Supplementary Materials

Evidence for resource transfer via common endophyte networks

Philipp Waschk^{1,*}, Philipp Spiegel¹, Arthur Gessler^{2,3}, Matthias Sauer², Beatrice M. Bock^{4,5},
 Wolfgang Hinterdobler⁶, Mark A. Anthony^{1,*}

6 7

8 9

1 2

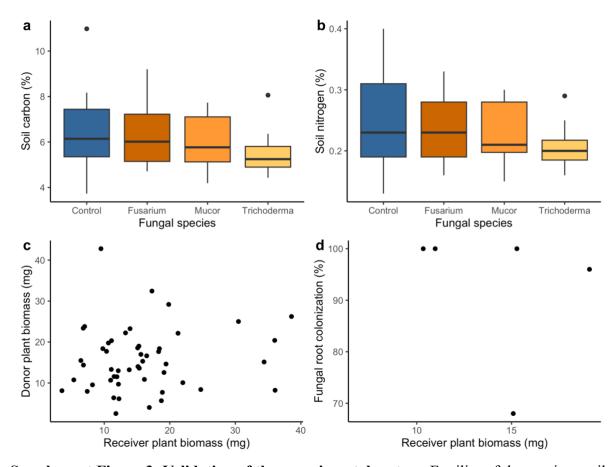
- ¹ Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- ² Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), Birmensdorf, Switzerland
- Switzerland
 Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
- ⁴ Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- ⁵ Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ,
 USA
 - ⁶ MyPilz GmbH, Vienna, Austria
- *Correspondence should be addressed to these authors: Mark A. Anthony
 - (mark.anthony@univie.ac.at), Philipp Waschk (philippwaschk@gmail.com)

18 19

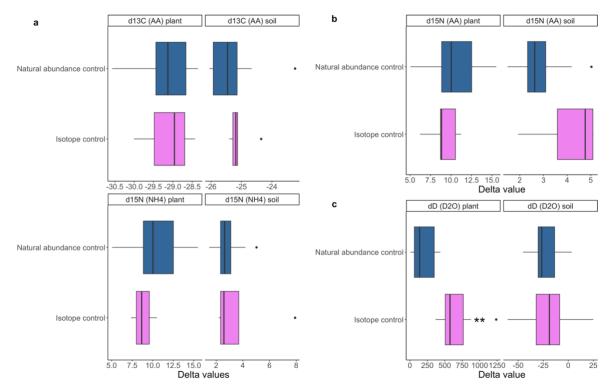
17

15

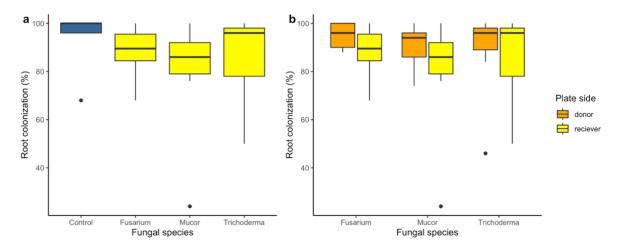
20 21


22

Supplement Figure 1: Pictures of the inoculated plates. Images were taken right before sampling. Inoculation with *F. temperatum* (a), *Mucor hiemalis* (b) and *T. viride* (c).



23 24


Supplement Figure 2: Pictures of the overgrowth of the internal barriers by *Mucor hiemalis*.

Supplement Figure 3: Validation of the experimental system. Fertility of the receiver soils as total carbon and nitrogen (\mathbf{a}, \mathbf{b}) . Correlation of the biomasses of the donor and receiver plant $(p = 0.43, R = 0.11)(\mathbf{c})$. Correlation of fungal root colonization and plant biomass of only control treatments $(p = 0.7, R = -0.25)(\mathbf{d})$.

Supplement Figure 4: Comparison of isotope and natural abundance controls. Comparison of isotope and natural abundance controls of the control plates where 13 C was added as amino acids and 15 N as ammonium (a). Comparison of isotope and natural abundance controls of the control plates where 15 N was added as amino acids (b). Comparison of isotope and natural abundance controls of the control plates where deuterium was added as D_2 O showing significantly more δD in the isotope control compared to the natural abundance control (p = 0.0007) (c). (** means p \le 0.01).

Supplement Figure 5: Fungal root colonization. Comparison of fungal root colonization of receiver plants to the natural abundance control by endophyte species (a). Comparison of fungal root colonization of receiver and donor plants by endophyte species (b).

Supplement Table 1: Statistical values (Correlations, t-tests). Table of correlations and t-tests showing comparison references and corresponding p-values and R-values (blue means p ≤ 0.05 ; violet means p ≤ 0.01).

Statistical method	Comparison reference 1	Comparison reference 2	р	R
Pearson correlation	Donor plant	Receiver plant	0.4326	0.1134861
Pearson correlation	Fungal root colonization of reciever plants (only control)	Plant biomass	0.6878	-0.2477715
Pearson correlation	Fungal root colonization of reciever plants (only fungal inoculations)	Plant biomass	0.01106	0.5091308
One-sided Welch's t-test	Plant biomass (Fusarium temperatum)	Plant biomass (Natural abundance control)	0.01387	
One-sided Welch's t-test	Plant biomass (Trichoderma viride)	Plant biomass (Natural abundance control)	0.07448	
One-sided Student's t-test	Total nitrogen content (Mucor hiemalis) in plants (plates with receiver plants)	Total nitrogen content (Natural abundance control) in plants (plates with receiver plants)	0.001003	
Two-sided Student's t-test	∂D(D ₂ O) (Natural abundance control) in plants (plates with receiver plants)	$\partial D(D_2O)$ (isotope control) in plants (plates with receiver plants)	0.0006808	
One-sided Student's t-test	ð ¹³ C(AA) (<i>Mucor hiemalis</i>) in soils (plates without receiver plants)	ð ¹³ C(AA) (Natural abundance control) in soils (plates with receiver plants)	0.05391	
One-sided Welch's t-test	∂D(D ₂ O) (<i>Trichoderma viride</i>) in plants (plates without receiver plants)	∂D(D ₂ O) (Natural abundance control) in plants (plates with receiver plants)	0.04365	
One-sided Student's t-test	ð ¹³ C(AA) (<i>Trichoderma viride</i>) in plants (plates with receiver plants)	ð ¹³ C(AA) (Natural abundance control) in plants (plates with receiver plants)	0.04962	
One-sided Student's t-test	ð ¹⁵ N(AA) (<i>Fusarium temperatum</i>) in plants (plates with receiver plants)	ð ¹⁵ N(AA) (Natural abundance control) in plants (plates with receiver plants)	0.01683	
One-sided Student's t-test	ð ¹⁵ N(AA) (<i>Fusarium temperatum</i>) in soils (plates with receiver plants)	ð ¹⁵ N(AA) (Natural abundance control) in soils (plates with receiver plants)	0.001306	
One-sided Student's t-test	ð ¹⁵ N(AA) (<i>Mucor hiemalis</i>) in soils (plates with receiver plants)	ð ¹⁵ N(AA) (Natural abundance control) in soils (plates with receiver plants)	0.006907	
One-sided Student's t-test	∂D(D ₂ O) (<i>Fusarium temperatum</i>) in soils (plates with receiver plants)	∂D(D₂O) (Natural abundance control) in soils (plates with receiver plants)	0.00001287	
One-sided Welch's t-test	$\partial D(D_2O)$ (Mucor hiemalis) in soils (plates with receiver plants)	$\partial D(D_2O)$ (Natural abundance control) in soils (plates with receiver plants)	0.04282	
One-sided Welch's t-test	$\partial D(D_2O)$ (Fusarium temperatum) in plants (plates with receiver plants)	$\partial D(D_2O)$ (Natural abundance control) in plants (plates with receiver plants)	0.002062	
One-sided Welch's t-test	$\partial D(D_2O)$ (Mucor hiemalis) in plants (plates with receiver plants)	$\partial D(D_2O)$ (Natural abundance control) in plants (plates with receiver plants)	0.001896	
One-sided Welch's t-test	∂D(D ₂ O) (<i>Trichoderma viride</i>) in plants (plates with receiver plants)	∂D(D ₂ O) (Natural abundance control) in plants (plates with receiver plants)	0.01153	

 Supplement Table 2: Statistical values (ANOVAs). Table of ANOVAs and Kruskal-Wallis rank sum tests showing the data that has been tested for fungal species effects compared to the natural abundance control and corresponding p-values (blue means $p \le 0.05$; violet means $p \le 0.01$).

Statistical method	Data	Comparison	р
ANOVA	∂D in soils (plates without receiver plants)	Fungal species	0.0266
Kruskal-Wallis rank sum test	∂D in soils (plates without receiver plants)	Fungal species	0.0485
ANOVA	Total plant nitrogen	Fungal species	0.001038
ANOVA	∂^{13} C(AA) in plants (plates with receiver plants)	Fungal species	0.05292
ANOVA	∂^{15} N(AA) in soils (plates with receiver plants)	Fungal species	0.01
ANOVA	$\partial D(D_2O)$ in plants (plates with receiver plants)	Fungal species	0.02039
ANOVA	$\partial D(D_2O)$ in soils (plates with receiver plants)	Fungal species	0.0004977
Kruskal-Wallis rank sum test	$\partial D(D_2O)$ in soils (plates with receiver plants)	Fungal species	0.0001153