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I Details of QuanDT for DC-DC Buck Converter

A Theory Model of the System

A.1 Model of DC-DC Buck Converter with ZIP Load

A DC-DC converter is an electronic circuit that converts a direct current (DC) voltage source from
one voltage level to another. With the rapid advancement of power electronics technology, DC-DC
converters have become integral components in electric vehicles, DC microgrids and renewable
energy generation systems, and are widely used in these domains.1 In systems incorporating
renewable energy sources such as photovoltaics and energy storage, DC-DC converters enable
voltage conversion—step-up or step-down—to provide suitable voltage levels for loads with varying
voltage specifications.2 One of the most commonly used DC-DC converter topologies is the Buck
converter, which is specifically designed to reduce a high DC voltage to a more manageable level.3

ZIP Loadሶ𝒊𝑳

𝒖𝑪

𝑅1

𝐶

𝐿

𝑉𝑖𝑛 PWM
𝜇

𝑖𝑙1

Supplementary Figure 1: A DC-DC Buck Converter with ZIP Load.

As illustrated in SFig. 1, the buck converter has a simple structure, consisting of a main circuit
made up of a transistor and a diode controlled by a pulse-width modulation (PWM) signal with a
duty cycle 𝜇 ∈ (0, 1) for switching, and passive components such as an inductor 𝐿 and a capacitor𝐶
for output filtering. Together with the renewable energy source and the load, the converter forms a
nonlinear second-order system.4 Since the time scale of variations in renewable energy generation
is typically much slower than the system dynamics, and considering that renewable energy sources
are often coupled with energy storage systems to mitigate stochastic fluctuations, the input can be
modeled as a constant DC voltage source 𝑉in.5

Load modeling is also essential for both steady-state and dynamic analysis of power systems.6

Modern residential, commercial, and industrial loads can often be modeled as ZIP loads, which
comprise a parallel combination of resistive load 𝑅1, current-type load 𝑖𝑙1, and power-type load 𝑃.7

To incorporate the power-type load into the model, the current-voltage relationship 𝑖 = 𝑃/𝑢 around
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an operating voltage 𝑉0 can be linearized using a first-order Taylor expansion, yielding

𝑖 =
𝑃

𝑉0
− 𝑃

𝑉2
0
(𝑢 −𝑉0) = − 𝑃

𝑉2
0
𝑢 + 2𝑃

𝑉0
, (1)

where 𝑖 and 𝑢 represent the current through and voltage across the power-type load, respectively.
This indicates that the power-type load can be equivalently represented as a combination of a
current-type load,

𝑖𝑙2 =
2𝑃
𝑉0
, (2)

and an impedance load,

𝑅2 = −
𝑉2

0
𝑃
. (3)

In summary, the overall ZIP load can be represented as a parallel connection of 𝑅1 and 𝑅2, and a
total current-type load formed by 𝑖𝑙1 and 𝑖𝑙2, that is

𝑅 = 𝑅1//𝑅2 = 𝑅1//
(
−
𝑉2

0
𝑃

)
, (4)

𝑖𝑙 = 𝑖𝑙1 + 𝑖𝑙2 = 𝑖𝑙1 +
2𝑃
𝑉0
. (5)

Within one switching cycle, the system dynamics can be derived based on Kirchhoff’s laws.8

When the switch is in the ON state, the state variables, inductor current 𝑖𝐿 and capacitor voltage
𝑢𝐶 , satisfy

𝑖𝐿 = 𝐶
𝑑𝑢𝐶

𝑑𝑡
+ 𝑢𝐶
𝑅

+ 𝑖𝑙 , (6)

𝑢𝐶 = 𝑉in − 𝐿
𝑑𝑖𝐿

𝑑𝑡
. (7)

When the switch is in the OFF state, the equations become:

𝑖𝐿 = 𝐶
𝑑𝑢𝐶

𝑑𝑡
+ 𝑢𝐶
𝑅

+ 𝑖𝑙 , (8)

𝑢𝐶 = −𝐿 𝑑𝑖𝐿
𝑑𝑡
. (9)

Using state-space averaging method,9 the unified state-space model of the DC-DC Buck con-
verter with ZIP load over a switching period can be written as[

¤𝑖𝐿
¤𝑢𝐶

]
=

[
0 − 1

𝐿
1
𝐶

− 1
𝑅𝐶

] [
𝑖𝐿

𝑢𝐶

]
+

[
𝑉in
𝐿

0
0 − 1

𝐶

] [
𝜇

𝑖𝑙

]
. (10)
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A.2 Physical Controller and Fault Detector Model

Physical Controller Model: As the foundational layer for more advanced control strategies in
renewable energy generation systems,10 DC-DC converters rely on their controllers to generate
PWM signals with appropriate duty cycles to regulate output voltage or current.11 To address
the demands for fast dynamic response, strong stability margins, and high robustness, a wide
range of advanced control approaches—such as sliding mode control, model predictive control,
and intelligent control—have been proposed for DC-DC converter applications.12 In this paper,
for simplicity and without loss of generality, we employ a basic proportional-integral (PI) control
strategy to regulate the output voltage of the buck converter. The control law is defined as

𝜇 = clip
(
𝐾𝑝𝑒(𝑡) + 𝐾𝑖

∫ 𝑡

0
𝑒(𝜏) 𝑑𝜏; 0, 1

)
= min

(
max

(
𝐾𝑝𝑒(𝑡) + 𝐾𝑖

∫ 𝑡

0
𝑒(𝜏) 𝑑𝜏, 0

)
, 1

)
,

(11)

where 𝜇 denotes the duty cycle, constrained within (0, 1) by the clipping function clip(·), which
limits the controller output to a valid PWM range. The error signal 𝑒(𝑡) is given by

𝑒(𝑡) = 𝑉set −𝑉meas, (12)

with 𝑉set representing the voltage reference and 𝑉meas the actual measured output voltage.
By tuning the proportional gain 𝐾𝑝 and integral gain 𝐾𝑖 appropriately, this simple PI control law

can achieve effective regulation of the buck converter’s output voltage to meet typical performance
requirements.

Fault Detector Model: With the increasing digitalization and intelligence of modern power
systems, controllers play a crucial role as the core units responsible for system regulation and
coordination across all levels of operation. From large-scale centralized grids to distributed energy
systems, controllers are widely deployed for key tasks such as voltage regulation, frequency stabi-
lization, power allocation, and energy dispatch. However, the complexity of controllers and their
reliance on external information also make them a potential vulnerability in power system opera-
tions. A malfunction or targeted attack on a controller can lead to system performance degradation
at best, or even trigger cascading failures that jeopardize the stability and safety of the entire grid.13

Controller failures are generally categorized into hardware, software, and communication fail-
ures. Hardware failures include processor damage, sensor malfunctions, and power interruptions,
which can directly disrupt or impair control functions.14 Software failures often stem from algo-
rithmic flaws, data overflows, or logical errors, resulting in abnormal system responses or incorrect
control actions.15 Communication failures, such as signal delays, data loss, or synchronization
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issues, can hinder information exchange between controllers, sensors, and actuators, ultimately
degrading overall control performance.16 These failures are typically unpredictable, with abrupt
and cascading characteristics, posing significant challenges to secure operation of the power grid.

More concerning is the recent rise in cyber-attacks targeting controllers, characterized by in-
creasing sophistication and diversity in attack strategies.17 Attackers may disrupt the sensing,
decision-making, and execution processes of controllers via techniques such as data injection, com-
mand tampering, or communication interference. Among them, false data injection (FDI) attacks
which forge values have been shown to cause significant controller misjudgment while evading
traditional anomaly detection schemes. Denial-of-service (DoS) attacks flood controllers with
excessive requests, blocking communication channels and rendering control strategies ineffective.
Other tactics, such as replay attacks, malicious command injection, and manipulation of control
algorithms, may cause severe disruption at the control layer, which can propagate to the physical
infrastructure, leading to equipment damage or even system-wide blackouts.

To address these threats, extensive research efforts have emerged from both academia and in-
dustry to enhance the security and robustness of control systems. On one hand, by incorporating de-
tection and mitigation mechanisms, it is possible to design control strategies with attack-awareness
and adaptive resilience, improving a system’s survivability and responsiveness under adversarial
conditions.18 On the other hand, to defend against unforeseen or complex threats, redundancy and
fault-tolerant design offer a final safeguard to ensure operational continuity and system stability.19

In this study, we consider scenarios in which the controller’s output signal experiences a
sudden drop, caused by events such as power interruptions, algorithmic output overflows, or false
data injection attacks. A fault detection module is designed to simultaneously receive control
commands from both the physical controller and its digital twin counterpart. Under normal
operating conditions, the module forwards the control signal generated by the physical controller.
However, when an abnormal condition is detected, the module switches to the control signal
provided by the digital twin controller.

A.3 QuanDT Model

Constant power loads (CPLs) refer to a class of loads whose power consumption remains approx-
imately constant.20 Traditional CPLs are typically industrial automation devices operating under
constant power control modes, such as variable-frequency drives, arc welding machines, computer
numerical control (CNC) equipment, and laser processing systems. In addition, many types of
modern power electronic devices—such as computers, communication equipment, inverter-driven
motor systems, data centers, and server clusters—also behave as CPLs due to their use of tightly
controlled switching power electronic converters. These loads are increasingly prevalent in modern
power systems and are known to exhibit a negative impedance characteristic, potentially leading
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to system instability when the CPL penetration level is high.21 Meanwhile, with the rapid rise of
large language models (LLMs), the deployment of AI infrastructure has surged, introducing a new
class of high-power-consumption systems with highly volatile power profiles.22 These systems
pose significant threats to the reliability and resilience of the power grid, further underscoring the
critical importance of monitoring power loads.

In the context of the Buck converter with ZIP load considered in this work, we focus on the effects
of power fluctuations in CPL. As analyzed previously, a power load can be equivalently modeled
as a combination of a current load 𝑖𝑙2, given by Eq. (2), and an impedance-type load 𝑅2, given by
Eq. (3). When the power varies, it can be observed from the expressions that the corresponding
equivalent current and impedance components also change accordingly. Consequently, both the
total equivalent impedance 𝑅, formed by the parallel connection of 𝑅1 and 𝑅2, and the total current
input 𝑖𝑙 , formed by the sum of 𝑖𝑙1 and 𝑖𝑙2, will be affected. Ultimately, this leads to variations in
both the system matrix and input of the state-space model described in Eq. (10).

DTs are expected to capture such variations and provide real-time tracking of the actual system.
From the experimental studies in the main body of the manuscript, the necessity of capturing load
power fluctuations is evident. For instance, in Scenario 3, the changes in power load can alter
the system’s dynamic characteristics by affecting its structure parameters. As a result, a machine
learning model trained for one operating state cannot simply be transferred to another operating
state. Instead, it requires data generated by a DT that can track the actual system in real time to
build the training model.

𝜇, 𝑃𝑚

𝜇𝐷𝑇

Physical
System

Quantum
Digital Twin

Supplementary Figure 2: Data flow between physical system and DT.

To enable the DT to capture such variations in the system, real-time measurements of the power
load 𝑃𝑚 can be taken. Based on these measurements, the system matrix used for simulation can be
updated according to Eq. (2)-(5) and Eq. (10). Additionally, as shown in the SFig.2, the QuanDT
requires the real-time control signal 𝜇 from the physical controller as inputs for the simulation
calculations. Meanwhile, the DT controller running simultaneously within the DT system will
output the control signal 𝜇𝐷𝑇 based on the simulation results of the QuanDT, which will serve as
the backup signal.

The core of QuanDT is to solve models using quantum algorithms. The conventional method
for solving Eq. (10) involves discretizing it with a certain time step. Although this method remains
applicable when the system is time-varying, it may encounter stability issues when the system
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stiffness is large. Another approach is to use an analytical solution form which includes matrix
exponentiation and inversion as follows

𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) + (𝑒𝐴𝑡 − 𝐼)𝐴−1𝐵𝑢. (13)

For the Buck converter with ZIP load, the system can be expressed as

𝐴 =

[
0 − 1

𝐿
1
𝐶

− 1
𝑅𝐶

]
, 𝐵 =

[
𝑉in
𝐿

0
0 − 1

𝐶

]
, 𝑥 =

[
¤𝑖𝐿
𝑢𝐶

]
, 𝑢 =

[
𝜇

𝑖𝑙

]
. (14)

This method, in comparison with the discretization one, offers higher accuracy and is widely
used in the mainstream power system simulation tools, e.g., Simulink, Opal-RT, Typhoon HIL.
However, for classical computers, the approximate calculation in Eq. (13) has at least 𝑂 (𝑁3)
complexity. In DT scenario, since the system is time-varying, the system needs to be continuously
solved. When the scale of matrix 𝐴 becomes large, real-time computation of the system will
become challenging. However, by using specific quantum circuits, efficient computation can be
achieved with a logarithmic time complexity in terms of system size. Although the system case
of the Buck converter is not large, it serves as a simple example to clearly illustrate the concept
of QuanDT and provides a research method for QuanDT under current intermediate-scale noisy
quantum (NISQ) conditions.

Specifically speaking, the solution 𝑥(𝑡) of problem (13) can be approximated by a 𝑘-th order
Taylor expansion as

𝑥(𝑡) ≈
𝑘∑︁

𝑚=0

(𝐴𝑡)𝑚
𝑚!

𝑥(0) +
𝑘∑︁
𝑛=1

𝐴(𝑛−1)𝑡𝑛

𝑛!
𝐵𝑢. (15)

Let 𝑏 Δ
= 𝐵𝑢, and then define

|𝑏⟩ Δ
=

∑︁
𝑗

𝑏 𝑗

∥𝑏∥ | 𝑗⟩, |𝑥(0)⟩
Δ
=

∑︁
𝑗

𝑥 𝑗 (0)
∥𝑥(0)∥ | 𝑗⟩, 𝐴̂

Δ
=

∑︁
𝑖, 𝑗

𝐴𝑖 𝑗

∥𝐴∥ |𝑖⟩⟨ 𝑗 | (16)

where 𝑏 𝑗 , 𝑥 𝑗 (0), and 𝐴𝑖 𝑗 represent the j-th element of vectors and the element at the i-th row and
j-th column of the matrix, ∥ · ∥ denotes the norm of vectors and the matrix. For the matrix 𝐴̂, it
can be linearly decomposed using unitary operators 𝑈𝑙 as 𝐴̂ =

∑𝐿
𝑙=1 𝜆𝑙𝑈𝑙 . Then, Eq. (15) can be

expressed as

𝑥(𝑡) ≈
𝑘∑︁

𝑚=0

∥𝑥(0)∥(∥𝐴∥𝑡)𝑚 (∑𝐿
𝑙=1 𝜆𝑙𝑈𝑙)𝑚

𝑚!
|𝑥(0)⟩ +

𝑘∑︁
𝑛=1

∥𝑏∥(∥𝐴∥𝑡)𝑛−1𝑡 (∑𝐿
𝑙=1 𝜆𝑙𝑈𝑙)𝑛−1

𝑛!
|𝑏⟩. (17)
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We define |𝑥(𝑡)⟩ Δ
= 𝑥(𝑡)/𝑆, where 𝑆 is a normalization parameter, and it is the quantum state

representation of the problem. Then we can get 𝑥 𝑗 (𝑡) = 𝑆⟨ 𝑗 |𝑥(𝑡)⟩. By utilizing the quantum circuit
as shown in SFig. 3, an efficient computation of |𝑥(𝑡)⟩ can be achieved.23

This circuit includes log(𝑁) working registers below and three parts of auxiliary registers above,
consisting of one qubit in the first part, 𝑘 qubits in the second part, and 𝑘 groups of qubits of 𝐿-
level quantum systems. Specifically, the algorithm can be divided into three main steps, including
encoding, entanglement creation and decoding.

0
0

0
0 𝐿𝐿

0 𝐿𝐿

𝜓𝜓

𝐺𝐺1

𝐺𝐺3
𝐺𝐺3

0

𝐺𝐺2𝑥𝑥

𝐺𝐺𝑥𝑥

1

𝐺𝐺2𝑏𝑏

𝐺𝐺𝑏𝑏

…
…

1 1 1

0 1 L-1

𝑈𝑈1 𝑈𝑈2 𝑈𝑈𝐿𝐿

…

…

…

1 1 1

0 1 L-1

…

…

𝑈𝑈1 𝑈𝑈2 𝑈𝑈𝐿𝐿
…

𝐺𝐺3
†

𝐺𝐺3
†

0

𝐺𝐺2𝑥𝑥
†

1

𝐺𝐺2𝑏𝑏
†

𝐺𝐺1
†

Encoding Entanglement Creation Decoding

…
…A

ux
ili

ar
y 

R
eg

is
te

rs

Working
Register

1st

2nd

3rd R
ea

do
ut

Supplementary Figure 3: Quantum circuit to calculate |𝑥(𝑡)⟩.

Encoding: This part aims to encode parameter information into the amplitude of the qubits
and divide the calculation in two subspaces.

Firstly, we apply the operator 𝐺1 to the first auxiliary register to encode the normalization
parameter. We set

𝑆1 =

𝑘∑︁
𝑚=0

∥𝑥(0)∥(∥𝐴∥𝑡)𝑚 (∑𝐿
𝑙=1 𝜆𝑙)𝑚

𝑚!
, (18)

𝑆2 =

𝑘∑︁
𝑛=1

∥𝑏∥(∥𝐴∥𝑡)𝑛−1𝑡 (∑𝐿
𝑙=1 𝜆𝑙)𝑛−1

𝑛!
. (19)

Then, define
𝛼

Δ
=

𝑆1√︃
𝑆2

1 + 𝑆
2
2

, 𝛽
Δ
=

𝑆2√︃
𝑆2

1 + 𝑆
2
2

, (20)

and thus 𝐺1 can be represented as

𝐺1 =

[
𝛼 𝛽

𝛽 −𝛼

]
. (21)

Afterwards, using operations 𝐺𝑥 and 𝐺𝑏 controlled by the first auxiliary qubit, we can encode
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|𝑥(0)⟩ and |𝑏⟩ into the working qubits to form 𝛼 |0⟩|𝑥(0)⟩ and 𝛽 |1⟩|𝑏⟩, dividing the calculation in
two subspaces naturally.

Secondly, we construct the auxiliary system. Apply controlled-unitary gates 𝐺2𝑥 and 𝐺2𝑏 of
size 2𝑘 × 2𝑘 to the second set of auxiliary qubits. If we define

𝑔
(𝑚,1)
2𝑥

Δ
=

√︄
∥𝑥(0)∥ (∥𝐴∥𝑡)

𝑗

𝑗!
(22)

when 𝑚 = 2𝑘 − 2𝑘− 𝑗 + 1, otherwise it is 0; and

𝑔
(𝑚,1)
2𝑏

Δ
=

√︄
∥𝑏∥ (∥𝐴∥𝑡)

𝑗−1𝑡

𝑗!
(23)

when 𝑚 = 2𝑘 − 2𝑘− 𝑗 + 1, otherwise it is 0, then the 1𝑠𝑡 column’s 𝑚𝑡ℎ elements of these gates are

𝐺
(𝑚,1)
2𝑥 =

𝑔
(𝑚,1)
2𝑥

∥𝑔(:,1) |2𝑥 ∥
, 𝐺

(𝑚,1)
2𝑏 =

𝑔
(𝑚,1)
2𝑏

∥𝑔(:,1) |2𝑏 ∥
, (24)

where 𝑔(:,1)2𝑥 and 𝑔(𝑚,1)2𝑏 represent the 1𝑠𝑡 column of 𝐺2𝑥 and 𝐺2𝑏. Additionally, apply a unitary
operator 𝐺3 of dimension 𝐿 × 𝐿 to each L-level quantum system in the third set of auxiliary
registers. If we define 𝑔(:,1)3 to be the 1𝑠𝑡 column of 𝐺3 and 𝑔

(𝑙,1)
3

Δ
=

√
𝜆𝑙 , then 𝐺 (𝑙,1)

3 can be
expressed as

𝐺
(𝑙,1)
3 =

𝑔
(𝑙,1)
3

∥𝑔(:,1)3 ∥
. (25)

The register state is now transformed to

𝛼 |0⟩
∑︁
𝑚

𝐺
(𝑚+1,1)
2𝑥 |𝑚⟩

(
𝐿∑︁
𝑙=1

𝐺
(𝑙,1)
3 |𝑙 − 1⟩𝐿

)⊗𝑘
|𝑥(0)⟩

+𝛽 |1⟩
∑︁
𝑚

𝐺
(𝑚+1,1)
2𝑏 |𝑚⟩

(
𝐿∑︁
𝑙=1

𝐺
(𝑙,1)
3 |𝑙 − 1⟩𝐿

)⊗𝑘
|𝑏⟩.

(26)

where the summation index is𝑚 = 2𝑘−2𝑘− 𝑗 . For example, when 𝑘 = 3, the corresponding quantum
state |𝑚⟩ include |000⟩, |100⟩, |110⟩ and |111⟩.

Entanglement Creation: To selectively achieve different orders of the decomposition of 𝐴̂, a
series of joint controlled-𝑈𝑙 gates controlled by the second and third sets of auxiliary registers, as
shown in SFig. 3, will be used.

The third set of auxiliary registers is responsible for controlling the matching of the parameter
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𝜆𝑙 and the unitary operator 𝑈𝑙 . Specifically, the quantum state |𝑙 − 1⟩ controls the function of 𝑈𝑙 .
The second set of auxiliary registers is responsible for controlling the order of operator execution
and the matching of parameters. For example, when 𝑚 = 3, the state |110⟩ ensures that 𝐴̂ is
executed for two times which corresponds to 𝑗 . The state of the system here will be transformed to

𝛼 |0⟩
∑︁
𝑚

𝐺
(𝑚+1,1)
2𝑥 |𝑚⟩

(
𝐿∑︁
𝑙=1

𝐺
(𝑙,1)
3 |𝑙 − 1⟩𝐿𝑈𝑙

)⊗ 𝑗
|𝑥(0)⟩

+𝛽 |1⟩
∑︁
𝑚

𝐺
(𝑚+1,1)
2𝑏 |𝑚⟩

(
𝐿∑︁
𝑙=1

𝐺
(𝑙,1)
3 |𝑙 − 1⟩𝐿𝑈𝑙

)⊗ 𝑗
|𝑏⟩,

(27)

where the summation index is 𝑚 = 2𝑘 − 2𝑘− 𝑗 .
Decoding: This step will finally implement the parameters of the desired result and return the

auxiliary register to the ground state. Then |𝑥(𝑡)⟩ can be obtained in the working register when the
auxiliary registers are measured in the ground state.

To decode, we only need to apply reverse operations to the auxiliary registers. That is, apply
𝐺

†
3 to the first auxiliary register, apply controlled-unitary gates 𝐺†

2𝑥 and 𝐺†
2𝑏 to the second group

of registers, and apply unitary gate 𝐺†
3 to the third group of registers. Finally, when measuring the

auxiliary registers to be |0⟩|0⟩𝑘 |0⟩𝑘
𝐿
, the state of the working registers will be |𝑥(𝑡)⟩ and 𝑆 = 𝑆1+𝑆2.

With the aid of the robust oblivious amplitude amplification algorithm,24 it is possible to
measure the ancillary register in the ground state with near-100% probability. In such cases, the
state |𝑥(𝑡)⟩ obtained in the working register at the end of a computation cycle can serve as the
initial state |𝑥(0)⟩ for the next cycle, thus eliminating the need for a full quantum state measurement
and reducing cost overhead of re-encoding. To enable continuous iterative computation, it is also
necessary to estimate the probability 𝑝sub of the subspace where the ancillary registers are all in the
ground state. This can be achieved via measurement statistics or amplitude estimation algorithms.
The norm of 𝑥(𝑡) can then be calculated as

∥𝑥(𝑡)∥ = 𝑆 · 𝑝sub, (28)

and this value will then be used in the subsequent computation cycle. Furthermore, the estimated
value of 𝑝sub can guide the number of amplitude amplification steps, ensuring that the desired state
|𝑥(𝑡)⟩ is obtained with high success probability efficiently.25

Now, we summarize the core process of our proposed QuanDT for Buck converter with ZIP
load. A detailed instruction is provided in SAlg. 1.
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Supplementary Algorithm 1 Core Process of QuanDT for DC-DC Buck Converter

1: Input: the physical controller output 𝜇(𝑡) and the measured load power 𝑃(𝑡)
𝑚 at time step 𝑡

2: Initialize: the state vector 𝑥(0), the system matrix 𝐴, and the input matrix 𝐵

3: repeat

4: Update 𝐴 and the system input 𝑢 using 𝑃(𝑡)
𝑚

5: Compute |𝑥(𝑡)⟩ by utilizing the quantum circuit as shown in SFig. 3 including

6: Encoding parameters into the amplitude of the qubits according to Eq. (18)-(25)

7: Creating entanglement to selectively achieve different orders of system matrix 𝐴̂

8: Decoding the output and get the result of |𝑥(𝑡)⟩ and ∥𝑥(𝑡)∥ according to Eq. (28)

9: Set |𝑥(0)⟩ := |𝑥(𝑡)⟩ and 𝑡 := 𝑡 + Δ𝑡

10: until the QuanDT process is terminated

A.4 Digital Twin Controller Model

Reliability is one of the primary objectives in industrial control systems, aiming to ensure the safe
and stable operation of controlled industrial processes. To address potential risks such as hardware
failures, communication interruptions, or software anomalies, a common strategy for enhancing
the reliability of critical functions under unpredictable conditions is the use of redundancy—that
is, replicating key functionalities and distributing them across multiple components.26 Typical
redundancy architectures include hot standby, cold standby, and parallel redundancy configurations,
all of which can swiftly take over control tasks when the primary system encounters failures,
thereby avoiding production interruptions.27 DT provides a convenient approach to implementing
redundant control functionalities, as it serves as a virtual replica of the physical system. In the event
of failures in the physical system, corresponding components in the DT can act as replacements.19

It is important to note, however, that the effectiveness of fault-tolerant control depends heavily
on the modeling accuracy and tracking capability of the DT system.28 QuanDT, empowered by
quantum computing, can facilitate more precise modeling and tracking of larger-scale systems.

The operation process of the DT controller designed in this work is illustrated in the SFig. 4.
The DT system operates in parallel with the physical system. Under normal conditions, the physical
controller computes control signals based on the reference input and feedback measured output,
and the physical system responds accordingly under its control. Simultaneously, the DT controller
receives the control signal from the physical controller and inputs it into the QuanDT system.
The QuanDT system updates its internal model based on information from the physical system
and computes the corresponding system response. Meanwhile, the DT controller synchronizes the
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internal accumulated integral terms of the physical controller and computes the next-step control
command using the reference value and the QuanDT’s output. This command is forwarded to the
physical controller for backup, in case of potential controller failure.

Physical 
Controller

DT
Controller

Physical
System

QuanDT
System

Reference
Input

Output

Output

Supplementary Figure 4: Digital twin controller working data flow.

When some fault occurs, the DT controller ceases synchronization with the physical controller
and takes over its role. Its control command will be sent to the physical system. Notably, during
this stage, the DT controller continues to rely on the output of the QuanDT system to compute its
control signals rather than the physical system. Therefore, it is crucial that the DT system maintains
high-accuracy, real-time tracking of the physical system in order to ensure overall system stability.

B Detailed Experiment Settings

B.1 Physical Experiment Settings

The DC voltage source employed to simulate renewable energy is a high-power, high-performance
programmable power supply, model DCPS2420, manufactured by LANYI. The Buck converter
utilizes an IGBT-based half-bridge power electronics module, model RTM-PEH8025IF from Rtunit,
which incorporates an integrated current measurement module for monitoring the inductor current
𝑖𝐿 . The LC filter module is also supplied by Rtunit. The ZIP load is simulated using three high-
speed, high-precision programmable DC electronic loads, model IT8813B, provided by ITECH.
Among these, the power load is connected to the host computer via USB, enabling power fluctuation
control through ITECH’s IT9000 software. These electrical devices are interconnected as illustrated
in SFig. 1. During the experiments, the power measurement 𝑃𝑚 of the power load is obtained by
multiplying the capacitor voltage 𝑢𝐶 , measured by a voltmeter (model RTU-REM-VS8003, Rtunit),
and the current flowing through the power load, measured by a ammeter (model RTU-PEM-CS503,
Rtunit). The actual parameters of the electrical circuits used in experiments are listed in STab. 1.
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Parameter Value Unit

𝑉𝑖𝑛 68 V

𝐿 0.0034 H

𝐶 0.00113 F

𝑅1 20 Ω

𝐼𝑙1 2 A

𝑃 25 + 10 sin(𝜋𝑡) * W

Supplementary Table 1: Parameters of the electrical circuits in physical experiments. * Due to the
performance limitation of the electronic load, the power load cannot change its power continuously;
instead, it adjusts the power in discrete steps every 0.1 second according to the Sine function value.

Supplementary Figure 5: Implementation of physical controller in Rtunit Studio.

The physical controller employed is the RTU-BOX204 real-time digital controller, also from
Rtunit. The RTU-BOX204 is equipped with DAC and ADC modules for receiving sensor data
and outputting PWM signals. Control programs can be designed as shown in SFig. 5 using the
accompanying host software Rtunit Studio and the Simulink model library Rtunit Toolbox. The
controller code is then generated using RTU-Coder, which can be compiled and downloaded to the
controller. In the experiment, the controller described in Section A.2 was implemented with an
operating cycle set to 3 ms. The parameters of the physical controller are presented in STab 2.
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Parameter 𝐾𝑝 𝐾𝑖

Value 0.001 10

Supplementary Table 2: Parameters of the physical controller in physical experiments.

In the physical experiment, both the QuanDT and the DT controller are implemented on a
Raspberry Pi 5 equipped with 8 GB of memory. This Raspberry Pi was configured with a 512 GB
KINGHICO SSD via a Waveshare PCIe to M.2 adapter board and runs the 64-bit Raspberry Pi OS
Lite operating system. Additionally, the Raspberry Pi is equipped with a Waveshare dual-channel
isolated CAN bus expansion board to facilitate CAN bus communication with the physical system.

To ensure the real-time performance of the QuanDT, the functionalities on the Raspberry Pi are
implemented using a Julia-based program. Julia is a high-level dynamic programming language
well-suited for high-performance scientific computing. In the implementation, the Distributed
library is used to divide the program into three serial subprocesses according to the functional
blocks shown in the SFig. 6, with each subprocess running on a separate core of the Raspberry
Pi. The three subprocesses communicate with each other through channel-based inter-process
communication, enabling efficient data exchange during runtime.

Data 
Reception

QuanDT &
DT Controller

Data
Sending

Core 1 Core 2 Core 3

Supplementary Figure 6: The program flow of the code implemented using Julia.

The Data Reception subprocess is responsible for receiving CAN protocol data from the RTU-
BOX204 controller. This includes the actual control outputs and power measurements of the load
required for the self-updating and evolution of the QuanDT, as well as the accumulated integral value
within the physical controller, which is used to synchronize the DT controller. In addition, some
status indicators are received to adjust the operation of the DT system. The Data Sending subprocess
is primarily responsible for transmitting control information generated by the DT controller to the
RTU-BOX204 in the form of CAN protocol data, guiding the operation of the physical system in
the event of abnormal conditions. The QuanDT and the DT controller operate collaboratively, and
the detailed algorithm in use is provided in SAlg. 2.

In the real-time tracking experiments of Scenario 1, when voltage fluctuations are relatively
small, 𝑉0 can be set to the reference value. In cases where the voltage fluctuates significantly—for
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example, when the reference voltage changes abruptly—𝑉0 can be set to the value computed by the
DT at the previous time step. That is

𝑉0 = 𝑢𝐶 (𝑡). (29)

It is worth noting that, from a practical perspective, this requires additional measurement steps
to extract information stored in quantum states. Since the measurement of some single state is
acceptable for large-scale systems, and given that many other methods exist for model updates, this
method variant is implemented for the purpose of methodological continuity.

Supplementary Algorithm 2 QuanDT & DT Controller in Use
1: Input: the output 𝜇(𝑡) and the integral value 𝐼𝑛𝑡𝑒𝑔(𝑡) of the physical controller, and the

measured load power 𝑃(𝑡)
𝑚 at time step 𝑡

2: Ouput: the DT controller output 𝜇(𝑡+Δ𝑡)
𝐷𝑇

3: Initialize: the state vector 𝑥(0) = [𝑖𝐿 (0), 𝑢𝐶 (0)], the system matrix 𝐴, the input matrix 𝐵, the

output 𝜇𝐷𝑇 and the integral value 𝐼𝑛𝑡𝑒𝑔(𝑡) of the DT controller

4: repeat

5: if under normal conditions then

6: Align the DT controller with the physical controller using 𝜇(𝑡) and 𝐼𝑛𝑡𝑒𝑔(𝑡)

7: else if under abnormal conditions then

8: Set 𝜇(𝑡) := 𝜇(𝑡)
𝐷𝑇

9: end if

10: Update 𝐴 and the system input 𝑢 using 𝑃(𝑡)
𝑚 according to Eq. (2)-(5) and Eq. (10)

11: Compute |𝑥(𝑡)⟩ as shown in SFig. 3 based on Yao and QuDiffEq library with 𝑘 = 3

12: Calculate the control output 𝜇(𝑡+Δ𝑡)
𝐷𝑇

of the DT controller

13: Set |𝑥(0)⟩ := |𝑥(𝑡)⟩ and 𝑡 := 𝑡 + Δ𝑡

14: until the QuanDT process is terminated

In the redundant control experiment under Scenario 2, a fault is introduced by abruptly reducing
the control signal output from the physical controller as shown in SFig. 7. Simultaneously, the
fault detector identifies the anomaly and switches the controller signal. Then, the physical system
sends status information to the DT system. As shown in SAlg. 2, when an abnormal condition is
detected, the DT controller will be activated. Supported by the QuanDT, the DT controller will
take over and maintain stable system operation in place of the physical controller.
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Supplementary Figure 7: Implementation of fault generation and control switching in Rtunit Studio.

B.2 HIL Experiment Settings

The physical electrical devices and the controller are implemented using the Typhoon hardware-in-
the-loop (HIL) 602+ simulator. It enables high-fidelity simulation of power electronic systems with
ultra-high temporal resolution. As illustrated in the SFig. 8, both electrical and control scenarios
are designed using the Schematic Editor provided in the Typhoon HIL Control Center.

The electrical devices are connected following the same configuration as shown in SFig. 1. In
the simulation, the constant power load is modeled as a controlled current source with an added
snubber circuit. To emulate realistic disturbances, the power reference of the constant power load
is artificially perturbed using Gaussian-distributed random noise generated via the Box–Muller
transform applied to a uniform distribution.

The physical controller follows the same implementation as described in Section A.2, with
a control cycle of 1 ms. To ensure synchronization between the measurement device and the
controller, the reference power of the constant power load is also updated at a 1 ms interval. The
electrical devices, on the other hand, are simulated with the highest available resolution of 0.01 ms.
The actual parameters of the electrical circuits and controllers used in the experiment are listed in
STab. 3 and 4.

In the HIL experiments, both the QuanDT and the DT controller are implemented on a work-
station equipped with 32 GB of RAM. The workstation features an Intel® Core™ i9-10850K CPU
@ 3.60 GHz and runs Windows 10 22H2 Professional. The implementation of the QuanDT and
the DT controller follows the same approach as previously described. The main difference is that
communication between the physical system and the DT system is carried out via UDP.
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Supplementary Figure 8: Implementation of the electrical devices and the controller in the
Schematic Editor of Typhoon HIL Control Center.

Parameter Value Unit

𝑉𝑖𝑛 68 V

𝐿 0.003 H

𝐶 0.001 F

𝑅1 20 Ω

𝐼𝑙1 2 A

𝑃 25 + 10 sin(𝜋𝑡) * W

Power Noise N(0, 32) * W

Snubber Resistance 105 Ω

Supplementary Table 3: Parameters of the electrical circuits in HIL experiments. * The power load
adjusts the power in discrete steps every 1 ms.

Parameter 𝐾𝑝 𝐾𝑖

Value 0.001 0.3

Supplementary Table 4: Parameters of the physical controller in HIL experiments.
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C QML Application in Detail

C.1 Dataset construction and processing

In modern power systems, intelligent sensors are widely deployed across all stages of generation,
transmission, distribution, and consumption to enable real-time acquisition of critical state vari-
ables, thereby supporting system monitoring, control, and protection. However, sensors themselves
are vulnerable to physical damage, aging, and communication interference, which can lead to faults
or abnormal data.29 Furthermore, as power systems become increasingly integrated with infor-
mation and communication technologies, cyberattacks targeting sensor data are becoming more
prevalent. These attacks may mislead control systems into making erroneous decisions, thereby
jeopardizing the safety and stability of the power grid.30 Therefore, timely detection of anomalies
caused by sensor faults and malicious attacks is essential for ensuring the reliable operation.

At present, researchers have proposed various methods for detecting sensor faults and identifying
potential malicious attacks. These approaches can be broadly categorized into model-based methods
and data-driven methods. Model-based methods rely on the physical models of power systems,
with commonly used techniques including state estimation and Kalman filtering.31 In contrast,
data-driven methods leverage machine learning or deep learning models trained on historical
data to capture the statistical patterns of normal system operations and identify anomalies that
deviate from these patterns.32 In data-driven approaches, high-quality data form the foundation for
effective model training and performance improvement.33 Sufficient, diverse, and representative
data help capture both normal and abnormal system behaviors, thereby enhancing the sensitivity
and robustness of anomaly detection algorithms to sensor faults and cyberattacks.

DTs, by constructing virtual models that closely mirror physical systems, can generate rich
and accurate datasets under various operating conditions. This capability effectively alleviates
challenges such as imbalanced data distributions and the scarcity of anomalous samples in real-world
scenarios, thereby supporting the development of balanced, high-quality datasets.34 Moreover,
modern power systems often exhibit significant nonlinearity and time-varying characteristics—such
as those found in ZIP loads—leading to diverse dynamic responses under different operating
conditions.35 DTs can flexibly adjust model parameters in accordance with specific scenarios to
generate representative dynamic data, which enhances the ability of data-driven methods to identify
and adapt to abnormal behaviors.36

In the dataset construction process, the Typhoon HIL 602+ simulator is employed to simulate
data generated by the QuanDT. Different power load setpoints are configured to emulate the QuanDT
under various operating conditions. Two scenarios are established to collect both anomalous and
normal data: one involving sensor attacks, as illustrated in SFig. 9, and the other involving normal
reference value changes, as shown in SFig. 10. The electrical devices are simulated with a cycle of
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0.01 ms and the controller is with a control cycle of 3 ms.

Supplementary Figure 9: Implementation for sensor attack scenario dataset.

Supplementary Figure 10: Implementation for reference change scenario dataset.

In combination with the TyphoonTest IDE software, attack values and reference values are
automatically and randomly configured, and the corresponding data are collected accordingly. The
final dataset consists of 2,000 samples for each of the following scenarios: abnormal conditions
under low power load, normal conditions under low power load, abnormal conditions under high
power load, and normal conditions under high power load. Each sample contains five time steps
of system current and voltage measurements, recorded at 9 ms intervals. To simulate the output
format of the QuanDT, all current and voltage values are normalized such that the system state at

20/28



each time step can be encoded into a single qubit. The relevant parameters involved in the data
collection process are summarized in STab. 5 and 6.

Parameter Value Unit

𝑉𝑖𝑛 68 V

𝐿 0.0005 H

𝐶 0.001 F

𝑅1 5 Ω

𝐼𝑙1 30 A

𝑃 in High Power State 250 W

𝑃 in Low Power State 10 W

Snubber Resistance 105 Ω

Attack U(45, 47) ∪ (49, 51) V

Reference Value U (47.5, 48.5) V

Supplementary Table 5: Parameters of the electrical circuits for data collection.

Parameter 𝐾𝑝 𝐾𝑖

Value 0.001 1

Supplementary Table 6: Parameters of the controller in SFig. 9 and 10.

C.2 Quantum and Classical Model

The quantum and classical models differ in both their inputs and network architectures. For the
considered QuanDT for DC-DC Buck converter, the system output at time step 𝑘 is a quantum state
in a single qubit, that is ���𝑥 (𝑘)𝑞

〉
=

𝑥 (𝑘)

∥𝑥 (𝑘) ∥
=

1√︃
𝑖2
𝐿
+ 𝑢2

𝐶

[
𝑖𝐿

𝑢𝐶

]
, (30)
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where 𝑖𝐿 and 𝑢𝐶 denote the inductor current and capacitor voltage, respectively. The corresponding
classical representation can be obtained by measurement and is expressed as

𝑥
(𝑘)
𝑐 =

1√︃
𝑖2
𝐿
+ 𝑢2

𝐶

[
𝑖𝐿

𝑢𝐶

]
. (31)

A sequence of 𝐶 past data points from time step 𝑘 forms

𝑋
(𝑘)
𝑞 =

[���𝑥 (𝑘)𝑞

〉
,

���𝑥 (𝑘−1)
𝑞

〉
, . . . ,

���𝑥 (𝑘−𝐶+1)
𝑞

〉]
, (32)

and its classical counterpart is

𝑋
(𝑘)
𝑐 =

[
𝑥
(𝑘)
𝑐 , 𝑥

(𝑘−1)
𝑐 , . . . , 𝑥

(𝑘−𝐶+1)
𝑐

]
. (33)

The input to the QML model is 𝑋 (𝑘)
𝑞 , while 𝑋 (𝑘)

𝑐 serves as the input to the classical machine
learning model. Notably, the quantum representation leads to exponential savings in the required
number of bits compared to classical representations. Moreover, directly processing quantum data
avoids the overhead associated with measurement and classical conversion.

Quantum 
Data

…
…

…
…

𝑅 𝛼1, 𝛽1, 𝛾1

𝑅 𝛼2, 𝛽2, 𝛾2

𝑅 𝛼𝐶 , 𝛽𝐶 , 𝛾𝐶

…

…
…

Quantum 
Data

Classical 
Data

𝑿𝑞
𝑘

𝑿𝑞
𝑘

𝑿𝑐
𝑘

QML
Model

CML
Model

Supplementary Figure 11: A model architecture diagram of quantum machine learning (QML) and
classical machine learning (CML).

The QML model adopts a classical-quantum hybrid architecture as illustrated in the SFig. 11.
The input 𝑋 (𝑘)

𝑞 contains data from 𝐶 time steps, each corresponding to a single qubit. The input
is first processed by a strongly entangling layer𝑈strong, which consists of a parameterized arbitrary
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rotation layer,

𝑈rot(𝜶, 𝜷, 𝜸) =
𝐶⊗
𝑗=1

𝑅𝑍 (𝛼 𝑗 )𝑅𝑌 (𝛽 𝑗 )𝑅𝑍 (𝛾 𝑗 ), (34)

and a ring entangling layer defined as

𝑈ring = CNOT𝐶−1,0 CNOT𝐶−2,𝐶−1 · · ·CNOT0,1. (35)

The overall strongly entangling layer is then given by

𝑈strong(𝜶, 𝜷, 𝜸) = 𝑈ring ·𝑈rot(𝜶, 𝜷, 𝜸), (36)

and the resulting quantum state is

|𝜙⟩ = 𝑈strong(𝜶, 𝜷, 𝜸)
���𝑋 (𝑘)
𝑞

〉
. (37)

Let the expectation value of the local Pauli-𝑍 operator on the 𝑗-th qubit be

⟨𝑍 𝑗 ⟩ =
〈
𝜙
��𝑍 𝑗 ��𝜙〉 , (38)

where 𝑍 𝑗 denotes the Pauli-𝑍 operator acting on the 𝑗-th qubit. By measuring the local Pauli-𝑍
expectation value on each qubit, we obtain the vector

𝒛 = [⟨𝑍0⟩, ⟨𝑍1⟩, . . . , ⟨𝑍𝐶−1⟩] . (39)

It is worth noting that this measurement is efficient since only local observables are involved.
Finally, the resulting vector 𝒛 is passed through a linear layer,

𝐿 (𝒛) = 𝑊 𝒛 + 𝒃, (40)

yielding the logits for the current situation, where the index of the maximum value is taken as the
model prediction.

For the classical machine learning model, a multilayer perceptron (MLP) architecture is used
as illustrated in the SFig. 11. The input 𝑋 (𝑘)

𝑐 , containing data from 𝐶 time steps, corresponds to an
input dimension of 2𝐶. The input is first processed by a hidden layer,

𝐻

(
𝑋
(𝑘)
𝑐

)
= 𝜎

(
𝐿

(
𝑋
(𝑘)
𝑐

))
, (41)

where 𝜎 is the activation function, taken to be ReLU in our experiments. The output is then passed
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through another linear layer,
𝐿

(
𝐻

(
𝑋
(𝑘)
𝑐

))
, (42)

producing the logits for the current situation, with the predicted class corresponding to the index of
the maximum value. To ensure fair comparison, we adjust the dimension of the hidden layer such
that the classical and quantum models have comparable parameter space dimensionality.

Notably, in the general case, if the QuanDT produces 𝑝 qubits as output, then the input dimension
of the quantum model is 𝐶 · 𝑝, while that of the classical model is 𝐶 · 2𝑝. Thus, the use of QML in
conjunction with a QuanDT can significantly reduce the model input dimensionality.

C.3 Experiment Settings

In the experiments, both QML and MLP models are trained separately on the low-power-load and
high-power-load datasets. Each dataset is split into a training set and a test set with an 4:1 ratio
for model training and evaluation. The models are implemented using the Pennylane and PyTorch
frameworks.

For the QML model, the input are 5 qubits. A strongly entangling layer, involving 5 × 3 = 15
trainable parameters, is applied. This is followed by a linear layer with input dimension 5 and
output dimension 2, consisting of 5 × 2 + 2 = 12 parameters. In total, the QML model has 27
trainable parameters. The MLP model take as input a 10-dimensional vector, which passes through
a hidden layer of dimension 2, involving 10 × 2 + 2 = 22 parameters. The output linear layer has
2 outputs, resulting in 2 × 2 + 2 = 6 additional parameters. Thus, the total number of trainable
parameters in the MLP model is 28.

Supplementary Figure 12: QML training loss as a function of training epochs.

The training is based on Pennylane’s default.qubit backend to simulate quantum computing.
Cross-entropy loss is used as the objective function, and parameter updates are performed via
backpropagation using the Adam optimizer with an initial learning rate of 0.001 for 3000 epochs.
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Supplementary Figure 13: MLP training loss as a function of training epochs.

During each epoch, the dataset is reshuffled and divided into batches of size 100 for training. The
same randomly initialized model parameters are used across different training runs, while distinct
random seeds are used to shuffle the datasets, resulting in different training trajectories. The training
curves of both QML and MLP models under the two load conditions are shown in SFig. 12 and
SFig. 13, respectively. For the figures, the dark blue line denotes the mean training loss as a function
of the number of training epochs, and the light blue shaded region indicates one standard deviation
over multiple runs with different random seeds.

For evaluation, the performance of the QML and MLP models is compared horizontally under
both operating conditions. Furthermore, cross-scenario evaluations are conducted: the model
trained on the high-power-load dataset is tested on the low-power-load dataset, and the model
trained on the low-power-load dataset is tested on the high-power-load dataset. These evaluations
aim to demonstrate the necessity of real-time DT tracking with the physical system for reliable
machine learning deployment. In addition, the results highlight the potential of QuanDT in
enhancing model adaptability and robustness for industrial applications.
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