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Supplemental Figure S1. Sequence alignment of human Kv3 family members Kv3.1-Kv3.4, Shaw2 (a
Kv3 orthologue from d. melanogaster) and other representative channels from human Kv1-4
subfamilies.

The sequences were aligned with MUSCLE and presented with BOXSHADE. Grey shaded regions indicate
areas of high sequence conservation, invariant amino acids are shaded in black. Secondary structure
elements are color-coded as in the main figures of the manuscript. Star symbols indicate residues mutated
for electrophysiological characterization in this study. The uniprot IDs for the aligned sequences are:
hKv3.1a: P48547, hKv3.1b: P48547-2, hKv3.1: Q96PR1, hKv3.3: Q14003, hKv3.4:Q03721, dShaw2:
P17972,hKv1.2: P16389, hKv2.1: Q14721, hKv4.1: QONSA2.



KCNC1 (Apo)

KCNC1 with EDTA

KCNC1 with ZnCl2

Data collection

Microscope Titan Krios (MRCEF, UK) Titan Krios (CNC, UK) Titan Krios, (ESRF, UK)
Detector K3 K3 K3
Voltage (kV) 300 300 300
Magnification 105,000 105,000 105,000
Collection mode Counting (superresolution) Counting (superresolution) Counting (superresolution)
Electron exposure (e/A%) 40 47.6 47.6
Number of frames 45 40 40
Pixel size 0.42 0.42 0.42
Defocus range (um; steps) -1.0t0-2.6 (0.2) -0.6t0-2.4(0.2) -0.6t0-2.4(0.2)
Number of movies 4,043 7,274 5,010
Phase plate used No No No
Data processing Consensus Subclass 1 Subclass 2 Monomer Dimer
Initial Number of particles 1,539,146 3,177,434 2,672,854
Number of p.allfticlles after 58,244 217,788 263,026
2D classification
Symmetry Cca ca C1 C1 c4 ca
Number of particles used 49,327 217,788 110,585 93,461 133,488 72,764
for 3D refinement
__ Map resolution 32 3.2 3.6 36 3.1 3.1
(A; FSC threshold = 0.143)
Resolution range (A) 2.7-9.3 26-6.4 3.0-8.7 3.5 -84 2.7-8.0 2.6-95
Map Sharp(e;;)ng B-factor -134.4 -164.3 -135.0 -102 -153.2 -108.4
Refinement
. Model resolution 35 34 34 33
(A; FSC threshold = 0.5)
Model composition
Non-hydrogen atoms 12,720 12,604 12,708 25,404
Protein residues 1584 1564 1,572 3140
Ligands 16 16 16 32
R.M.S.D
Bond lengths (A) 0.007 0.007 0.003 0.004
Bond angles (°) 0.700 0.672 0.494 0.530
Validation
Molprobity score 1.61 1.57 1.64 1.70
Clash score 7.68 6.46 7.79 5.89
Rotamer outliers 0.96 0.96 0.00 2.53
Ramachandran plot
Favoured (%) 0.00 0.00 0.00 0.00
Allowed (%) 3.09 3.33 3.38 2.34
Disallowed (%) 96.91 96.67 96.62 97.66
EMDB Code EMD-13416 EMD-13419 EMD-13417 EMD-13418
PDB Code 7PHH 7PHL 7PHI 7PHK

Supplemental Table 1. Cryo-EM data collection and processing parameters and model refinement

statistics for Kv3.1a datasets collected under apo, Zn*"-free and Zn**-containing conditions.




A 4,043 Movies

o)
"
8

Absorbance (mAu)
(2] o
o o

l Particle Picking

1,539,146 particles 30
I 2D Classification ’ ® Retention Volume (m) “
58,244 particles

' Ab-initio Model

Do &

Heterogeneous
Refinement

...
L
# of images

Elevation
©

49,327(45 R) 8,917 (9.5 A)

I Non-uniform Refinement

-2 100

—— No Mask (3.64)
~—— Spherical (3.54)
—— Loose (3.34)
— Tight (3.14)
—— Corrected (3.24)

0.8

0.6

0.4 4

0.2 1

0.0 T M

OC 1A 714 47A 354 284 244 24 18A

3.5A (1) 3.2 A (C4)

Supplemental Figure S2. Purification and cryo-EM analysis of Kv3.1a under apo conditions.

(A) Flowchart for EM data processing and maps for color-coded local resolution estimation after processing with
C1and C4 symmetry, respectively.

(B) A representative size-exclusion chromatography profile and characteristic band pattern on SDS PAGE.
Multiple bands are due to complex N-linked glycosylation at N220 and N229.

(C)Arepresentative electron micrograph illustrating particle distribution of Kv3.1a.
(D) Representative 2-dimensional class averages from the electron micrographs.
(E)Angular distribution of particles included in the final reconstructions.

(F) FSC curves of the refined model for processing with different masks.
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Supplemental Figure S3. Cryo-EM data processing of Kv3.1a in presence of EDTA or ZnCl,.

(A) Flowchart for EM data processing including 3D variability analysis and maps for color-coded local
resolution estimation after processing with C1 and C4 symmetry for a dataset obtained in presence of 1 mM
EDTA.

(B) Flowchart for EM data processing and maps for color-coded local resolution estimation after processing
with C4 symmetry for a dataset collected in presence of 400 uM ZnCl,.
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Supplemental Figure S4. EM density maps for representative segments in the Kv3.1a channel.

(A) EM density map for the lipid at site Il (near PH helix/ turret)

(B) EM density map for the lipid at site | (near S4 and S4/S5L)

(C) EM density map for the S4 helix in the voltage-sensing domain (VSD)

(D) EM density map for the selectivity filter with coordinated K+ ions

(E) EM density maps for the a6 helix in the cytoplasmic T1 domain

(F) EM density maps for the turret domain

(G) EM density maps for the Zn” binding motifin the T1 domain

(H-1) EM density maps for the axonal targeting motif (ATM) and C-terminal extension for a particle subclass
showing extra densities for two chains of the tetramer.



T231 A*ﬁ Q232H
R228HYY A R234H

Y236H A

\ )

Ea

R171C S185L

==\

o
,) LV
S\ W94C ‘*‘W-ﬁ L

[/

9 L

SATANIC

Supplemental Figure S5. Detailed mapping of disease mutations in the human KCNC17 gene linked
to EPM7 and related epileptic encephalopathies.

Variants of the human KCNC1 gene associated with the autosomal dominant disorder EPM7 (progressive
myoclonic eplilepsy-7) listed at www.malacards.org were mapped onto the structure of the Kv3.1a tetramer,
represented as grey cartoon. A single protomer is coloured in light green to highlight mutations located at
intersubunit interfaces. Red star symbols indicate mutations which have been characterized extensively in
the literature and the epileptic phenotype of the variant has been confirmed. Mutations labeled with orange
star symbols are annotated to be “likely pathogenic”. Yellow star symbols indicate amino acid positions of
mutations with “uncertain significance” according to the variant database.
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Supplemental Figure S6. Comparison of the T1 domain structure in Kv3.1a with T1 domains of
representative members from the Kv1 and Kv4 subfamilies

(A) Superposition of the T1 domain from the Kv3.1a structure in presence of Zn (dark blue ) with the T1
domain from the Kv1.3/B2.1 structure (green, pdb: 7EJI), highlighting a clash of the Kv3.1 a3 helix with
helix h6 of the B-subunit.

(B) Superposition of the T1 domain of Kv3.1a (dark blue) with the T1 domains of Kv1.2-2.1 (yellow, pdb:
6EBK) and Kv1.3 (green, pdb: 7EJ1) showing how S6T extensions in Kv1.3 would clash with an a6
helical arrangement similar to Kv3.1a.

(C) Superposition of the T1 domains of Kv3.1a (grey) with the T1 domain of Kv1.2-2.1 (green, pdb:
6EBK) and the structures of the isolated T1 domains from Kv4.2 (orange, pdb: 1NN7) and Kv4.3 (yellow,
pdb: 1S1G).

(D) close-up view of the a6 helix of Kv3.1 (dark blue) superposed with T1 structures of Kv4.2 (yellow,
pdb: 1NN7) and Kv4.3 (grey, pdb: 1S1G)
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Supplemental Figure S7. C-terminal extension beyond the axonal targeting motif (ATM) interacts
with two neighboring chains of the T1 domain.

(A) Close-up view of the T1 domain from the Kv3.1a with chains from different subunits shown as green,
yellow, blue and grey cartoon. Residues 452-472 of the C-terminus from chain A are shown in stick
representation. Residues 452-463 shown in bright red and residues 464-472 shown in dark red.

(B) Inset from A, showing intra-subunit interactions between residues of the C-terminal extension (residues
464-472, shownin dark red) and residues in the a2 and a3 helices (yellow cartoon) of the T1 domain.

-—
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Model Confidence:

Il Very high (pLDDT > 90)

1 Confident (90 > pLDDT > 70)
Low (70 > pLDDT > 50)

I Very low (pLDDT < 50)
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Supplemental Figure S8. Comparison of the Kv3.1a cryo-EM structure to model predicted by
AlphaFold2 shows differences in the arrangement of S4 and the S4/S5 linker.

(A) Superposition of the protomer structure of human Kv3.1a predicted by AlphaFold2 (blue cartoon, taken
from: alphafold.ebi.ac.uk/entry/P48547) onto 1 chain from the cryo-EM structure of Kv3.1a (yellow cartoon).
The rest of the Kv3.1a tetrameris represented as grey cartoon.

(B)AlphaFold2 model for one protomer of Kv3.1a colored by level of confidence.

(C) Close-up showing the arrangement of the voltage-sensing S4 helix with positions of gating charges R2-
R6 with respect to F356 of the CTC predicted by AlphaFold2. Compared to the experimentally determined
cryo-EM structure, S4 is in a more upward-shifted position, with R4 located above F256 in the S1 segment.

(D) Close-up view of the S4/S5 linker region in the AlphaFold2 model, highlighting interactions to residues in
S4 and a6 of the T1 domain. The model predicts a helical extension of two amino acids (S121 and F122)
beyond the experimentally determined model. In this arrangement, the side chain of H336 interacts with the
hydroxyl and backbone carbonyl groups of S121. K449 in S6T also interacts with a different set of residues
(backbone carbonyls of V119 and G123). This moves the closest point of contact between S4/S5L and a6 in
T1 closer to S4 (between R332 and H336), whereas this interdomain interaction is closer to S5 according to
the cryo-EM structure (between H336 and R339, see main Figure 3 C). The R226/R332 H-bond between S4
and S4/S5 linker is present in the Al-predicted and the experimentally determined model.
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Supplemental Figure S9. Comparison of electrostatic surface potential distribution for human Kv
channel structures of Kv3.1a, Kv1.2-2.1 and Kv1.3.
(A, B) Surface representation of human Kv3.1a in front view (A) and cross-sectional view (B).

(C, D) Surface representation of human Kv1.2-2.1 (pdb:6EBK) in front view (C) and cross-sectional view (D).
(E, F) Surface representation of human Kv1.3 in front view (E) and cross-sectional view (F).
Surfaces are coloured by electrostatic potential (red, -5kTe™"; blue,+5kTe™).
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Supplemental Figure S10. Comparison of electrostatic surface charges near a4 in T1 of Kv3.1a
and T1 domains from other representative channels of the Kv1 and Kv4 subfamilies.

(A) Slab view of the full length Kv3.1a structure in electrostatic surface representation. Left inset: Close-up
view of the upper vestibule near the selectivity filter (SF). Densities for K" ions (purple spheres) in the SF and
densities for unidentified small molecule(s) are shown as blue mesh.

Rightinset: close-up view of the lower vestibule in T1 near helix a4, highlighting position of D81.

(B) Close-up view of the lower vestibule in T1 near helix a4 for the rat Kv1.2-2.1 structure (pdb 6EBK).
(C) Close-up view of the lower vestibule near a4 for the human Kv4.2 T1 structure (pdb 2I12R).

(D) Close-up view of the lower vestibule near a4 for the human Kv4.3 T1 structure (pdb 1S1G).
Surfaces are coloured by electrostatic potential (red, -5kTe™'; blue,+5kTe™).
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Supplemental Figure S11. Pore hydration properties and role of D81 (T1 domain) for increasing
K’ occupancy at the interstitial spaces between subunits.

(A) Water density within the Kv3.1a channel calculated from unbiased MD simulations. The constriction site
inthe T1 domain at D81 is indicated by the red arrow symbol.

(B, C) Evolution of the pore radius in nm (B) and water density in nm® within the Kv3.1a pore (D) over
simulation time (in nsec), showing that the pore region near the PVP hinge remains hydrated throughout the
simulation.

(D, E) K'occupancy densities in simulations of wild-type (E) and D81K (F) mutant, illustrated at an isosurface
value of 0.2 molecules/nm’. The interstitial void occupancy by K" ions (indicated by the red arrow) is
disrupted by the charge-inverting D81K mutation. The difference in abundance is seen in MD simulations at
0mVand-300 mV.
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Supplemental Figure $12. TEVC recordings of Kv3.1a channels in Xenopus oocytes.

(A) Representative whole-oocyte currents of Kv3.1a wild type (WT) and several alanine mutants. Currents
are evoked by 400-ms step depolarizations from a holding voltage of =100 mV. The steps are delivered in
increments of 10 mV from -60 mV to 50 mV (to 60 mV for R332A and K449A), and the start-to-startintervalis 5
s. The horizontal and vertical scale bars indicate 100 ms and 1 pA, respectively.
(B, C) The voltage dependence of the time constants of activation (hollow symbols) and deactivation (filled
symbols) from Kv3.1a WT, E116A (B) and D120A (C). Symbols and error bars represent the mean + SEM.
Error bars are smaller than the symbol size.
(D) Representative whole-oocyte currents of wildtype Kv3.1a with (+) and without (-) the C-terminal FLAG
tag. The voltage protocol and scale bars are as described for panel A.
(E) G-V curves for wildtype Kv3.1a with (+) and without (-) the C-terminal FLAG tag. Data are averages from
11 and 10 oocytes, respectively.
(F-H) Tables with mean V,, and z values determined from the G-V curves in main Figure 4 and panel B,
indicating the number of oocytes (n) analyzed for each construct.
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Supplemental Figure S13. Analysis of lipid/protein interactions in the human Kv3.1a channel.

(A) Lipid-protein interactions at Site I: a phospholipid (PC, green sticks) is bound near the S4/S5 linker
(purple) and voltage-sensing helix S4 (blue) of Kv3.1a. The binding site exhibits similarity to the known PIP,
(wheat-coloured sticks) binding site in the structure of Kv7.1 (pdb: 6V01).

(B) Lipid-proteininteractions at Site II: a phospholipid (PC, green sticks) is bound at the interface between S6
(yellow) and PH (green) in Kv3.1a compared to phosphatidylcholine (PC, pink sticks) in the Kv1.2/Kv2.1
structure (pdb: 4JTC).

C, D: MD simulations demonstrate that anionic lipids predominate interactions at lipid site I. In contrast, no
lipid preferentially localizes to site I1.

(C) Normalized number of contacts between Kv3.1a residues and headgroups of PS/PIP, . A contact was
assumed if a residue’s bead was within 5.5 A of the lipid headgroup’s bead and the contacts were
subsequently averaged across the five subunits. Residues with a contact frequency of >33% are colored
red.

(D) Densities of the anionic lipids calculated from CG simulations illustrated at one of the subunit interfaces
atanisosurface value of 4.0 molecules/nm’.
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Supplemental Figure S14. lllustration of dimer interface interactions for a subset of particles
forming Kv3.1a dimers in the dataset with 400 uM ZnCl..

Cartoon representation of the Kv3.1a dimer arrangement observed for a subset of particles present in the
ZnCl,-containing EM dataset.

Inset: Close-up showing that the dimer interaction is facilitated by stabilizing salt bridges between the side
chains of D51 and R52 in the cytoplasmic T1 domain.
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Supplementary Results & Discussion

Kv3.1a/Zn structure does not support evidence for secondary Zn-binding sites

Gu et al. report that zinc reversibly binds to Kv3.1 at several sites other than T1 domain's zinc finger and this
has various effects on ion channel activity, depending on where the sites are located [1]. Additionally, our
structures suggest another pocket resembling zinc finger motif formed by H60, H66 and D81. Therefore, we
collected datasets of Kv3.1 in the presence of 400 uM ZnCl, or I mM EDTA to resolve any extra zinc-binding
sites which may exist in Kv3.1a. However, no conformational change of Kv3.1a was observed between the
two maps and no inorganic ion was seen in the ZnCl, sample in the four suspected sites (H60/D81, C208/H212,
H381/H383 and H459). The first hypothesis to explain this is that zinc ions do not bind to Kv3.1 other than
the zinc finger motif in the near-open state. There is also the possibility that zinc ions do not bind tightly to the

suspected sites.

While we did not find evidence for additional zinc-binding sites with our structural biology efforts, we
serendipitously discovered a potential cause of higher-order dimerisation seen with some tetrameric ion
channels (Suppl. Figure S3 B). lon channels with T1 domain often show dimerisation at the distal end of T1
domain, for example a plant hyperpolarisation-activated K channel KAT1 [2]. On visual examination of
electron micrographs, we found that Kv3.1a shows increased dimerisation in the presence of ZnCl, but does
not form a dimer with 1 mM EDTA. Reconstruction of the dimer showed that this oligomer was stabilised by
R51 and D53 of one subunit interacting with D53 and R51 with the other subunit, respectively (Supplementary
Figure S14). It is beyond the scope of this study to investigate the mechanism of such oligomerisation and its

physiological significance; however our observation provides basis for further exploration of such feature.

Small molecules occupy the aqueous cavity below Kv3.1 selectivity filter

We observe non-peptide density in the aqueous cavity on the cytoplasmic side of selectivity filter of Kv3.1a.
Although the shape of the density is probably distorted due to its location on the four-fold symmetry axis, the
generally tubular shape of this density parallel to the symmetry axis appears to be a genuine feature of this
small molecule. This density fits well with the shape and size of polyamines such as spermidine coordinating
with water, as well as short-chain phospholipids and free fatty acids. Similar densities are also present in the
cytoplasmic cavities of Kv1.2/2.1 chimera [5], NavAb [6], TRAAK [7], and KirBac3.1 [8] channels, all of
them in the open state, suggesting that the presence of small molecules at this site is a common feature for ion

channels.

Some features of this aqueous cavity suggests this molecule being a polyamine. First, the surface of this cavity
is strongly negatively charged (Suppl. Figure S10 A), an ideal environment for occupation by positively
charged molecules. Although there is no report of Kv3.1 (or any Shaker superfamily channel) being modulated
by polyamines, they are known open-pore blockers of inward-rectifying potassium channels (such as
KirBac3.1) by occupying analogous site [8]. Interestingly, all known small molecule pore-blockers of Kv3.1

such as tetraethylammonium (TEA), 4-aminopyridine (4-AP), 3,4-diaminopyridine (3,4-DAP), and
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dimethylguanidine (DMG) feature amine group and are thought to occupy this aqueous cavity. These provide

circumstantial evidence for this molecule being an amine derivative.

There is also the possibility of this molecule being a phospholipid or free fatty acid. While there is little
structural evidence of this unlike the polyamine hypothesis, functional data exist for the modulation of Shaker
superfamily channels by free fatty acids. For example, arachidonic acid is known to inhibit Kv4.2 and Kv1.4
[9]. It is also a rationally most sensible explanation as the aqueous cavity is still located within the
transmembrane domain and phospholipids have been observed partially occupying this cavity in Nav1.4, albeit
with a significantly different binding mode [10]. It is also possible that a detergent is trapped in the open pore,
similar to the configuration observed in the Nav1.4 structure from electric eel [11]. In contrast to the Nav1.4
structure where the pseudo 4-fold symmetry is broken due to the complex formation with the B1-subunit and
the shape of the density matches well with a digitonin molecule, the 4-fold symmetrical appearance of the
densities below the selectivity filter in our Kv3.1a structure could be an EM processing artefact. Because of
its location on the 4-fold axis of symmetry, the density from the bound molecule is possibly distorted and may

not faithfully resemble the shape of a detergent/lipid/free fatty acid, even if the data is processed in C1.

We performed metabolomics mass spectrometry in an effort to determine the identity of this molecule (data
not shown), however the result was inconclusive. We did not detect presence of polyamines or other unique
small molecules, however this might have been due to the molecules still being trapped in the protein as it
collapsed in the denaturation process. We detected a number of fatty acids, most notably eicosanoic acid,
however they might have been products of the fragmentation of annular phospholipids. Therefore, we could
not ascertain the identity of this molecule and therefore excluded it from structural model despite its potential

importance in ion channel function.
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