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Abstract

Neuroinflammation is a key modulator of Alzheimer’s disease (AD) risk, yet the impact of non-
genetic inflammatory risk factors — such as systemic inflammation — remains poorly defined.
Building on our previous work, here we show that 9 months after systemic lipopolysaccharide
(LPS) challenge in APP23 mice, microglia-plaque interaction is disturbed and shifts AR
aggregates toward a less compacted state, as revealed by conformation-sensitive amyloid
dyes. Importantly, these structural changes are associated with increased plague-associated
neuritic dystrophy, phenocopying the effects of microglial risk genes. Generalising these
findings, we show that across aging in APP23 and APPPS1 mice, and in AD patient tissue,
non-compacted amyloid and microgliosis — but not compacted amyloid — are consistent
predictors of neuritic damage. Notably, both in mouse and human tissue, ex vivo amyloid-PET
signal largely reflects compacted but not non-compacted amyloid load. Our findings suggest
that genetic and environmental risk factors converge on shared mechanisms of impaired
microglial-plague interaction and amyloid restructuring, and that commonly used amyloid-PET
measures insufficiently capture amyloid states that define the severity of neuritic damage, with
important implications for clinical trials in AD.

Significance statement

Systemic inflammatory insults durably reprogram microglia and remodel AR plaques. In APP23
mice, LPS treatment weakens microglial plaque engagement, leading to more non-compacted
amyloid and increased neuritic dystrophy. Across aging cohorts, a second mouse model, and
human AD tissue, non-compacted amyloid and plaque-associated microgliosis consistently
predicted neuritic damage, whereas compacted amyloid correlated weakly or inversely. Ex vivo
amyloid-PET tracked compact plaques but not non-compacted amyloid, revealing a diagnostic
gap. Our results unify genetic (TREM2/APOE) and environmental risks via impaired microglial-
plaque interaction and argue for biomarkers and therapies targeting non-compacted amyloid
states and microglial plague containment.
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Introduction

Genetic studies have linked alterations in the innate immune system to the pathogenesis of
Alzheimer’s disease (AD)'-4. For instance, loss-of-function mutations in the gene encoding
Triggering receptor expressed on myeloid cells-2, TREM2, preclude appropriate microglial
responses to amyloid-B (AB) aggregation in mouse models and AD patients, resulting in
reduced microglial association with AR plaquess-7. Similarly, mice lacking ApoE, whose
isoforms are the most important genetic determinant of late-onset AD, show reduced molecular
responses in microglia as well as limited microglia-plaque interaction8-19. Notably, deletion of
Trem2 or Apoe or introduction of their risk variants consistently results in less compacted
amyloid and more neuritic dystrophy around plaques in mouse models®6:8.10  indicating that
reduced plague compaction may be a common downstream mechanism that increases AD risk
through enhancing plaque-associated neuronal damage. Accordingly, neuritic damage is a
histological correlate not only of cognitive decline'.12 but also of key fluid biomarkers of
neuronal injury downstream of plaque pathology, namely total tau and phospho-tau18113-16_in
AD patients.

The effects of genetic risk on microglial activation and AD onset/progression have been
studied in detail”.17-19; by contrast, the mechanisms of non-genetic risk factors — such as
systemic infections and inflammatory diseases — remain poorly understood320-22, We
previously described a potential mechanism of how systemic inflammation may affect AD
pathology by demonstrating that peripheral immune stimulation results in long-term
modification of the microglial epigenetic profile and, in turn, alters the microglial immune
response to subsequently developing AB pathology in APP23 mice. This long-term microglial
reprogramming was sufficient to modulate AB plaque burden at early disease stages23.

In this study, we further explored whether peripheral immune stimulation before the
onset of Ag pathology — and the resulting change in microglial responses — influences the
structure and neurotoxicity of amyloid plaques in APP23 mice. To this end, we used
conformation-sensitive amyloid-binding dyes — two luminescent conjugated oligothiophenes
(LCOs), gFTAA and hFTAA — that bind -sheet structures of distinct amyloid morphotypes?4.
These dyes allow analyses beyond the classical neuropathological assignment of diffuse vs.
neuritic/cored plaques, which are robust for diagnostic scoring but provide only a binary readout
and limited insight into fibril packing or plaque core vs. corona heterogeneity. In particular,
gFTAA binds to tightly packed bundled Ap-fibrils, i.e. highly compacted amyloid, while hFTAA
binds to single filamentous as well as bundled AB-fibrils, but does not detect small non-fibrillar
AR aggregates2+26. A combination of qFTAA and hFTAA dyes was previously used to
demonstrate that plaques mature, i.e. become more compacted in APP transgenic mice with
aging2’-2® and that the lack of Apoe in APP transgenic animals leads to reduced plaque
compaction8. Moreover, using these LCOs to analyse human tissue, AB plaques were found to
be polymorphic in tissue from familial as well as sporadic AD patients30. Notably, a higher
proportion of post-mortem hFTAA vs. gFTAA binding was also associated with more rapid
progression of cognitive decline in AD patients?!, indicating that hFTAA may detect more toxic
amyloid species, but the mechanisms were not investigated.

Using gFTAA and hFTAA dyes, we here demonstrate that 9 months after systemic
inflammation, microglial plaque interaction is altered, resulting in substantial restructuring of
amyloid from compacted (QFTAA+) to non-compacted/filamentous (hFTAA+) aggregates in
female APP23 mice. This, in turn, increased plaque-associated neuritic dystrophy — despite
equivalent overall AB burden. We then extended our analyses across the life-span, both sexes,
and an additional mouse model, as well as to tissue from familial and sporadic AD patients and
confirm that increased non-compacted/flamentous amyloid is the main predictor of neuritic
damage, whereas compacted amyloid appears largely inert or even protective across these
conditions. Finally, using autoradiography with an FDA approved amyloid-PET ligand,
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['8F]flutemetamol, we find that this standard clinical measure of amyloid is largely reflective of
compacted amyloid, failing to capture its more damaging filamentous forms.

Altogether, our findings indicate that genetic and non-genetic risk factors converge on
shared disease mechanisms, namely the limitation of beneficial microglia-plaque engagement
and a resulting shift of amyloid plaques to more neurotoxic forms. Moreover, our data show that
diagnostics based on current amyloid-PET ligands alone may insufficiently capture amyloid
morphotypes that define the severity of plaque-driven neuritic damage.

Results

Peripheral immune stimulation alters plaque morphotype in APP23 animals

In our previous work, we used peripheral stimulation with low-dose bacterial
lipopolysaccharides (LPS) to model an acute vs. chronic peripheral inflammatory insult before
the onset of AB pathology in female APP23 animals. We found that this triggered distinct and
long-lasting microglial reprogramming as well as modulation of plague burden at early
pathology stages, i.e. in 9-month-old animals23. In particular, intraperitoneal (i.p.) injection of
either a single dose of LPS (1xLPS; 500 pg/kg bodyweight) or repeated injections of the same
dose on 4 consecutive days (4xLPS) induced differential modulation of microglial immune
responses to AB pathology, with 1XLPS increasing but 4xLPS decreasing pro-inflammatory
microglial responses in 9-month-old APP23 animals. These findings reflected two previously
described immune memory states, immune training and tolerance, in peripheral
macrophagess2.33,

As 9-month-old APP23 animals show early plaque pathology with many non-
compacted amyloid aggregates, we here focused on 12-month-old animals to examine the
impact of microglial immune memory states on plaque maturation and morphotype (Fig. 1a).
We first used LCO hyperspectral microscopy to determine fluorescent signal intensities in the
plaque core for the emission spectra peaks of gFTAA (502 nm) vs. hFTAA (588 nm) (Figs.
1b/c), as the commonly used measure of plaque morphotype30. Indeed, LCO hyperspectral
imaging revealed significant alterations of A plaque structure after 1xLPS and 4xLPS, with
both treatments shifting amyloid aggregates to non-compacted/filamentous forms (as indicated
by a decreased 502/588 nm emission ratio). Notably, while vehicle-injected APP23 mice
contained a heterogenous mixture of plaque structures, both 1xLPS- and 4xLPS-treated
animals had plaques with consistently reduced gqFTAA affinity (Figs. 1b-c), indicating that
peripheral immune stimulation triggers a shift in amyloid morphotype from naturally occurring
heterogeneity to predominance of a non-compacted/filamentous amyloid structure.

Alterations in the structure of amyloid plaques could occur as a result of differences in
AB burden and/or plague maturation. We have previously shown that 1xLPS and 4xLPS
treatment led to an increase (for 1xLPS) or decrease in plaque load (for 4xLPS) by ~30% in 9-
month-old APP23 animals. However, at 12 months of age, histologically determined plaque
load (percentage of AB-positive cortical area; Fig. 1d), as well as biochemically determined total
brain A levels (Extended Data Figure 1b) were indistinguishable in 1x/4xLPS-treated mice vs.
PBS-treated control animals. Furthermore, we could not detect changes amongst treatment
groups in the ratio of brain ABi.42 to brain ABi.40 (Extended Data Figure 1b), excluding that
different plaque structures occur as a result of altered proteolytic generation of AB isoforms. In
addition, levels of amyloid precursor protein (APP) and C-terminal fragment (CTF-3) were equal
between treatment groups (Extended Data Fig. 1c), indicating that A processing itself was not
changed. We also examined whether the onset of plaque deposition or the levels of AB differed
amongst treatment groups in 6-month-old animals but could not detect any differences
(Extended Data Fig. 1d), indicating that altered plaque morphotypes were not caused due to a
shift in pathology onset, which might have affected plaque maturation.
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We next asked whether the observed changes in plaque morphotype were due to an
early change upon plaque deposition or due to slow restructuring during A aggregation. To
test this, we first compared 12-month-old animals treated with 1x or 4xLPS at 3 vs. 7 months
of age. In animals injected at 7 months, plaques showed no (1xLPS) or notably smaller (4xLPS)
effects on LCO spectra (Extended Data Fig. 2a). Similarly, when we analysed 9-month-old
animals to capture early amyloid restructuring, changes in LCO spectra were detectable only
in 4xLPS animals injected at 3 but not 7 months, and were undetectable in 1xLPS treated mice
(Extended Data Fig. 2b). These results indicate that changes in plaqgue morphotype do not
occur as an immediate result of LPS treatment/peripheral inflammation nor due to an early
change in amyloid aggregation but rather require plaque restructuring, presumably through
long-lasting alterations in microglial function.

While performing hyperspectral imaging, which requires spectral scans for each
individual point of interest in the plaque (here performed in the plaque core), we noticed obvious
changes also in the area covered by qFTAA vs. hFTAA staining. We therefore examined
whether analysis of the area of the two LCO dyes would also reflect restructuring of plaques
equivalent to hyperspectral analysis. In addition, we also compared shifts in the mean
fluorescence intensity ratios of gFTAA/hFTAA in the plaque core. Indeed, when we quantified
the LCO area ratio (QFTAA area/hFTAA area) or their plaque core intensity ratios, we obtained
similar results, i.e. both 1xLPS and 4xLPS treatments at 3 months of age demonstrated shifts
of both the area and plaque core intensity ratios towards higher hFTAA affinity in 12-month-old
APP23 animals (Fig. 1e).

Since the gFTAA/hFTAA area ratio had confirmed the change in plague morphotype at
the scale of individual plaques (rather than single points of spectral measurements), we also
examined in more detail how classical neuropathological stains, namely Congo Red and AR
antibody staining relate to LCO affinity (using only PBS-treated 12-month-old APP23 animals
to avoid confounds of experimental inflammatory changes). While gFTAA signal was found
exclusively in plaque cores, it only partially overlapped with Congo Red staining. In particular,
Congo Red stained smaller aggregates that were not recognised by gFTAA, and the signal
overlap reached a maximum of ~50% for aggregates of intermediate size, but decreased again
for large plaques (Fig. 1f). Similarly, hFTAA only partially overlapped with Ap antibody staining,
with hFTAA showing negligible affinity for very small AB deposits, but reaching up to 60-70%
overlap with increasing aggregate size (Fig. 1f). In line with previous work24-26, these results
indicate that qFTAA is binding only the most compact plaque components, while hFTAA
selective recognises a non-compacted/filamentous amyloid state.

Next, we asked how plaque restructuring would affect the affinity of a clinically used
amyloid PET-tracer. To this end, we chose [18F]flutemetamol, which — in contrast to other
tracers such as ['8F]florbetaben — binds measurably to diffuse, antibody-labelled AR
aggregates; despite its higher affinity for compacted material, these diffuse aggregates can
contribute substantially to net signal of the tracer34-36. Nevertheless, in APP23 brains, ex vivo
['8F]flutemetamol autoradiography showed a significantly lower cortex-to-background signal in
1x and 4xLPS-treated animals (Fig. 1g), indicating that the tracer fails to detect the LCO-defined
shift toward non-compacted/filamentous amyloid at equivalent total plaque burden.

Plaque morphotype correlates with brain inflammatory state and microglial responses

Since we could not find evidence for alterations in total AR plaque burden nor total AB levels,
and because we have previously shown that microglial responses are differentially affected
after 1xLPS and 4xLPS treatment23, we next examined whether alterations in plaque
morphotype are related to a persistent modulation of cytokine levels in the brain and blood of
12-month-old APP23 animals. Using multiplex ELISA measurements for IFN-y, IL-10, IL-1p, IL-
6, TNF-a, KC/Gro and IL-4, we could not detect significant alterations in serum cytokine levels
amongst treatment groups. In contrast, 1xLPS-treated animals exhibited increased brain levels
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of IFN-y and IL-10 compared to PBS-treated controls, while 4xLPS-treated animals had
reduced levels of IL-6 compared to 1xLPS-treated animals (Fig. 2a and Extended Data Fig. 3).
We then asked whether the levels of particular cytokines in serum or brain correlate with
alterations of plaque morphotype at the level of individual animals and across treatment groups.
Interestingly, we found significant negative correlations between the gFTAA/hFTAA ratio and
brain IFN-y and IL-10 levels (which themselves showed a strong correlation), while other brain
and serum cytokines showed no significant association with LCO parameters (Fig. 2b). Notably,
neither cytokine levels nor LCO parameters correlated significantly with total plaque load (as
measured by A staining) or total AR levels (as measured by ELISA) (Fig. 2b), confirming that
the change in amyloid structure was due to inflammatory mechanisms rather than total AR
burden. These data indicate that peripheral immune stimulation modulates the brain
inflammatory state for up to 9 months, with significant impact on amyloid compaction.

A number of studies have demonstrated that amyloid compaction depends on the so-
called microglial barrier function, i.e. the microglial recruitment to and encapsulation of
plaquess637. Therefore, we next analysed microglial numbers and activation markers.
Stereological quantification of microglia (based on nuclear Pu.1 staining) revealed no change
in the total number of microglia amongst treatment groups (Fig. 2c); however, a significant
reduction in the number of plaque-associated microglia was evident in 4xLPS treated animals
(Fig. 2d), indicating reduced cell recruitment to plaques. Accordingly, analysis of whole cell
staining demonstrated a decreased Iba1-positive microglial area after 4xLPS treatment (Fig.
2e). A less pronounced reduction of plaque-associated microglia was also apparent when
animals were injected at 7 months of age, reflecting the magnitude of shifts in plaque
morphotype (Extended Data Fig. 2a). In contrast, no alterations in the number of plaque-
associated astrocytes were detectable (Fig. 2f).

As we had previously observed increased microglial AR phagocytosis in 4xLPS treated
mice23, we next analysed lysosomal content in microglia (based on CD68 levels). Indeed,
quantification of CD68-staining revealed a significant increase of CD68-positive area around
plaques in 4xLPS- vs. 1xLPS-treated animals (Fig. 2g), despite the reduction in microglial
number. Moreover, when we assessed co-localization of CD68 with LCO staining, we found a
significant reduction in 1XLPS- but not 4xLPS-treated animals compared to controls.

The microglial barrier function is compromised in Trem2knockout mice and AD patients
carrying TREMZ risk variants, which consistently show impaired microglial recruitment to
plaques, resulting in reduced amyloid compaction56:37, Therefore, we next analysed microglial
Trem2 staining. In line with previous studies, we found Trem2 to be specifically localised to
microglial processes contacting amyloid plaques (Fig. 2h). However, 4xLPS-treated animals
showed less conspicuous Trem2 polarisation, presenting with a larger and more diffuse Trem2-
positive area in the absence of a change in the mean fluorescence signal, while 1xLPS animals
showed no discernible effects (Fig. 2h). To relate these findings more specifically to amyloid
morphotype, we performed linear regression analysis at the individual plaque level, factoring in
treatment, Trem2 intensity and Trem2 area to predict the gFTAA/hFTAA area ratio. Parameter
estimates indicated that Trem2 mean intensity had the strongest impact on plaque morphotype,
leading to more compacted amyloid; in contrast, increased Trem2 area, which likely reflects a
lack of appropriate microglial process polarisation at the plaque surface, predicted a less
compacted amyloid structure, with additional, independent effects of treatment also being
apparent (Fig. 2h).

These data confirm our previous findings that peripheral inflammatory insults have a
long-lasting impact on microglial responses to Ap pathology. In addition, we now demonstrate
that at more advanced pathology stages, 1xLPS and 4xLPS treatments exert differential effects
on plaque-associated microglial number, lysosomal activity and Trem2 engagement. In both
cases, this disturbance of appropriate microglial responses to AR deposition leads to a shift
towards non-compacted/filamentous amyloid.
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Non-compacted/filamentous amyloid and microgliosis predict neuritic dystrophy in mouse
models and AD patients

Since loss of plague compaction is often associated with more neuronal damage in mouse
models and patients carrying or lacking microglial risk genes, we next examined whether
plaque-associated neuritic dystrophy was altered in LPS-treated animals. First, we assessed
accumulation of amyloid precursor protein (APP) as a well-established marker of dystrophic
neurites3839, Indeed, both 1xLPS- and 4xLPS-treated animals showed exacerbated plaque-
associated neuritic damage, as indicated by an increased area of APP-positive dystrophic
boutons around plaques (Fig. 3a). In contrast, as a second marker of neuronal damage,
phospho-Tau (pTau)4® was selectively increased in 4xLPS-treated animals (Fig. 3b), while
neurofilament light chain (NfL), an alternative marker protein for neurodegenerative
processes#!, was unchanged amongst treatment groups (Fig. 3c). We then asked whether the
two LCOs were predictors of neuritic damage at the level of individual plaques. Including data
from all treatment groups (PBS, 1xLPS, 4xLPS), we found that for all markers (APP, pTau,
NfL), hFTAA strongly predicted neuritic damage while gFTAA had no or even a negative impact,
with additional treatment effects apparent for APP and pTau, as expected from our analysis at
the animal level (Figs. 3a-c). This indicated that highly compacted, gFTAA+ amyloid is largely
inert or even neuroprotective, while non-compacted/filamentous hFTAA+ amyloid is the primary
mediator of amyloid-driven damage to nearby neurons. Notably, this relationship holds with
modulation of plaque morphotype following peripheral inflammatory insults, establishing this
association of non-compacted amyloid with increased neuritic damage beyond the impact of
genetic factors (such as TREM2 and APOE)5.68,

Next, we examined whether the relationship between microglial-plague association,
plaque morphotype and neuritic damage is generalisable across mouse models, both sexes,
and age groups in the absence of immune stimulation. We selected two mouse models, APP23
and APPPS1 mice, for comparison: These models generate different levels of AR peptides —
with APPPS1 and APP23 mice generating ABR42/AB40 ratios of 2.5-5.5 and 0.2-0.4,
respectively*?, resulting in different plaque morphotypes (Fig. 4a). In addition, plaque
morphotypes have been shown to change with age; these conformational changes are
detectable by LCO binding affinities?®. Therefore, analysing 4-6 male and 4-6 female mice per
group, we quantified qFTAA and hFTAA areas and their signal intensities in the plaque core,
plaque-associated microglia, and dystrophic neurites in 4 and 6 months old APPPS1 mice
(which develop first plaques around 6 weeks of age*®) and 9, 12, 15 and 24 months old APP23
mice (which develop first plaques around 6-7 months of age**) for a total of ~2,750 plaques
(Fig. 4b). As expected, in both models, plaque size increased with age, while microglial plaque
coverage decreased relative to plaque size (Fig. 4b). In line with previous reports?®, maturation
of plaques was evident in APP23 mice by increased qFTAA staining, based either on the area
ratio or the plaque core signal intensity ratio of gFTAA to hFTAA. In APPPS1 mice, plaque
maturation from 4 to 6 months of age was also evident based on the plaque core signal intensity
ratio of the dyes, but not detectable based on the area ratio. Notably, relative to plaque size,
plaque-associated dystrophy increased with age in APP23 mice, while it remained stable in
APPPS1 mice (Fig. 4b). We then applied support vector regression (SVR) — a supervised
machine-learning method — to estimate the independent contributions of age, sex, LCO-based
parameters and microglial plagque association to neuritic dystrophy. We trained and tested the
model using a random split of 80:20% of the data and found that it could predict 60% of the
variance in neuritic dystrophy (Fig. 4c). Notably, by far the strongest predictor of neuritic
damage was the hFTAA area, whereas qFTAA area even had a negative impact, confirming
the strong relative toxicity of non-compacted vs. compacted amyloid. Interestingly, plaque-
associated microgliosis (Iba1 area) also showed a positive impact on neuritic dystrophy (Fig.
4c), suggesting that microglia contribute both to amyloid compaction but also to neuronal
damage around plaques — in line with previous reports45.46.
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To examine the translational relevance of our findings, we analysed post-mortem tissue from
the frontal cortex of 6 sporadic (sAD) and 6 familial AD patients, including 3 carriers each of the
APP V717 and PSEN1 Intron4 mutation (n = 249, 222, and 185 plaques per patient group).
Equivalent to our analysis in mice, we performed stainings for gFTAA, hFTAA, microglia (Iba1)
and dystrophic neurites (APP) (Figs. 5a/b). While the average plaque size and microglial
plaque-association did not differ amongst these patient groups, APP V717 patients showed not
only more compacted plaques than sAD and PSEN1T Intron4 mutation carriers (based on
gFTAA/hFTAA core intensity and area ratios) but also significantly lower neuritic dystrophy (Fig.
5c). To establish a general model of how plaque morphotype and microgliosis relates to neuritic
damage in patients, we again trained an SVR model. Matching our data from mouse models,
microgliosis (Iba1 area) and non-compacted/filamentous amyloid (hFTAA area) were the major
predictors of neuritic damage, while compacted amyloid (QFTAA area) had a small
negative/protective impact (Fig. 5d). However, in patients, the model was able to predict only
29% of neuritic dystrophy, likely due to patient heterogeneity and the relatively small sample
size. Therefore, to validate our model, we additionally analysed tissue sections from 3 patients
carrying the TREMZ2 R47H mutation (of which one patient carried an additional PSENT Intron
4 mutation). The TREM2 R47H mutation is known to reduce microgliosis around plaques®4°,
which we confirmed based on Iba1 staining (Fig. 5c). Therefore, model performance would be
expected to improve in these patients due to biological modulation of this major predictor.
Indeed, testing our model on data from the TREM2 R47H carriers improved prediction to 44%
of variance in neuritic dystrophy in this subgroup of patients (Fig. 5e).

Finally, we tested the relationship between plague morphotype and ex vivo PET-signal
in the 6 sporadic AD patients. Across these samples, amyloid-PET signal covaried positively
with gFTAA area but not with hFTAA area (Fig. 5f), consistent with our findings in mouse
models. Thus, our results indicate that non-compacted, hFTAA+ amyloid predicts neuritic
damage also in the human brain and that binding of the amyloid PET-ligand ['8F]flutemetamol
does not reflect this more damaging form of amyloid.

Discussion
We here built on our previous work, where we demonstrated that systemic inflammatory insults
can induce long-lasting epigenetic imprints in microglia, which modify their responses to later
developing AB pathology23. In particular, we previously characterised the effects of a single vs.
repeated LPS injections (1xLPS vs. 4xLPS) on early plaque deposition in 9-month-old APP23
animals. We found that 1xLPS reprograms microglia to respond with a heightened pro-
inflammatory immune response to AB pathology, increasing plaque load. In contrast, 4xLPS
induces long-lasting repression of inflammatory responses in microglia, resulting in increased
microglial AR uptake and decreased plaque burden. Surprisingly, our present study revealed
detrimental effects of both 1xLPS and 4xLPS at a later stage of pathology in 12-month-old
APP23 mice. In particular, compared to controls, both 1xLPS- and 4xLPS-treated animals
showed altered microglial plaque engagement and a substantial shift from compacted to non-
compacted/filamentous amyloid, despite an indistinguishable total AR burden. Importantly, this
change in plaque architecture was associated with exacerbated neuritic dystrophy (Figs. 1-3).
Interestingly, similar effects have been described for animals with knockout of Trem2, which
were found to have reduced AR pathology at early disease stages but exacerbated pathology
at more advanced pathology states due to a suppression of microglial proliferation and their
reduced association with plaques#’. 4xLPS treatment phenocopied these differences in terms
of reducing AB burden at early but not later stages of pathology, suppressing inflammatory
responses to AR pathology, reducing proliferation and limiting plaque association of microglia
(Fig. 2).

Extending these findings from immune-stimulated mice to naive animals from two
models (APP23 and APPPS1), both sexes, multiple ages, and tissue from sporadic and familial
AD patients, we further show that non-compacted/filamentous amyloid (hFTAA+) is the
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strongest predictor of neuritic dystrophy, whereas compacted amyloid (QFTAA+) has no or even
a protective effect. Since histologically-determined neuritic damage correlates with cognitive
dysfunction?1.12 as well as key fluid biomarkers in AD patients, namely total-tau and phospho-
tau18113.14, our work has several important implications:

First, our study highlights a failure of the microglial plaque barrier as a mechanism
shared between genetic and non-genetic risk factors for late-onset AD, with long-term effects
of systemic inflammatory insults resembling those of TREM2 and APOE risk variants®9. In
particular, we find that systemic inflammatory stimuli trigger microglial immune memory states,
which phenocopy genetic risk: acute (1xLPS) and repeated (4xLPS) immune stimulation both
culminate in reduced plaque compaction, but by distinct mechanisms — higher inflammatory
cytokines, altered plaque-associated phenotype (lower CD68) vs. fewer plaque-associated
microglia and reduced Trem2 polarisation, respectively — both result in less compacted
amyloid and worsened neuritic injury (Figs. 2/3). These observations dovetail with extensive
work tying TREM2 and APOE to plague compaction and neuritic dystrophy and may explain
how infections increase the long-term risk for dementia32!. Thus, our findings support
therapeutic strategies that promote microglial compaction of plaques, e.g., through enhancing
TREM2 signaling“s.

Second, our data show that conformation-sensitive amyloid dyes can distinguish inert
and neurotoxic forms of amyloid, which routine stains and PET ligands do not. Standard
neuropathological methods define neuritic plaques morphologically, but they do not quantify
compactness or conformational states. Our qFTAA/hFTAA approach transforms plaque typing
into a quantitative spectrum, mapping plaque core vs. corona structure and allowing plaque-
level modeling of neuritic injury (SVR explains 60% of variance in mice; 28—44% in human
subgroups where microglial genetics differ). Notably, hFTAA has been shown to attenuate the
toxicity of aggregated AR species in vitro*?, and was the strongest predictor of neuritic damage
in our work. Interestingly, in addition to non-compacted amyloid, we find that the level of plaque-
associated microgliosis is a strong predictor of neuritic dystrophy (Figs. 3/4). Considering that
the microglial barrier function is believed to protect against neuritic damage, this appears
counter-intuitive at first. However, it likely reflects that our quantitative analysis of plaque
compaction already captures this beneficial microglial function and separates it from a second,
detrimental component of AB-driven microglial activation. This aligns with previous studies
demonstrating that genetic or pharmacological ablation of microglia in mouse models reduces
neuritic dystrophy45:46, suggesting that — while microglia generate more inert amyloid through
compaction — they are also drivers of plaque-associated neuronal damage through independent
inflammatory processes.

Third, our data indicate that clinically used PET-tracers are unable to distinguish
neurotoxic from inert amyloid species: We here demonstrate that ex vivo amyloid-PET
preferentially reports compact plaques and thus misses a sizeable fraction of the non-
compacted amyloid that tracks plaque-driven neuronal injury (Fig. 1g). We have previously
shown that in mouse models, compacted amyloid shows ~16-fold higher binding of the PET
tracer ['8F]florbetaben compared to diffuse aggregates; accordingly, reducing plaque
compaction via Trem2 knockout measurably reduced ['8F]florbetaben signal34. In contrast,
autopsy-validated in vivo and comprehensive ex vivo PET data using the structurally distinct
tracer flutemetamol indicated its binding to less compact plaques and their contribution to the
net PET signal35.36. However, using ex vivo autoradiography, we find that the ['8F]flutemetamol
signal only reflects the decrease in compacted (QFTAA+) amyloid load in 1x/4xLPS-treated
mice, missing the increase in non-compacted/filamentous (hFTAA+) amyloid. We found similar
results in a small number of samples from sporadic AD patients, in line with a recent autopsy
study showing that a PiB-tracer still underestimates plaque burden in patients with high loads
of so-called cotton-wool plaques, which lack compact cores and show weak binding of classical
amyloid dyes5° but are detected by hFTAAS!. These findings align with the fact that some
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pathogenic fibrils evade amyloid tracer binding altogether — for example, carriers of the so-
called Arctic APP mutation (E693G) develop early-onset AD, have heavy AR fibril loads yet
show little to no PiB retention52. Notably, hFTAA can bind aggregates of Arctic AR and even
alleviate their toxicity in vitro*®.

Thus, together with these previous studies, our data argue that amyloid-PET signals
have limited sensitivity to non-compacted amyloid states that drive neuritic dystrophy.
Moreover, they indicate that amyloid-PET signals may increase if amyloid becomes more
compacted or may look stable while non-compacted amyloid levels and neuritic injury change.
Therefore, these studies argue that in clinical trials, amyloid-PET should be complemented by
fluid biomarker measures of neuritic injury, such as NfL or pTaul181, to ensure full
interpretability of amyloid PET readouts.

Limitations

One limitation of our study is that peripheral LPS injections do not necessarily reflect the
complex immunological processes that occur in response to infectious or inflammatory disease,
but they were our method of choice, as they provided us with the possibility of inducing
temporally defined inflammatory insults. Future studies should include live pathogens, including
bacterial and viral species, and determine their impact on plague morphotype. Another
limitation is that autoradiography is ex vivo and cannot fully recapitulate in vivo PET analysis.
Moreover, our human sample sizes are small, and regional sampling may miss heterogeneity.
Nonetheless, convergence of our findings across two mouse models, ages, and both sporadica
and familial AD tissue, and the consistency of the LCO predictors argue that our main
conclusions are robust. Future work should directly compare in vivo PET measurements with
different tracers to LCO-defined amyloid morphotypes (e.g., via multi-tracer approaches or
direct comparison with post-mortem analyses), test microglial-targeted therapeutics with
morphotype as a preclinical endpoint, and integrate plaque compaction indices with neuritic
injury biomarkers to better forecast clinical decline.
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Figure 1: Systemic inflammation alters amyloid morphotype and PET-ligand affinity in APP23
mice.
(a) Experimental timeline: APP23 mice were treated intraperitoneally (i.p.) with a single injection of
bacterial lipopolysaccharides (1xLPS, 500 pg/kg), the same LPS dose on four consecutive days (4xLPS)
or vehicle (PBS) at 3 months of age. Tissue was collected and analysed at 12 months.
(b) Left: Principle of hyperspectral imaging with gFTAA and hFTAA staining: The emission ratio of 502 nm
vs. 588 nm reflects the relative affinity of gFTAA (compacted amyloid) vs. hFTAA (filamentous amyloid).
Middle: Emission spectra averaged across plaques show a shift in LCO fluorescence with 1xLPS and
4xLPS treatment. Right. Ratio of emission intensities at 502/588 nm of the average spectrum per animal
(n=12,10,11 animals for PBS,1xLPS,4xLPS groups).
(c) Left: Representative images of plaques from PBS/1xLPS/4xLPS-treated animals, pseudo-coloured
based on LCO spectra. Right: Heatmap of collapsed emission spectra (cf. panel b) for individual plaques,
indicating plaque heterogeneity in control (PBS) animals, and more homogeneous spectra after LPS
treatment.
(d) Immunohistological staining and quantification of plaques based on AR antibody staining, with Congo
Red counterstain. The AB-positive cortical area is indistinguishable across groups (n=12,10,11 animals).
(e) Correlation between total LCO-stained plaque area and individual gFTAA and hFTAA areas shows
reduced correlation of gFTAA with plaque area in LPS-treated mice, suggesting less compacted plaques.
Quantification of the average qF TAA/hFTAA area ratio and plaque core fluorescence intensity ratios per
animal (n=12,10,11 animals for PBS,1xLPS,4xLPS groups) confirms hyperspectral plaque morphotype
analysis.
(f) Quantification of signal overlap between Congo Red (CR) and gFTAA (red curve) and between AR
antibody (6E10) staining and hFTAA (green curve) highlights distinct binding properties of LCOs vs.
classical amyloid staining approaches (3,115 plaques from n=5 animals).
(g) Autoradiography of brain sections shows decreased affinity of the amyloid PET-ligand
['®F]flutemetamol in 1xLPS- and 4xLPS-treated animals, reflecting decreased compact amyloid (values
are mean for 3 sections each from n=8,9,7 animals for PBS/1xLPS/4xLPS groups).
P-values are for posthoc Tukey test following significant one-way ANOVA. Data are presented as means

+ SEMs.



a serum IFN-y brain IFN-y b serum brain LCO ratios
4 ' £0021 p_g017 v A W& ¢ Cgo L0 R <& OQO & &
= ) ) DN o K Y K SN N e K Y > Wi
3 . g . SV VIOV SO & &
107 * a
= " * tD:; IFN-y 0.24 0.8 0.20| (0.29 0.51)0.28/0.31 0.33m 0.12]-0.22
> . A 2001 %
Z 05{[e 2 P = IL-10 0.23 ‘ 0.41/0.05( |-0.15/0.040.03|0.27 0.16 {0.32|-0.02 -0.05|0.42
w g ’—I-l £ k=1 K ﬁ‘
. wn| |4 3 3o £ IL-15/0.24|023 0.52(0.31/|0.25 0.29{0.00|0.22|0.38 0.30 {-0.13(-0.08 -0.15/0.25
K g 5 (%]
PBS 1XL.PS4xLPS PESIARSIMIES: 18 aue 0.10{027| |001|002(028/0.07 006 (024|023  [010/027| B
serum IL-10 brain IL-10 TNF-o [ 0.31 0.20| (0.09(0.30{0.33|0.34|0.14 | 0.08 " 0.28/0.18 g
P=00111 5
5 95 KC/GRO 0.41/0.25(0.10 0.11| |-0.06(0.09|0.210.27 |-0.12/-0.16 [SUCT 0.28/0.12| —
. i) 1.0
E g IL-40.20|0.05 0.27(0.20(0.11 0.17|0.30|0.40 | 0.41 (-0.09|-0.25 0.05|-0.24.
fo] f=]
& 1S
) 2 IFN-y |0.29/-0.15/0.29 | 0.01 | 0.09 |-0.06 214 0.22{0.33 [LE ) 0.07 0.18fH [10-5
= 2 IL-10 0.04|0.00{0.02|0.30|0.09 (0.17 | |[EEE 0.23(0.30 524 0.16 | 0.36 ERE] -0.60
0! = 001 0
PBS 1xLPS 4xLPS PBS 1xLPS 4xLPS -g IL-1p 0.03(0.22{0.28|0.33| 0.21(0.30| |0.22|0.23 0.27[-0.07
o
serum IL-6 brginii6 9 |L-6|0.28|0.27|0.38|0.07|0.34|0.27 |0.40| |0.33|0.30 0.31/0.33|-0.05 0.29/0.02| {4-05
% . g 10 P-0.0408 TNF- |0.31{0.16 [0.30| 0.06 | 0.14 [0.12|0.41 | | 0.31 |00} 0.32 011034
= 401 . L o8 = - 10
£ 10 g 06] ... & KC/GRO |0.33|0.32|-0.13|0.24 | 0.08 {-0.16|-0.09| |0.07 [0.16 | 033032 -0.07 -0.01/0.18
=3 o 2 as
(% 20 2 £ 04 . IL-4 [£551-0.02|-0.08(-0.23 BUCFIRE1.-0.25| 0.36 -0.05 -0.07 -0.29|-0.09
(=2
Sridha Co
olk%d las : 9 o0 plaque load | 0.02 |-0.04 -0.41|0.05|0.22 |-0.27| |0.24|0.34|-0.02| 0.01|0.12/-0.02-0.10 0.29(-0.21
PBS 1xLPS 4xLPS PBS 1xLPS 4xLPS
total A3 [-0.26{0.20 |-0.20{-0.11-0.05| 0.06 [-0.38| |-0.27|-0.17|-0.41|-0.15(-0.21{-0.37| 0.35 0.15(0.14
C total microglia d plague-associated microglia e microglial plaque coverage f plaque-associated astrocytes
) Congo Red © P =0.0047 Iba1 Condo re
33 Pu.1.Congo Red 3 Qo067 © ! aLLLOS, .. 25, P=00041 GFAP, Congored
S5 ' 5 o — X S >
2a : 3 . 33 © 3201 ¢ - \ \{q o
- E ? “ 28om g H X H
s 2 . 5 0 E=E i as W <
a< : v 295 2 340 & oF L
58 L So0.02 2% T ©
S . S > 9 0 et
g & o < @05 — a5
€800 . X 2 Eo.00 = 2 00, : - o |
PBS 1xLPS 4xLPS =S PBS 1xLPS 4xLPS PBS 1xLPS 4xLPS < PBS 1xLPS 4xLPS

g PBS 1XLPS 4XLPS h
g Trem?2 area
< ®
o g S P =0.029
s} = ® o
=1 pes oQ 3 =
- Z®
© ? 0 2 =
2 g3 e u
o~ - wanw
5% olldes
= PBS 1xLPS 4xLPS

Trem2 intensity

Trem2 fluorescence
intensity [a.u.]

©
% ©D68 area amyloid+CBe8 Impact of Trem2 on plaque morphotype ;1‘; 2 :
g 10 P:=0.020 B 2wy Linear regression < 3 1
o g 0.8 : _{_'; % 20 P,ﬂ?g i Parameter Estimates for Log,(qF TAA/hFTAA area) £ é 0 :';
2 ® o GAAA 2 % i -1 =
2 06 . - IR A Effect summary: FDR  FDR g 25 T &
a g 04 -‘ - [3 ; S0 - Y Source LogWorth P-Value b g 3 "_.‘ Lt s
© 3 02| ﬁ Hoggs r¢1 41 Log, [Trem2 intensity] 6.390 0.00000 ‘&g 4fr eed e pl s
8 0.0 ) 0 Log, [Trem2 area/plaque area] 1.909  0.01232 Uf—’ 14 15 16 17 18 -1.5-1.0-05 0.0 05 1.0
PBS 1xLPS 4xLPS PBS 1xLPS 4xLPS treatment (PBS, 1xLPS, 4xLPS) 1.845  0.01430 g Log, [Trem2 intensity] ~ Log, [Trem2 area/plaque area]

Leverage, P<0.0001 Leverage, P=0.00143

Figure 2. Systemic inflammation modulates cytokine levels, microglial plaque association and
Trem2 engagement in APP23 mice.

(a) Inflammatory cytokine levels in serum and brain. IFN-y and IL-10 are elevated in the brains of 1xLPS-
treated mice while IL-6 is decreased in the brain of 4xLPS-treated mice; levels of these cytokines in the
serum are indistinguishable amongst treatment groups (serum n=9,6,9 and brain n=8,7,9 mice from PBS,
1xLPS, 4xLPS groups).

(b) Correlations of cytokine levels and plaque load/AB levels with LCO-based plaque features indicate that
increased levels of IFN-y and IL-10 are associated with the shift to more filamentous amyloid, based on
the gFTAA/hFTAA area ratio (significant correlations are indicated by yellow font).

(c) Quantification of total cortical microglia (Pu.1+ nuclei) reveals no significant differences among
treatment groups (n=6,6,6 animals for PBS, 1xLPS, 4xLPS groups).

(d) Left: Representative image of plaque-associated microglia stained for Pu.1 and Congo Red. Right:
Decreased density of plague-associated microglia (Pu.1+ nuclei/um? Congo Red area) is observed in
4xLPS-treated mice compared to PBS controls (n= 8,9,10 animals for PBS,1xLPS,4xLPS groups).

(e) Left: Representative image of Iba1+ microglia surrounding LCO-labelled plaques. Right: Iba1-positive
coverage is reduced in 4xLPS-treated mice (n=10,10,10 animals for PBS, 1xLPS, 4xLPS groups).

(f) Left: Representative image showing GFAP+ astrocytes around AR plaques. Right. Plaque-associated
astrocyte density is indistinguishable across treatment groups (n= 6,6,6 animals for PBS,1xLPS,4xLPS
groups).



(9) Top: Representative images of CD68 staining colocalised with LCO-stained plaques. Bottom: CD68+
area is increased in 4xLPS-treated mice while co-localisation of CD68 with amyloid-staining is reduced in
1xLPS-treated animals (n=10,10,10 animals for PBS, 1xLPS, 4xLPS groups).

(h) Top: Representative images of Iba1, Methoxy-X04 (amyloid), and TREM2 staining. Right: Trem2+
area per plaque is increased in 4xLPS-treated animals, while mean Trem2 fluorescence intensity is
unchanged. Bottom, Linear regression for the effect of Trem2 area and intensity on plaque morphotype
(QFTAA/hFTAA area ratio for n=691 plaques). Scatter plots show fitted regression lines and confidence
intervals. Mean Trem2 intensity is positively associated with amyloid compaction, while increased Trem2
area shows a negative association.

Scale bar = 10 ym. P-values are for Dunn’s posthoc analysis after significant Kruskal-Wallis test. Data are
presented as means + SEMs.
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Figure 3. Filamentous but not compacted amyloid predicts neuritic dystrophy after systemic
inflammation.

(a-c), Left: Two representative images of plaques with higher (left) vs. lower (right) gF TAA/hFTAA ratio,
co-stained with markers for neuritic damage. Middle: quantification of plaque-associated dystrophic
neurites based on positive area of (a) amyloid precursor protein (APP, n=661 plaques), (b) phospho-Tau
(pTau, n=686 plaques) or (c) neurofilament light chain (NfL, n=537 plaques) (n=10,10,10 mice for
PBS,1xLPS,4xLPS groups). Right: Effect leverage plots and parameter estimates demonstrate the impact
of gFTAA, hFTAA and treatment on markers of plaque-associated neuritic dystrophy in APP23 mice.
Data are presented as means + SEMs. P-values are for Dunn’s posthoc analysis after significant Kruskal-
Wallis test. Scatter plots show fitted regression lines and confidence intervals. Scale bar 10 um.
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Figure 4. Filamentous but not compacted amyloid predicts neuritic dystrophy during aging and
across mouse lines.

(a) Schematic of experimental groups and representative images of gFTAA, hFTAA, microglia (Iba1), and
neuritic dystrophy (APP) in APP23 mice aged 9, 12, 15, and 24 months, and APPPS1 mice at 4 and 6
months.

(b) Quantification of plaque parameters in APP23 and APPPS1 mice (n=4-6 males and 4-6 females per
age group). Age-related changes in plaque-associated microglial coverage (Iba1 area/plaque area) and
gFTAA/hFTAA area ratio indicate progressive alterations in plaque structure and microglial-plaque
interactions. The qFTAA/hFTAA area ratio increases with age, reflecting enhanced plague compaction.
Microglial-plaque association decreases while neuritic dystrophy increased with age in APP23 animals.
(c) A multivariate regression model trained to predict plaque-associated APP area (neuritic dystrophy)
showed good performance (R?=0.60). Feature importance analysis indicates that hFTAA-positive amyloid
is the major predictor of neuritic dystrophy, while gFTAA-positive area even had a small negative effect.
Data are presented as means + SEMs; P values are for posthoc Tukey test following significant one-way
ANOVA. n = 362, 309, 100, 391, 581, 1006 plaques for 4, 6, 9, 12, 15, 24-month groups, respectively.
Scale bar = 20 ym.
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Figure 5. Filamentous but not compacted amyloid predicts neuritic dystrophy in sporadic and
familial AD patients but is not captured by the amyloid PET-ligand ['8F]flutemetamol.

(a) Schematic overview of human brain samples analysed from individuals with sporadic (sAD) and
familial AD (fAD), carrying PSEN1 Intron4, APP V7171, and TREMZ2 R47H variants as well as one patient
carrying both the PSEN1 Intron4 and TREM2 R47H mutations.

(b) Representative confocal images show AB plaques stained with gFTAA (compact amyloid), hFTAA
(filamentous amyloid), Iba1 (microglia), and APP (neuritic dystrophy).

(c) Quantification of plaque metrics across patient groups. Plaque-associated microglial area (Iba1/plaque
area) qFTAA/hFTAA area ratio is lower in TREMZ2 mutation carriers, indicating a shift toward less
compacted amyloid. APP-positive neuritic dystrophy per plaque is lower in all mutation carriers compared
to sAD.

(d) A multivariate regression model trained on sAD, APP V717l, and PSENT Intron4 cases predicts
plaque-associated APP area with reasonable accuracy (R? = 0.29). Feature importance analysis reveals
that both hFTAA area and Iba1 area are major contributors to model performance, and both positively
predict neuritic dystrophy.

(e) Testing the same model on the unseen cohort of TREM2 R47H patients (incl. the patient with PSEN1
mutation), improves predictive power (R?=0.44), in line with the known impact of TREM2 mutations on
microglial activation and amyloid compaction.

(f) Autoradiography of brain sections using the amyloid PET-ligand ['®F]flutemetamol tracks gF TAA+ but
not hFTAA+ amyloid plaque components (robust Cauchy curve fit, with confidence intervals).

Results are presented as means + SEMs; P-values are for posthoc Tukey test following significant one-
way ANOVA; n = 249, 185, 222, 52, 79 plaques for sAD, PSENT Intron4, APP V7171, TREM2 R47H,
PSEN1/TREM?2, respectively.
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Extended Data Figure 1. Systemic inflammation does not alter overall AB production or onset of
plaque deposition in APP23 mice.

(a) Schematic of the experimental design. (b) Quantification of total cortical AB levels and AB40/42 ratio
by ELISA (n=11,9,10) shows no significant differences between treatment groups. (c) Representative
Western blot and quantification of full-length APP, C-terminal fragment-g (CTF-8), and AB in brain lysates,
normalised to GAPDH (n= 5, 5, 4 animals; values are the average of 4 independent Western Blots). LPS
treatment does not affect levels of APP or its cleavage products. (d) Analysis of AR pathology at 6 months
of age, following treatment with 1xLPS or 4xLPS at 3 months. Histological quantification of plaque number,
and ELISA measurements of total AR levels and AB40/42 ratio (n=5,4,5) reveals no significant differences
amongst treatment groups, indicating that peripheral immune stimulation does not affect pathology onset.
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Extended Data Figure 2: Length of time after systemic inflammatory insults determines its impact
on amyloid morphotype and plaque-associated microglial numbers.

(a) Experimental design: APP23 mice were intraperitoneally injected either at 3 months or 7 months with
PBS (n=17, pooled for 3- and 7-months groups), 1xLPS (n=9/5 for 3/7 months injection), or 4xLPS (n=9/6
for 3/7 months injection) and analysed at 12 months. Quantification of LCO emission ratio (502/588 nm),
and gFTAA/hFTAA area ratio shows that LPS administration at 3 months, but not at 7 months, significantly
alters plague morphotype. Stereological quantification of plaque-associated microglia for PBS (n=14),
1xLPS (n=9,5), and 4xLPS (n=10,6) treated animals stimulated at 3 or 7 months of age, indicates reduced
microglial coverage only in mice that received 4xLPS treatment at 3 months. (b) APP23 mice were treated
as in (a) but analysed at 9 months of age (n=17 for PBS, n=9,5 for 1xLPS at 3/7 months, n=9,7 for 4xLPS
at 3/7 months), when immature plaques show virtually no binding for qFTAA and spectral analysis is
based on the emission spectrum of hFTAA only. Only treatment at 3 months with 4xLPS alters plaque
morphotype, as shown by decreased 545/588 nm ratios. Bottom row: Average emission spectra confirm
a shift in fluorescence profiles in 3-month-old animals treated with 4xLPS. Representative images of LCO-
stained plaques with spectral pseudo-colouring. Data are presented as mean + SEM. P values are for
Dunn’s multiple comparison following significant Kruskal-Wallis test.
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Extended Data Figure 3: Levels of additional cytokines in 12 months old APP23 animals (related
to Fig. 2).

ELISA measurement of additional cytokines in serum (n=9,6,9 from PBS,1xLPS,4xLPS groups) and brain
(n=8,7,9 from PBS, 1xLPS, 4xLPS groups) revealed no significant alterations between treatment groups.
Data are presented as mean + SEM.
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Methods

Animals

In this study, hemizygous APP23 transgenic (C57BL/6J-Tg(Thy1-APPkezon:me710)23)44 and
hemizygous APPPS1 mice (C57BL/6J-Tg(Thy1-APPSw,Thy1-PSEN1*L166P)21Jckr/J)4 were
used.

APP23 mice express human amyloid-B precursor protein (APP) with the Swedish double
mutation under the Thy-1 promoter, and have been backcrossed to C57BL/6J mice for >20
generations. In the neocortex, female mice develop the first amyloid plaques around 6 months
of age 44. Only female mice were used for immune stimulation experiments due to the described
significant gender effect on the pathology of cerebral B-amyloidosis®3, for analyses across the
life-span, both male and female mice were analysed.

APPPS1 mice carry two transgenes for APP with the Swedish double mutation and PSEN1
with the PSEN1*L166P mutation, both under the Thy1 promoter. In this model, first plaques
start to develop around 6 weeks of age*3.

All animals were maintained under specific pathogen-free conditions and were housed in
groups with enrichment. All experiments were performed in accordance with the veterinary
office regulations of Baden-Wurttemberg (Germany) and were approved by the Ethical
Commission for animal experimentation of Tubingen, Germany.

Peripheral immune stimulation

Female APP23 mice were randomly assigned to treatment groups and were injected at the
specified time points (3 months or 7 months) intraperitoneally (i.p.) with LPS (from salmonella
enterica serotype typhimurium, Sigma) at a daily dose of 500 ug/kg bodyweight. On four



consecutive days, animals received either four LPS injections (4xLPS), or four vehicle injections
(phosphate buffered saline, PBS), or a single LPS injection followed by three vehicle injections
on the following three days (1xLPS).

At the specified time-points (6, 9, or 12 months of age), animals were deeply
anaesthetised using sedaxylan/ketamine (64 mg/kg//472 mg/kg). Blood was collected from the
right ventricle of the heart, followed by trans-cardial perfusion with ice-cold PBS through the left
ventricle. The brain was removed and sagitally separated into the two hemispheres, which were
either fixed in 4% paraformaldehyde (PFA) or fresh frozen on dry ice. Fresh frozen hemispheres
were homogenised using a Precellys® lysing kit and machine at 20% (w/v) in homogenisation
buffer (50 mM Tris pH 8, 150 mM NaCl, 5 mM EDTA) containing phosphatase and protease
inhibitors (Pierce). Fixed hemispheres were kept in 4% PFA for 24 h, followed by cryoprotection
in 30% sucrose in PBS, and subsequently frozen in 2-methylbutane. For histological analysis,
fixed brain hemispheres were coronally sectioned at 25 um using a freezing-sliding microtome
(Leica).

Patient samples
Formalin-fixed, paraffin-embedded (FFPE) tissue samples were obtained from the frontal
cortex of 15 Alzheimer’s disease (AD) patients, including six sporadic AD (sAD) cases and nine
familial AD cases carrying mutations in PSENT Intron4 (n=3), APP V7171 (n=3), TREM2 R47H
(n=2), and an individual carrying a rare combination of PSENT1 Intron4 as well as a TREMZ2
R47H mutations (n=1). Detailed patient information is summarized in Supplementary Table 1.
Tissue was obtained from the Queens Square Brain Bank for Neurological Studies,
Queen Square Institute of Neurology, University College London, UK, and the work was
approved by the institutional ethics review board (Independent Research Ethics Committee of
the Medical Faculty, University of Tuebingen; Project Number: 695/2021B02 and the Ethics
Committee of the LMU Munich; Project Number: 24-0831_1). Informed consent was obtained
from all patients or their families for the use of postmortem tissues for research purposes. Each
sample was pseudonymized to protect patient confidentiality.

Immunostaining

Paraffin-embedded frontal cortex sections from human AD patients were deparaffinized,
rehydrated, and subjected to antigen retrieval in citrate buffer (pH 6.0) at 90°C for 35 minutes.
Endogenous peroxidase activity was quenched with 0.3% H2O- in PBS for 30 minutes.
Immunohistochemical stainings were performed using either Vectastain Elite ABC kits (Vector
laboratories) or fluorescent secondary antibodies (Jackson Immunolaboratories). For LCO co-
staining fluorescent secondary antibodies coupled to Brilliant Violet 421 or Alexa-647 were
used for detection of the protein of interest, followed by staining with quadro-formyl thiophene
acetic acid (QFTAA) and hepta-formyl thiophene acetic acid (hFTAA) (see below).

Brain sections were blocked for 1 h with 5% normal serum of the secondary antibody species,
followed by primary antibody incubation overnight at 4°C. Primary antibodies used were: rabbit
anti-Pu.1 (1:1,000; Cell Signaling), rabbit anti-lba1l (1:1,000; Wako), goat anti-lba1l (1:500;
Novus), rabbit anti-Ap (NT12; courtesy of P. Paganetti, Basel, Switzerland), rat anti-CD68
(1:1,000; Serotec), sheep anti-Trem2 (1:100; R&D systems), rabbit anti-APP (5313, 1:750;
generous gift from C. Haas, Munich) or mouse anti-APP A4 (1:500, Millipore), and rabbit anti-
GFAP (1:500, Biozol). Congo Red staining was conducted according to standard procedures.
Immunohistochemical images were acquired on an Axioplan 2 microscope; colour images were
captured using an Axioplan MRc camera and AxioVision 4.7 software (Carl Zeiss).
Fluorescence images were acquired using an LSM 510 META (Axiovert 200M; LSM software
4.2, Carl Zeiss) or Leica TCS SP8 X (LAS X, Leica) confocal microscope with an oil immersion
x40/1.3 objective. Sequential excitation of fluorophores ensured no fluorescence cross-talk and



best signal throughput. Maximum-intensity projections were generated using IMARIS 8.3.1
software (Bitmap) or Fiji.

Spectral imaging of LCOs

Free-floating sections were stained with the LCOs qFTAA (1.5 mM in deionized water, diluted
1:500 in PBS) and hFTAA (1.5 mM in deionized water, diluted 1:1000 in PBS for double stain
with gFTAA, 1:500 in PBS for single stain) for 30 minutes. After mounting, sections were dried
and coverslipped with Fluorsave mounting medium (Calbiochem).

Spectra of gFTAA- and hFTAA-stained amyloid aggregates were acquired on a Zeiss LSM 510
META (Axiovert 200M) confocal microscope equipped with a spectral detector with an oil-
immersion x40/1.3 objective. The dyes were excited using the 458 nm argon laser line.
Emission spectra were acquired from 470 to 695 nm with steps of 10.7 nm at 3 different regions
of interest (ROIs) within the middle core region from an intermediate plane of each plaque.
Acquired plaques originated from at least three different sections throughout the mouse brain.
The mean emission spectrum per plaque was calculated from the 3 ROIs and normalized to its
respective maxima. The ratio of the intensity of emitted light at the blue gFTAA peak (502 nm)
and the red hFTAA peak (588 nm) was used as readout for spectral distinction of plaques. For
12 months old APP23 animals, the 502 / 588 nm ratio was calculated for statistical analysis
from the normalized mean spectrum generated from at least 35 plaques per animal. Figure 1
shows pooled data from all PBS-injected control animals independent of injection time point.
For 9 months old APP23 animals, single staining with hFTAA was conducted and the emission
spectrum of 20-30 plaques per animal was acquired and processed as described. The ratio of
the intensity of emitted light at the two local emission maxima (545 nm and 588 nm) was used
as readout for spectral distinction of plaques.

Image quantification

For quantification of mean plaque area and Congo red positive area, mosaic images of 5
consecutive sections stained immunohistochemically for NT12 and Congo red were acquired
on a Zeiss Axioplan 2 microscope with a x4/0.1 objective. Image analyses were automated
using custom-written plugins in Fiji. Quantification of the mean plaque area was performed in
the neocortex using the luminance channel. If needed, the gamma value was adjusted to
ensure uniform contrast between staining and background. A fixed manual threshold was
determined so that plaques were above threshold and was applied to all images. Staining of
cerebral amyloid angiopathy and areas with high background staining were excluded from
analysis. Only plaques with a minimum size of 30 yum2 were included in the analysis. Automatic
recognition of plaques was manually checked and corrected upon misclassification. The Congo
red positive area was quantified by transforming the RGB image to the CIELAB colour space
and subsequently thresholding the positive values of the a* channel, which designates the
purity of the red colour.

To quantify neuronal dystrophy, and microglial expression of lIbal, Trem2, and CD68, 5-10
fluorescent images per animal were acquired with the same microscope settings. Detection of
gFTAA and hFTAA was achieved using bandpass filters encompassing their respective
maximum emission wavelength. Images were subsequently semi-automatically analysed with
another custom plugin written in Fiji. Maximum intensity projections were generated to choose
the region of interest consisting of the plaque with the desired staining. Fluorescence channels
were split and fixed intensity thresholds were applied to each channel. For every plaque, plaque
size and area of the costained protein within the region of interest were determined based on
thresholded areas. Plaques smaller 100 ymz2 or bigger 2500 ym?2 were excluded from analysis.
The area of the protein of interest was divided by the plaque size for normalization purposes.
To analyse colocalization between the protein of interest and the amyloid plaque, the same
images were analysed in IMARIS. Using the 3D colocalization tool, a constant threshold was



applied to the fluorescent channels for hFTAA and the protein of interest. The threshold for
hFTAA was determined so that the whole amyloid plaque (i.e. including the qFTAA positive
core) was included in the colocalization analysis. The percentage of colocalized plaque material
in relation to total plaque material per image was used as readout for protein colocalization.
To assess the influence of plaque size and structure on neuronal dystrophy, acquired images
from PBS-treated 12 months old APP23 controls were semi-automatically analyzed with a
custom plugin written in Fiji. Maximum intensity projections were generated to choose the
region of interest consisting of the plaque with the surrounding APP staining. For every plaque,
a core region was chosen, wherein the intensity of gFTAA and hFTAA was subsequently
measured. Fluorescence channels were split and fixed intensity thresholds were applied to
each channel. Based on thresholded areas, plaque size and the ratio of gFTAA intensity to
hFTAA intensity in its core were determined for every plaque (core qFTAA / hFTAA ratio), in
addition to the area of surrounding APP staining.

Support vector regression

We developed a model for APP area prediction using support vector regression (SVR).
Separate models were constructed for human and mouse datasets. For each model, APP area
served as the response variable, and sex, age, plaque-associated Iba1 area, qFTAA, hFTAA,
and the Core gF/hF ratio were included as predictors. For mouse data analysis, samples were
randomly partitioned at the animal level into training and testing sets, and five-fold cross-
validation was performed for model evaluation. For the human data analysis, the SVR model
was trained exclusively on data from sporadic AD, PSEN1 Intron4 and APP V717 carriers, with
this data set further split into training and testing sets for model fitting and validation. The trained
model was subsequently applied to the TREM2 mutation carriers to assess cross-group
generalizability. Model performance was quantified using the coefficient of determination (R?)
between observed and predicted APP area in the testing set.

Stereological quantification

Stereological quantification was performed by a blinded observer on random sets of every 12th
systematically sampled 25 pm thick sections throughout the neocortex. Analysis was
conducted with the Stereologer software (Stereo Investigator 6; MBF Bioscience) and a
motorized x-y-z stage coupled to a video microscopy system (Optronics). For quantification of
microglial numbers based on Pu.1 staining, the optical fractionator technique was used with
three-dimensional disectors as previously describeds4. The number of plaque-associated
GFAP- and Pu.1-positive cells was determined for at least 30 plaques per animal. Plaque load
was determined using the area fraction fractionator techniquess based on Congo Red and anti-
Ap staining (NT12 antibody).

ELISA

For quantification of AB by ELISA, brain homogenates were pretreated with formic acid (Sigma-
Aldrich, final concentration: 70% vol/vol), followed by sonication for 30 seconds on ice, and
subsequent centrifugation at 25,000 g for 1 hour at 4°C. Supernatants were equilibrated in
neutralization buffer (1 M Tris base, 0.5 M NaHPO., 0.05% NaNs; (wt/vol)). AR was measured
using human (6E10) AR triplex assay (Meso Scale Discovery, MSD) according to the
manufacturer’s instructions. Total AB was calculated as the sum of the measured values for
AB1-38, AB1-40, and ABy-42.

For cytokine measurements, brain homogenates were centrifuged at 25,000 g for 30 minutes
at 4 °C. Supernatants were analysed with mouse pro-inflammatory panel 1 V-plex plate (MSD)
according to the manufacturer’s instructions. To determine blood cytokines, serum was
obtained by coagulation of whole blood in Vacuettes (Greiner Bio-One) for 10 min at room
temperature, followed by centrifugation for 10 min at 2,000 g. Serum samples were diluted 1:2
before cytokine measurement. The investigator was blinded to the treatment groups.



Measurements were performed on a Mesoscale Sector Imager 6000 and data were analyzed
using MSD discovery workbench software 2.0. For brain homogenates, cytokine levels were
normalised against total protein amount as measured by microplate Pierce bicinchoninic acid
(BCA) protein assay (Perbio Science).

Western Blotting analysis

For Western Blotting, Urea was added at a final concentration of 5.4 M to total brain
homogenates. Samples were incubated for 10 minutes at 70°C, followed by centrifugation for
1 minute at 16000 g. Pellets were discarded and protein levels of the supernant were quantified
with a microplate Pierce 660 nm protein assay (Thermo Fischer) and adjusted to equal protein
concentrations. After addition of Urea sample buffer (final concentration: 10% glycerol (vol/vol),
2% SDS (wt/vol), 0.0002% Bromphonel blue, 0.1M Tris-HCL (pH 8.6), 2% B-mercaptoethanol
(volivol)) 15 ug total protein per sample were analysed on BOLT 4-12% Bis-Tris gels (Thermo
Fischer) using standard procedures. Proteins were transferred to nitrocellulose membranes,
followed by boiling of the membranes for 5 minutes in a microwave. Ponceau S staining was
conducted to verify equal protein transfer across samples. Blocking was performed with 5%
milk in phosphate buffered saline containing 0.05% Tween (PBST) for 1h and blots were
incubated with the following primary antibodies: mouse anti-Af (6E10; 1:2500, Covance
Research Products), mouse anti-GAPDH (1:108, Acros Antibodies) in PBST overnight at 4°C.
Membranes were then probed with the respective secondary HRP-labelled antibodies
(1:20,000, Jackson ImmunolLaboratories). Protein bands were detected using
chemiluminescent peroxidase substrate (ECL prime, GE Healthcare). Densitometric values of
protein band intensities were determined in Fiji and normalised to GAPDH intensities. Samples
were analysed at least three times on separate blots. The mean value of normalised intensities
of all technical replicates per sample is shown and was used for statistical analysis.

Amyloid-PET Autoradiography

In vitro autoradiography on human and murine brain sections was performed with a solution of
0.4 MBg/mL ['8F]Flutemetamol in PBS. The sections were fully covered with tracer solution and
incubated for one hour. After incubation, the sections were washed with PBS, 70/30 EtOH/PBS
and 30/70 EtOH/PBS and then dried at room temperature for one hour. The brain sections were
exposed to a phosphor imaging plate (BAS-IP MS 2025 E, GE) for at least 10h in the dark,
which was then scanned with a CR-Reader (CR35 BIO, DURR MEDICAL). Evaluation of the
images was performed using Aida Image Analyzer software (v.4.50.010, Elysia-raytest GmbH).
A manually drawn region of interest (ROI) was placed in the white matter for reference. After
background subtraction, intensity normalization was performed by calculating cortex to white
matter ratios.

Statistical analysis
Linear regressions were performed using JMP software (version 14.2.0 or higher). If necessary,
data were first log10 or log10[x+1]-transformed to achieve a normal distribution. Data were then
analysed using the ‘Fit model’ function, generating parameter estimates as well as residual vs.
leverage plots, where a least squares line (red) and confidence bands (shaded red) provide a
visual representation of the statistical significance (at the 5% level) of the effect of X; a
significant effect is evident by the crossing of the confidence lines (shaded red/red) through the
blue line in the graph, which indicates the mean of the Y leverage residuals. To calculate the
data points in the graph, the mean value of Y is added to the Y-residuals and the mean of the
X-value is added to the X-residuals, generating “leverage residuals”, and these pairs of
residuals are then used to generate the effect leverage plots shownss.

All other statistical analyses were performed using Prism 10. Data were assessed for
normal distribution (Shapiro-Wilk test) and statistical outliers (ROUT method, Q = 0.5%). The



Brown-Forsythe test was used to check equality of variances. If the normality criterion was met
and variances were not significantly different, data were analysed using a one-way ANOVA,
followed by pairwise comparison (if P<0.05) with post-hoc Tukey correction. For data sets with
small sample size or non-normally distributed data, the Kruskal-Wallis test was performed,
followed by pairwise comparisons (if P< 0.05) with post-hoc Dunn’s correction. For comparisons
between two groups, two-tailed Mann Whitney test was performed. All experiments were at
least performed twice or in independent batches of animals (figures show the pooled data).
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