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Supplementary Table 1. Comparison of TOF values of RI-SAC with those of previously reported Pt-based catalysts

	Catalyst
	Electrolyte
	Voltage (V vs. RHE)
	TOF (s−1)
	Source

	RI-SAC
	1.0 M KOH
	100 mV
	7.63
	This work

	Pt/C
	1.0 M KOH
	100 mV
	2.42
	This work

	Pt/C(1.87)
	1.0 M KOH
	100 mV
	4.82
	This work

	Pt@CoS
	1.0 M KOH
	100 mV
	0.131
	[1]

	Pt-Ru/Acet
	1.0 M KOH
	100 mV
	0.7
	[2]

	Pt1/(Co,Ni)(OH)2/C
	1.0 M KOH
	100 mV
	5.950
	[3]

	Pt/C60-2/KB
	1.0 M KOH
	100 mV
	5.55
	[4]

	PtRu@CNT
	1.0 M KOH
	100 mV
	3.06
	[5]

	Pt-CoFe
	1.0 M KOH
	100 mV
	2.32
	[6]

	PtSA@MoS2
	1.0 M KOH
	100 mV
	0.806
	[7]

	PtCu/NC
	1.0 M KOH
	100 mV
	1.44
	[8]

	Ni-NiO-Pt
	1.0 M KOH
	100 mV
	5.69
	[9]



* Source numbers correspond to the Supplementary references section

Supplementary Table 2. Comparison of mass activities of RI-SAC with those of previously reported Pt-based catalysts

	Catalyst
	Electrolyte
	Overpotential
(V vs. RHE)
	Mass activity
(A mg−1)
	Source

	RI-SAC
	1.0 M KOH
	0.85
	7.002
	This work

	Pt/C
	1.0 M KOH
	0.85
	0.8489
	This work

	Pt/C(1.87)
	1.0 M KOH
	0.85
	2.996
	This work

	PtP2@PNC
	0.1 M KOH
	0.85
	0.35
	[10]

	Pt/Nb-SnO2
	0.1 M HClO4
	0.90
	0.55
	[11]

	Pt24
	0.1 M KOH
	0.90
	0.2254
	[12]

	PtCu/C-10
	0.1 M HClO4
	0.90
	1.19
	[13]

	d-int−Pt-Co/C
	0.1 M HClO4
	0.90
	1.69
	[14]

	PtCu aerogels/C
	0.1 M HClO4
	0.90
	0.3964
	[15]

	PtCo/C-600
	0.1 M HClO4
	0.90
	0.68
	[16]

	Pt@Mn-SAs/N-C
	1.0 M KOH
	0.85
	0.62
	[17]

	PtCuNC-700
	0.1 M HClO4
	0.90
	0.45
	[18]

	NPP-70
	0.1 M KOH
	0.85
	1.0092
	[19]

	Pt1Ni1@Pt/C
	0.1 M KOH
	0.90
	1.424 ± 0.019
	[20]

	NiPP
	0.1 M KOH
	0.85
	5.0503
	[21]

	Ge-L10-PtZn@N-C
	0.1 M KOH
	0.90
	3.04
	[22]

	PdPt–CoNi
	0.1 M KOH
	0.85
	3.250
	[23]

	Pt@Co
	0.1 M KOH
	0.85
	0.817
	[24]



* Source numbers correspond to the Supplementary references section


Supplementary Table 3. Comparison of TOF values of RI-SAC with those of previously reported Pt-based catalysts

	Metal
	Support
	Scale
	Loading
	Methods
	Application
	Note
	Source

	Pd
	ZnO
	~1 kg
	0.25 wt%
	Ball-milling, calcination
	Selective dehydrogenation reaction of phenylacetylene
	batch
	[25]

	Pd
	Fe2O3
	~1 kg
	0.2 wt%
	Ball-milling, calcination
	Suzuki–Miyaura cross-coupling reaction
	batch
	[26]

	Pd
	Fe2O3
	1 kg/day
	0.23 wt%
	Precursor-atomization strategy
	Suzuki–Miyaura cross-coupling reaction
	continuous
	[27]

	Cu
	CN
	3.565 kg
	9.97 wt%
	Metal coordination Route
	CO2RR
	batch
	[28]

	Ni
	C
	1.6 kg
	2.5 wt%
	Ligand-mediated method
	CO2RR
	-
	[29]

	Co
	ZIF-8
	~ 24 g
	3.3 wt%
	Solid-phase synthesis
	ORR
	batch
	[30]



* Source numbers correspond to the Supplementary references
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Supplementary Figure 1. N 1s XPS spectra with peak fitting results for RI-SAC and N-doped carbon.
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Supplementary Figure 2. C 1s XPS spectra with peak fitting results for RI-SAC, N-doped carbon, and carbon. The C–N peak, which was not observed in pristine carbon, appeared in both N-doped carbon and RI-SAC, indicating the successful incorporation of nitrogen into the carbon framework.
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Supplementary Figure 3. Pt loadings of RI-SAC and Pt/C.
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Supplementary Figure 4. Comparison of (a) LSV curves, (b) Tafel plots, and (c) TOF values of RI-SAC and Pt/C catalysts with matched Pt loadings (Pt/C(1.87)). Compared with Pt/C(1.87), RI-SAC exhibited superior performance in terms of the overpotential, Tafel slope, and TOF.
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Supplementary Figure 5. CP durability test of Pt/C(1.87) conducted for 10 h at 10 mA cm-2. At an equivalent Pt loading, the Pt/C catalyst exhibited a relatively pronounced decline in performance during the CP test compared with RI-SAC.
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Supplementary Figure 6. (a) Performance retention of Pt/C(1.87) after the CP durability test and (b) LSV curves recorded after CP. After CP operation, Pt/C(1.87) exhibited a pronounced loss of activity, retaining only 50.4% of its initial performance, which was lower than that of RI-SAC (73.3%). This degradation was also evident in the LSV curve recorded after CP.
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Supplementary Figure 7. LSV curves of the RI-SAC measured at various rotational speeds from 400 to 2,000 rpm. 
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Supplementary Figure 8. Comparison of (a) LSV curves and (b) mass activity of RI-SAC and Pt/C catalysts with matched Pt loadings. RI-SAC, with the same Pt loading as Pt/C, shows a higher half-wave potential and about 2.3 times higher mass activity at 0.85 VRHE.
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Supplementary Figure 9. TEM images of atomic-level dispersed catalyst synthesis by the same method (left, scale bar = 10 nm, and right, scale bar = 2 nm): (a) Pd and (b) Ir.
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Supplementary Figure 10. Absorbed dose as a function of the UBC: (a) linear plot as a function with  and (b) nonlinear decay with the UBC.
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Supplementary Figure 11. Integrated region of CO-stripping, corresponding to the CO oxidation and desorption area used for TOF calculation.
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