formula

	31
	Formaldehyde
	30.0106
	CH2O

	35
	Hydrogen sulfide
	33.9877
	H2S

	42
	Acetonitrile
	41.0265
	C2H3N

	77
	1,3-Propanediol
	76.0524
	C3H8O2

	80
	Pyridine
	79.0422
	C5H5N

	84
	3(5)-Aminopyrazole
	83.0483
	C3H5N3

	93
	1,2,3-Propanetriol
	92.0473
	C3H8O3

	132
	Leucine
	131.0946
	C6H13NO2

	136
	Adenine
	135.0545
	C5H5N5

	158
	1-Decanamine
	157.1830
	C10H23N

	268
	Adenosine
	267.0968
	C10H13N5O4






Table S8 | Putative chemical identities of the 16 VOC ions used for COPD diagnosis. 
Tentative annotations for the 16 VOC ions in the diagnostic fingerprint, including m/z, potential structures, molecular weight and formula. Several m/z values have multiple plausible candidates.
	m/z 
	Volatile organic compounds
	Molecular weight
	Molecular formula

	78
	Methyl nitrate
	77.0113
	CH3NO3

	86
	Thiazole
	85.0164
	C3H3NO2

	
	Piperidine	
	85.0891
	C5H11N

	90
	Alanine 
	89.0477
	C3H7NO2

	104
	Benzonitrile
	103.0422
	C7H5N

	
	Benzene, isocyano-  
	103.0422
	C7H5N

	
	Methyl dimethylcarbamate  
	103.0633
	C4H9NO2

	117
	4- Hydroxy-4-methylpentan-2-one
	116.0837
	C6H12O2

	120
	Threonine
	119.0582
	C4H9NO3

	124
	2- (CH3OCH2)-pyridine 
	123.0684
	C7H9NO

	134
	Aspartic acid 
	133.0375
	C4H7NO4

	151
	Benzoic acid, 3-methyl-, methyl ester 
	150.0681
	C9H10O2

	153
	Methyl salicylate 
	152.0473
	C8H8O3

	170
	Pyridine, pentafluoro- 
	168.9951
	C5F5N

	218
	N,N-Dimethyl-p-trifluorobenzmide
	217.0714
	C10H10F3NO

	234
	N,N-Dimethylbenzenamine, 2,4-di-t-butyl
	233.2143
	C16H27N

	238
	Benzene,1,1’-(1,1,2,2-tetramethyl-1,2-ethanediyl)bis-
	239.1800
	C18H22

	246
	Benzenamine, N,N-diphenyl-
	245.1204
	C18H15N

	265
	Trans-1,4-dibenzylcyclohexane
	264.1878
	C20H24






Table S9 | Calibration parameters for 29 VOC standards. 
Standard curves, correlation coefficients (R²), limits of detection (LOD) and instrument sensitivities for 29 VOC species used to calibrate the PTR–ToF–MS.
	m/z 
	Chemical formula
	Suggested compounds
	Standard curve
	Correlation coefficient (R2)
	LOD 
(ppb)
	Sensitivity (cps/ppb)

	28.010
	CHN
	Hydrocyanic acid
	y=6.400x+77.382
	0.9988
	3.7
	6.4

	31.010
	HCHO
	Formaldehyde
	y=7.347x+29.108
	0.9942
	2.4
	7.3

	33.024
	CH3OH
	Methyl alcohol
	y=20.635x-87.425
	0.9897
	1.3
	20.6

	42.016
	CH3CN
	Acetonitrile
	y=41.322x-39.310
	0.9971
	4.2
	41.3

	45.016
	C2H4O
	Acetaldehyde
	y=42.471x-17.522
	0.9998
	0.6
	42.5

	57.040
	C3H4O
	Acrolein
	y=54.832x-166.740
	0.9961
	0.7
	54.8

	59.080
	C3H6O
	Acetone
	y=56.717x-56.650
	0.9998
	0.5
	56.7

	61.095
	C3H8O
	Isopropanol
	y=38.985x-37.714
	0.9997
	0.8
	38.9

	69.074
	C4H4O
	Furan
	y=56.797x-27.338
	0.9999
	0.3
	56.8

	69.120
	C5H8
	Isoprene
	y=56.608x-27.020
	0.9999
	0.3
	56.6

	71.039
	C4H6O
	Ethyl methyl ketone 
	y=41.965x-120.580
	0.9986
	0.6
	41.9

	73.110
	C4H8O
	Methyl vinyl ketone (MVK)
	y=66.687x-60.415
	0.9995
	0.6
	66.7

	75.080
	C3H6O2
	Hydroxyacetone
	y=16.384x-189.820
	0.8808
	1.1
	16.4

	79.110
	C6H6
	Benzene
	y=40.291x-6.916	
	0.9995
	0.3
	40.3

	87.134
	C5H10O
	2-Pentanone
	y=38.663x-65.283
	0.9993
	0.5
	38.7

	93.140
	C7H8
	Toluene
	y=53.702x-107.400
	0.9995
	0.3
	53.7

	95.111
	C6H5OH
	Phenol
	y=43.324x-399.390
	0.9463
	0.3
	43.3

	97.084
	C5H4O2
	Furfuraldehyde
	y=86.417x-660.300
	0.9783
	0.2
	86.4

	101.160
	C6H12O
	Isobutyl methyl ketone
	y=32.012x-57.300
	0.9994
	0.7
	32.0

	105.150
	C8H8
	phenylethylene
	y=62.978x-262.710
	0.9971
	0.4
	62.9

	107.165
	C8H10
	o-xylene(8CI)
	y=59.217x-176.990
	0.9979
	0.3
	59.2

	109.138
	C7H8O
	m-Cresol
	y=37.191x-412.360
	0.8984
	0.4
	37.2

	113.557
	C6H5Cl
	Chlorobenzene
	y=52.639x-157.590
	0.9988
	0.2
	52.6

	121.192
	C9H12
	1,2,4-Trimethylbenzene
	y=71.276x-425.880
	0.9905
	0.2
	71.2

	125.130
	C7H8O2
	Guaiacol
	y=56.534x-555.320
	0.9381
	0.2
	56.5

	129.174
	C10H8
	Naphthalene
	y=59.438x-492.010
	0.9639
	0.2
	59.4

	137.234
	C10H16
	Copaene(6CI)
	y=29.504x-111.690
	0.9980
	0.4
	29.5

	147.002
	C6H4Cl2
	1,3-Dichlorobenzene
	y=51.339x-318.130
	0.9894
	0.4
	51.3

	181.447
	C6H3Cl3
	1,3,5-Trichlorobenzene
	y=30.929x-290.160
	0.9425
	0.4
	30.9



Supplementary Figures

Figure S1 | LASSO-based selection of VOC predictors. 
a, LASSO coefficient profiles for the 65 COPD-associated VOC ions. Each coloured line tracks the coefficient for one ion as the regularisation parameter λ increases. b, Ten-fold cross-validation to select λ; the curve shows binomial deviance versus log(λ). The vertical dashed line marks the optimal λ (0.0151; log(λ) = −4.103), at which 16 non-zero coefficients define the diagnostic VOC fingerprint.
[image: Fig.S1-2-01]

Figure S2 | Performance of machine-learning models in training and validation sets. 
a–c, ROC curves for eight machine-learning models (XGB, RF, KNN, DT, LR, SVM, NB and LGBM) in the training, internal validation and external validation sets, respectively. d–f, Calibration curves showing agreement between predicted and observed COPD risk for each model in the same three datasets. g–i, Radar plots summarising AUC, sensitivity, specificity, PPV, NPV, accuracy and F1-score for all models. j–l, Decision-curve analysis (DCA) for the eight models in training, internal validation and external validation sets, illustrating net benefit across threshold probabilities from 0.05 to 1.00.
[image: Fig.S2-5_KNN(3)-01]

Figure S3 | Hosmer–Lemeshow calibration assessment for eight machine-learning models. 
Hosmer–Lemeshow plots for XGB (a), RF (b), KNN (c), DT (d), LR (e), SVM (f), NB (g) and LGBM (h) in training and test datasets. Each panel shows grouped predicted probabilities versus observed event rates, mean absolute error (MAE) and p value from the Hosmer–Lemeshow test; larger p values indicate better calibration.
[image: Fig.S2-2-01]
Figure S4 | Benchmarking the 16-DM model against other algorithms in MetaboAnalyst. 
ROC curves comparing the 16-compound VOC classifier to models built using MetaboAnalyst (linear SVM, PLS-DA, RF, LR) for the training set, internal validation set and external validation cohort. Performance is quantified by AUC and visualised for all algorithms on matched splits. 
[image: Fig.S3-4-KNN-Metaboanalyst自选变量-01]

Figure S5 | Global and local explanation of the diagnostic model using SHAP. 
a, SHAP summary dot plot ranking VOC ions by mean absolute SHAP value. Each dot represents one patient; colour denotes feature value (red, high; blue, low) and position along the x-axis indicates contribution to the COPD prediction. b, SHAP waterfall plot for a representative COPD patient, showing how each VOC ion shifts the base prediction towards COPD or non-COPD. Red bars indicate features increasing risk; blue bars indicate protective contributions. c, SHAP dependence plots for selected ions (for example m/z 78, 104, 124, 170, 234, 239 and 265), showing how feature values relate to SHAP values and hence to model output. 
[image: ]



Figure S6 | Distribution and discriminative power of the 16 diagnostic VOC ions. 
a, Violin plots of log₁₀-transformed signal intensities for the 16 VOC ions across non-COPD and COPD subgroups (GOLD I–IV) in Cohort 1. Black dots denote medians; dashed lines indicate the 25th and 75th percentiles. P values are from two-sided Kruskal–Wallis tests. b,c, AUCs for individual VOC ions and for the combined 16-ion panel in the internal validation set (b) and external validation cohort (c). Single ions have AUCs <0.79, whereas the combined 16-ion model approaches or exceeds AUC 0.95 internally and performs well externally.
[image: Fig.5-2_KNN-01]


Study protocol and additional methods
1. Trial summary
Study type. Prospective, observational, double-centre case–control study.
Medical context. Diagnosis and staging of chronic obstructive pulmonary disease (COPD) using exhaled-breath VOC profiles and machine learning.
Study population. Adults aged 40–80 years with spirometry-confirmed COPD or non-COPD controls recruited from two campuses (“new” and “east”) of the Second Affiliated Hospital of Hengyang Medical School, University of South China.
Centres. Two campuses of a single tertiary institution: the Second Affiliated Hospital of the University of South China (new and east campuses).
Procedures. Eligible participants were consecutively enrolled. For each participant, clinical data and exhaled-breath samples were collected. VOC ions were measured by PTR–ToF–MS. Based on these VOC features and standardised clinical prediction model procedures, multiple machine-learning models were developed and internally and externally validated. The SHapley Additive exPlanations (SHAP) method was used to rank feature importance and interpret the final model.
Sample size. In total, 825 participants were analysed (planned ≈830): 660 in the derivation cohort (Cohort 1) and 165 in the external validation cohort (Cohort 2).
Outcomes.
· Primary outcome: AUC for COPD prediction.
· Secondary outcomes: sensitivity, specificity, PPV, NPV, accuracy, F1-score, calibration metrics and net benefit from DCA.

2. Study design
This double-centre, prospective clinical study aimed to develop and validate interpretable machine-learning models for predicting COPD status and grading disease severity using exhaled-breath VOC fingerprints.
Participants were recruited between March 2022 and December 2024 from the new and east campuses of the Second Affiliated Hospital of the University of South China. All participants underwent pre- and post-bronchodilator spirometry performed by certified personnel following the GOLD 2025 report. COPD was defined as a post-bronchodilator FEV₁/FVC ratio below the lower limit of normal (fifth percentile). Participants with ≥12% and ≥200 mL improvement in FEV₁ after bronchodilator who still had FEV₁/FVC below the lower limit of normal were also classified as COPD. Two senior physicians independently adjudicated COPD status and GOLD stage while blinded to breath data; disagreements were resolved by a third physician.
Cohort 1 (N₁ = 660; derivation cohort) was obtained from the new campus and used for model development and internal validation. Cohort 2 (N₂ = 165; external cohort) was obtained from the east campus and used solely for external validation.
Trial diagram:
[image: Supplemen_路线图]

3. Study objectives and hypotheses
Primary objective.
To evaluate the AUC of multiple machine-learning models in discriminating COPD from non-COPD using exhaled-breath VOC ions.
Hypothesis H1: at least one model will achieve AUC > 0.80 for COPD prediction.
Secondary objectives.
To compare performance metrics (AUC, sensitivity, specificity, PPV, NPV, accuracy, F1-score, calibration and net benefit) across different machine-learning models in training, internal validation and external validation datasets.
Hypothesis H2: the k-nearest neighbours (KNN) model will provide superior overall performance in both training and validation datasets.
To evaluate specificity, sensitivity, PPV and NPV of each model at clinically relevant thresholds.
To build and validate an interpretable model for GOLD I–IV severity grading among COPD patients using VOC ions.

4. Background and rationale
COPD is a leading cause of death worldwide, with rising prevalence driven by ageing populations and continued exposure to tobacco smoke and air pollution (Adeloye et al. 2022; Global Initiative for Chronic Obstructive Lung Disease. 2025). A substantial proportion of cases (up to 70%) remain undiagnosed until persistent airflow limitation is present (Lamprecht et al. 2015; Labonté et al. 2016; Diab et al. 2018; Aaron et al. 2024), leaving a substantial window in which timely intervention could attenuate future acute care for exacerbations and reduce societal and economic burden (Rennard and Drummond 2015; Koo et al. 2020; Huynh et al. 2022). 
Existing case-finding strategies rely heavily on spirometry, which, although indispensable for diagnosis and staging, requires equipment, trained personnel and patient cooperation, and is not easily deployed at population scale or in primary care.
Blood- and sputum-based biomarker studies have identified numerous candidates, but none has entered routine practice, partly because COPD is pathophysiologically heterogeneous and spans multiple inflammatory endotypes and environmental exposures. There is a need for more comprehensive, scalable prediction models that capture disease-related signal beyond single circulating markers.
Exhaled breath is an attractive matrix for such models: VOCs reflect systemic metabolism, oxidative stress and host–microbiome interactions and can be measured non-invasively in real time. This study prospectively developed and validated VOC-based machine-learning models, with explicit internal and external validation and interpretable explanations, to support earlier COPD case-finding and severity grading.
5. Eligibility criteria
Inclusion criteria
(1) Age 40-80 years; 
(2) For COPD cases: diagnosis consistent with GOLD 2025 criteria (Global Initiative for Chronic Obstructive Lung Disease. 2025) based on post-bronchodilator spirometry.; 
(3) For non-COPD controls: no diagnosis of chronic respiratory disease and normal spirometry.
(4) Provision of written informed consent.
Exclusion criteria
(1) Refusal to participate.
(2) Life-threatening comorbid illness.
(3) Other respiratory diseases, including lung cancer, active tuberculosis, pulmonary infections or bronchial asthma.
(4) Missing or invalid pulmonary function test data.
6. Data collection and identifiers
Demographic and clinical variables were extracted from electronic medical records at the time of recruitment. These included age, sex, height, weight (for BMI calculation), smoking status, pre- and post-bronchodilator FEV₁, FVC, FEV₁/FVC, and GOLD stage (I–IV) according to the GOLD 2025 report.
Each participant was assigned a unique study ID (0001–0830) used throughout breath sampling, PTR–ToF–MS analysis and data processing, ensuring that all data remained de-identified in analysis datasets. Baseline characteristics are summarised in the main-text Table 1.
7. Variables and outcomes
7.1 Variables
Demographic variables
age, sex, smoking, height, weight, and BMI
Clinical Variables
Pre- and Post-bronchodilator FEV1, FVC, FEV1/FVC; GOLD stage (I–IV).
Breathomics variables
1) Full VOC matrix: 500 m/z channels (20–440) from PTR–ToF–MS.
2) Feature sets used for modelling:
65 COPD-associated VOC ions (univariate screening).
16 ions comprising the diagnostic fingerprint (16-DM).
11 ions comprising the severity fingerprint (11-CM).

7.2 Outcomes and evaluation metrics
The primary outcome was COPD status (COPD vs non-COPD). Secondary outcomes included GOLD I–IV stage among COPD patients.
Quantitative performance metrics were defined as follows:
· ROC curve and AUC. ROC curves plot sensitivity (true positive rate) versus 1–specificity (false positive rate) across classification thresholds. The AUC summarises discrimination; AUC = 0.5 indicates no discrimination, AUC = 1.0 indicates perfect discrimination.
· Sensitivity (true positive rate). TP/(TP+FN); proportion of COPD cases correctly classified as COPD.
· Specificity (true negative rate). TN/(TN+FP); proportion of non-COPD controls correctly classified as non-COPD.
· PPV and NPV. PPV = TP/(TP+FP); NPV = TN/(TN+FN); probabilities that positive and negative predictions are correct.
· Accuracy. (TP+TN)/(TP+TN+FP+FN); overall proportion correctly classified.
· F1-score. Harmonic mean of precision and recall, useful for imbalanced datasets.
· Brier score. Mean squared difference between predicted probabilities and observed outcomes; lower values indicate better calibration.
8. Data preprocessing and feature selection
We used a standardised pipeline to preprocess VOC data and select features, applied separately within derivation and validation sets to avoid information leakage.
Preprocessing steps
1. Detection filtering (80% rule). For each m/z, we evaluated the proportion of samples with detectable signal in each group. VOC ions detected in <80% of samples in either group were removed, leaving 226 robust ions.
2. Handling non-detects. For retained ions, occasional non-detects (<20%) were imputed at 50% of the method detection limit (MDL).
3. Outlier handling. Outliers for continuous variables were identified using the 1.5×IQR rule and truncated to the corresponding lower or upper cut-off, bringing them closer to the main distribution while preserving rank.
4. Univariate screening. In the derivation cohort, univariate logistic regression (COPD vs non-COPD) was performed for each ion; 65 ions with P < 0.05 were retained as candidate features.
Feature selection
Least absolute shrinkage and selection operator (LASSO) logistic regression with ten-fold cross-validation was used to derive sparse VOC panels:
· A 16-ion diagnostic panel (16-DM) associated with COPD risk.
· An 11-ion panel (11-CM) associated with GOLD stage among COPD cases.
The regularisation parameter λ was chosen by minimising cross-validated deviance.
9. Model selection, training and evaluation
9.1 Model families
We pre-specified eight commonly used machine-learning algorithms spanning linear, tree-based, distance-based and ensemble methods:
· Logistic regression (LR)
· Decision tree (DT)
· Random forest (RF)
· k-nearest neighbours (KNN)
· Support vector machine (SVM)
· Naïve Bayes (NB)
· XGBoost (XGB)
· LightGBM (LGBM)
9.2 Training and hyperparameter tuning
Models were trained using the 16-DM fingerprint in Cohort 1. Hyperparameters were tuned using grid search with cross-validation (typically ten-fold) implemented in the caret ecosystem. Briefly:
· LR: regularisation parameters (L1/L2) tuned.
· DT: maximum depth and minimum split size tuned to reduce overfitting.
· RF: number of trees, maximum depth and split criteria tuned.
· KNN: number of neighbours and distance metric (e.g. Euclidean, Manhattan) tuned.
· SVM: penalty parameter C and kernel type (linear, RBF) tuned.
· NB: distributional assumptions (e.g. Gaussian vs Bernoulli) chosen from data.
· XGB & LGBM: learning rate, maximum depth, subsampling ratios and other tree and leaf parameters tuned to optimise generalisation.
9.3 Evaluation metrics and model comparison
Primary and secondary metrics (AUC, sensitivity, specificity, PPV, NPV, accuracy, F1-score, Brier score) were calculated as defined above. Calibration was assessed with calibration curves and the Hosmer–Lemeshow test. DeLong’s test was used to compare AUCs between models. Decision-curve analysis (DCA) was performed to quantify net benefit relative to “treat all” and “treat none” strategies across threshold probabilities from 0.05 to 1.00.
Models were first evaluated in the internal hold-out set (Cohort 1). The best-performing diagnostic model (KNN with the 16-DM fingerprint) was then frozen and applied unchanged to the external Cohort 2 to assess generalisability. We also repeated analyses after adding age, sex, BMI and smoking to quantify the incremental value of clinical covariates, and benchmarked the 16-DM models against standard MetaboAnalyst workflows (linear SVM, PLS-DA, RF, LR).

10. Model interpretation (SHAP)
To improve transparency and interpretability, we applied SHapley Additive exPlanations (SHAP) to the locked diagnostic model. SHAP values decompose each prediction into additive feature contributions based on game-theoretic Shapley values.
· Global interpretation. We calculated mean absolute SHAP values to obtain global feature rankings, identifying the VOC ions that most strongly influenced COPD predictions across the cohort.
· Local interpretation. We computed SHAP values for each patient to show how individual VOC profiles shifted the predicted probability towards COPD or non-COPD. These were visualised using summary plots, dependence plots and waterfall plots, highlighting how lower or higher intensities at specific m/z values drove each prediction.

11. Sample size justification and timeline
11.1 Sample size calculation
Sample size was guided by power calculations for AUC. Assuming improvement from AUC 0.60 (null) to AUC 0.80 (alternative), two-sided α = 0.05 and 85% power, a total of approximately 825 participants, with 660 in the derivation cohort and 165 in the external validation cohort, was deemed sufficient to:
· support feature selection and model fitting with adequate events per variable, and
· estimate AUC and other performance metrics in the external cohort with reasonable precision.
11.2 Rationale for sample size
The chosen sample size:
· ensures that the derivation cohort (660 participants, 393 COPD and 267 non-COPD) is large enough for robust model development and hyperparameter optimisation, reducing overfitting;
· provides an independent external cohort (165 participants, 97 COPD and 68 non-COPD) sufficient to characterise model generalisation and estimate performance metrics (including AUC, sensitivity and specificity).
11.3 Timeline
September 2022 – September 2024: Recruitment, spirometry and breath sampling at both campuses; extraction of clinical variables.
November 2024 – June 2025: Data preprocessing, feature selection, model development, internal and external validation, SHAP analysis and manuscript preparation.

12. Confidentiality and data sharing
All data generated during the study were treated as confidential and stored under unique study IDs. Identifiable information was retained only at the clinical sites and was not included in analysis files.
De-identified participant data (clinical variables and VOC matrices), along with the full study protocol, will be made available to the scientific community after publication on reasonable request to the corresponding author, subject to a data-use agreement and, where applicable, institutional review board approval.
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