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Appendix

Analysis of Dispersion Relations in GST-Based Elliptical Waveguide Optical Switches

The optical behavior of the proposed elliptical waveguide [30] switch is analyzed in elliptic cylindrical coordinates (ξ, η, z), where the Helmholtz equations govern longitudinal fields  and :
	
	 
	(1)


Mathieu functions (cen, sen, Cen, Sen​) naturally arise as solutions to the Helmholtz equation in elliptical cylindrical coordinates, allowing accurate modeling of field behavior within elliptical boundaries, with boundary conditions enforcing continuity of tangential fields (Ez, Eη, Hz, Hη​) at four interfaces (​). Simplifying the solution of Maxwell’s equations under anisotropic boundary, where ξ and η represent the radial and angular coordinates, respectively, and z denotes the propagation axis. The dispersion relations governing the proposed elliptical cylindrical waveguide optical switch are derived from solutions to Maxwell’s equations in elliptical cylindrical coordinates. This framework accounts for the anisotropic geometry (major/minor axis ratio a/b = 1.5) and GST’s phase-dependent permittivity. Modal propagation constants (β) are computed using Mathieu functions for HE modes, revealing distinct phase-matching conditions between GST phases. There are two non-degenerate modes named dominant modes that do not have a definite frequency [30]. At the Helmholtz equations, the electric (E) and magnetic (H) field distributions are as follows;
	
	i = 1, …, 5
	(2)


Here, i = 1, 2, 3, 4, 5 refer to inner Si, GST, outer Si, Au, and SiO2 layers in order. Within a layered medium, where  represents the free-space wavenumber, λ denotes the free-space wavelength, and nj signifies the refractive index of each respective layer, the electromagnetic field components of propagating optical waves can be mathematically described within the cylindrical coordinate system. The harmonic  exhibits temporal dependence for all components of the field. We constrain our analysis to forward-propagating modes along the z-axis. In the complex representation, these assumptions result in the multiplication of all wave functions by . The boundary conditions must be used to determine the propagation constant . The longitudinal components of electric and magnetic fields across all layers are expressed as follows:
	
	(3)


In each layer of the cylindrical waveguide structure, the Helmholtz equation governs the longitudinal field components (Ez and Hz). ω is the angular frequency in elliptic coordinates.
	
	(4)


Here, k represents the transverse wave number, and γ is a dimensionless geometric parameter, utilizing the elliptical shape of the structure and the separation of variables method 
	
	(5)


In which .  The axial fields (Ez, Hz) can be used to derive all elements of the transverse fields
	
	(6a)

	
	(6b)

	
	(6c)

	
	(6d)

	
	(7)


that  could represent either Hz or Ez. To find solutions for equation (7), it is necessary to establish a set with   where  is the Semi-focal distance.
	
	(8)

	
	(8a)

	
	(8b)


is the Radial component, the Angular component, and c is the separation constant. The even and odd radial mathematical functions are represented by , , , and where n is an integer denoting the function's order. Mathieu's even and odd angular functions are symbolized by  and  respectively [29]. The axial components of fields are fully expressed in elliptic cylindrical coordinates as follows. 
	
	(9)


In the case of permissible single-valued electromagnetic fields, the function  must be defined periodic function in η, with a period of either π or 2π. The separation constant c, which is dependent on . When  equals 0, two distinct periodic solutions exist: sin () and cos (), with a separation constant of  (n being an integer). Research demonstrates that for a specific non-zero value of , only one periodic solution emerges, which is either even or odd [30]. The characteristic constant c that η yields even and odd solutions is represented by () and (), respectively. The variable n defines a group of unique functions that converge to as  approaches zero. According to the Sturmian theory of second-order linear differential equations, solutions are associated with () and (). The even and odd modes are decoupled by retaining only (even modes) or  (odd modes) in the series expansions. The even HE11​ mode is governed by  and , while the odd HE11​ mode uses  and . For arbitrary positive real values ​​of , to be finite, the fields, the , , at the center and, and , at the outer layer are discarded. The Mathieu's equation yields the following periodic solutions multiple .
	
	(10a)

	
	(10b)

	
	(10c)
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	(11e)

	
	(11f)

	
	(12a)

	
	(12b)

	
	(12c)

	
	(12d)

	
	(12e)

	
	(12f)


The i subscript in 12a to 12f formula is refer to layer 2 (GST) and 3 (Si-outer) and 13a to 13f to layers 4 and 5, which include the metallic cladding (Au), evanescent field behavior is captured using modified Mathieu functions of the second kind  (, ), ensuring physically meaningful solutions that vanish as ξ → ∞.  Transverse Fields derived similarly to previous layers, ensuring fields approach zero at the boundary of the cladding. To obtain finite and unique solutions satisfying Maxwell’s equations, the boundary conditions enforce the continuity of the tangential electric and magnetic field components at each interface. Additionally, the radiation condition applies at the outer boundary (ξ → ∞). For the outer layer, the radiation condition is also necessary. Normal fields () are governed by material permittivity/permeability discontinuities (no surface charges at the surface), so matching at the boundaries is not necessary. The dispersion relation of the proposed optical switch and the coefficients   and  are obtained from boundary conditions at the four interfaces  .
These equations create a system of linear equations for the coefficients , ,… Below are the explicit boundary conditions for all four interfaces between layers 1–5 for continuity of HZ and Eη.
	
	

	(13a)

	
	
	(13b)

	
	
	(13c)

	
	
	(13d)


To derive the dispersion relation for your 5-layer elliptical waveguide optical switch, to evaluate Mathieu function MATLAB is used to compute functions then the boundary condition equations for the field coefficients . Here, n is a dummy index used in the series expansion of fields and spans all possible modes representing the infinite set of solutions to Mathieu’s equations. The even mode is the fundamental mode in elliptical waveguides. It has no azimuthal variation, and is symmetric about the major/minor axes; only even modes  are included. All odd-mode coefficients  are excluded since odd modes start at . For each interface, we have the matrix equation:
	
	(14a)

	
	(14b)

	det (M)=0
	(14c)


Where  is the field matrix for layer i and  is the coefficient vector of at . Equation 14b is the explicit breakdown of the submatrices ​, ​, ​, and ​ for the layered optical switch. Each submatrix corresponds to boundary conditions at a specific interface, with rows and columns mapped to the coefficients of adjacent layers. Det (M.C) is solved by using iterative methods to find . For the fundamental mode n=0, propagation constant β = (1.459e+07 + j0.000e+00) rad/m is obtained from MATLAB.  With β determined, all field coefficients can be expressed relative to a single reference coefficient by employing equations. By utilizing the derived values of β, the complete 2D field profiles for 𝐻𝑧, 𝐸𝜉, and 𝐸𝜂 can be evaluated across the elliptical waveguide cross-section. These profiles highlight the polarization-dependent confinement enabled by the elliptical geometry, allowing for enhanced mode control and improved light-matter interaction compared to cylindrical counterparts. COMSOL simulations validated fabrication tolerances, showing < 3% variation in ​ under ± 10 nm axis deviations. For practical purposes, the device operates in a dominantly single-mode regime (HE01​ and HE11​), and the elliptical geometry suppresses higher-order modes (HE21​, HE31​) by > 30 dB, ensuring single-mode operation.


Methods
The optical and optoelectronic characteristics of the proposed elliptical switch are systematically investigated through advanced numerical modeling techniques. A computational framework is implemented, combining 2D/3D finite-element method (FEM) and 3D finite-difference time-domain (FDTD) simulations to resolve the device’s electromagnetic and Multiphysics behavior. The optical and electro-thermal behavior of the proposed phase-change elliptical switch was analyzed using a hybrid computational framework combining finite-element method (FEM) and finite-difference time-domain (FDTD) simulations. Modal characteristics were resolved via 2D FEM eigenfrequency studies in COMSOL Multiphysics, employing perfect electric conductor (PEC) boundary conditions and a physics-controlled tetrahedral mesh refined adaptively near the waveguide core (450 nm × 250 nm cross-section) to ensure convergence of the fundamental quasi-HE01​ mode effective index (​). Material dispersion for silica and Ge2​Sb2​Te5​ layers was modeled using Sellmeier and temperature-dependent Lorentz-Drude equations, respectively. Propagation dynamics were simulated in 2D FDTD (Lumerical Solutions) with adaptive mesh refinement (λ/20 resolution) and 8-cell polynomial-graded perfectly matched layers (PMLs), achieving < −60 dB reflections at 1550 nm. Analytical validation for the HE01​ mode derived Helmholtz equation solutions under weak guidance, showing < 0.8%discrepancy in  against FEM results. Electro-thermal switching dynamics were modeled by coupling charge transport and heat transfer physics in 2D FEM. Governing equations included the charge continuity equation and Fourier heat transfer, with thermally insulated sidewalls and fixed-temperature electrodes (T = 300 K). Phase transitions in Ge2​Sb2​Te5​ were simulated via Arrhenius kinetics Phase transitions follow , with and , while temperature-dependent σ(T) and k(T) were extracted from literature. Parametric sweeps (pulse width: 10–200 ns) were automated via MATLAB-COMSOL, ensuring computational reproducibility.

