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1 Complete Derivation

First, we simplify the particle emission source to a point at S = (0, 0, 0). We center
a cylindrical substrate W of radius R about the z-axis at C = (0, D, 0), where D is
defined as the distance between substrate center C and the emission source S, and take
a cross-section in the x-y plane (Figure 1). We parametrize the bottom hemisphere of
the circular cross–section of the cylinder by

P (θ) = (R cos θ, R sin θ +D), θ ∈ [π, 2π]. (1)

as deposition only occurs on the bottom hemisphere of W facing the substrate. n̂p(θ)
is the outward unit normal at deposition point P along the surface of the cross section
and n̂p0(θ) is the same unit normal, but shifted to begin at S

n̂p0(θ) = ı̂ cos θ + ȷ̂ sin θ (2)

where ı̂ and ȷ̂ are versors in the x-axis and y-axis directions respectively and n̂p(θ) ∥
n̂p0(θ). Let the particle emission source be simplified to a point at S = (0, 0) (a
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distance D > 0 below the center of the substrate cylinder) whereby the outward unit
normal to the source is n̂s = ȷ̂. 1

A ray of particles from the source S to the substrate at point P is therefore

r⃗(θ) =
−−−−→
SP (θ) = ı̂R cos θ + ȷ̂(R sin θ +D), θ ∈ [π, 2π] (3)

with magnitude

∥r⃗(θ)∥ =
√
R2 +D2 + 2RD sin θ (4)

and thus unit vector

r̂(θ) =
r⃗(θ)

∥r⃗(θ)∥
=

ı̂R cos θ + ȷ̂(R sin θ +D)√
R2 +D2 + 2RD sin θ

(5)

Then, the cosine of the emission angle ψ(θ) between n̂s and r̂(θ) can be defined as

cos(ψ(θ)) = r̂(θ) · n̂s =
(R cos θ)(0) + (R sin θ +D)(1)

∥r⃗∥
=
R sin θ +D

∥r⃗∥
(6)

and the incidence angle ϕ(θ) between n̂p and -r̂(θ) can be defined as

cos(ϕ(θ)) = −r̂(θ) · n̂p0 =
(−R cos θ)(cos θ) + (−R sin θ −D)(sin θ)

∥r⃗∥
=

−R−D sin θ

∥r⃗∥
(7)

Since we seek to model a differential particle flux onto the differential area of deposi-
tion, we can use the property of solid angle to do so, as depicted in Figure ??. Treating
the differential deposition area as dAp and the differential source area as dAs, we have
that the differential solid angle dω [sr], can be described as (Wang et. al. 2018)

dω =
dAp cos(ϕ(θ))

∥r⃗(θ)∥2
(8)

Thus, in the cases when ϕ(θ) = 0, (by Figure 1, this occurs when θ = 3π
2 ), deposition

is maximal, as dω is at its maximum (cos (0) = 1 ⇒ dω =
dAp

∥r⃗( 3π
2 )∥2 ).

1.1 Deposition Profile

With this geometric setup, we can describe dΦemit as the differential deposition rate
at dAp and Ls [Nps

−1m−2sr−1] as the particle radiance where Np is defined as the
number of particles. Then, as discussed in (Wang et. al. 2018), we have that

dΦemit(θ) = Ls cos
n(ψ(θ))dAsdω, [Φemit] = [Nps

−1] (9)

Introducing equation Eq. (8) into Eq. (9), we attain

dΦemit(θ) = Ls
cosn(ψ(θ)) cos(ϕ(θ))

∥r⃗(θ)∥2
dAsdAp (10)

1Note: This geometric setup is defined so that film growth occurs in the negative ȷ̂ direction, analogously
to experimental PVD systems.

2



To determine the local particle deposition density dJp(θ) [Npm
−2s−1], we divide by

dAp:

dJp(θ) = Ls
cosn(ψ(θ)) cos(ϕ(θ))

∥r⃗(θ)∥2
dAs (11)

Since we treat the source as a point emitter, integrating over its surface As gives us

Jp(θ) =

∫
As

Ls
cosn(ψ(θ)) cos(ϕ(θ))

∥r⃗(θ)∥2
dAs (12)

We collapse constants by defining constant C = LsAs [Nps
−1] and solve for Jp(θ):

Jp(θ) = C
cosn(ψ(θ)) cos(ϕ(θ))

∥r⃗(θ)∥2
(13)

Next, we define Ps(θ) ∈ [0, 1] as the sticking probability, i.e., the probability that
a deposited particle adheres to those deposited before it. The rate of film growth
ḟ(t, θ) [ms−1], then, is given by multiplying Jp(θ) by the particle volume Vp[m

3N−1
p ].

Combining these factors, we define constant K = CPsVp [m3s−1]. Incorporating this
into Eq. (13), we get

ḟ(t′, θ) = K
cosn(ψ(θ)) cos(ϕ(θ))

∥r⃗(θ)∥2
(14)

Integrating over time, we calculate f(t, θ) [m],

f(t, θ) =

∫ t

0

ḟ(t′, θ)dt′ = Kt
cosn(ψ(θ)) cos(ϕ(θ))

∥r⃗(θ)∥2
(15)

Substituting Eq. (6) and Eq. (7) into Eq. (15),

f(t, θ) = Kt
( (D+R sin θ)

∥r⃗(θ)∥ )n( (−R−D sin θ)
∥r⃗(θ)∥ )

∥r⃗(θ)∥2

f(t, θ) = −Kt (D +R sin θ)n(R+D sin θ)

(R2 +D2 + 2RD sin θ)
n+3
2

(16)

However, note that limθ→π,2π f(t, θ) < 0. Specifically, this occurs where the term
R + D sin(θ) > 0 (when sin(θ) > −R/D), i.e. near the boundaries approaching
θ → π, 2π. In the raw analytic form, the model predicts small negative values near
these edges because the cosine projection term allows for slight “overhang” where the
surface normal begins to turn away from the source. However, in real physical vapor
deposition, these regions simply receive negligible flux rather than negative deposi-
tion. Since we assume D ≫ R, as is with almost all PVD systems, we can simplify
the R + D sin(θ) term to D sin(θ), which is always negative across θ = π → 2π.
Therefore, we attain a final equation, modeling deposition at any point P (θ) along
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the circumference of the cylindrical substrate (fixed R) at time t:

f(t, θ) = −Kt (D +R sin θ)n(D sin θ)

(R2 +D2 + 2RD sin θ)
n+3
2

(17)

From above, we have that at some time t, substrate radius R, and angle around the
substrate θ ∈ [π, 2π], the thickness of deposition at that point can be represented
as Eq. (17). To evaluate the total conductive cross-section formed by the deposited
material Acs(t) [m

2], we integrate Eq. (17) over angle θ from π → 2π (cross section in
the x-y plane):

Acs(t) =

∫ 2π

π

f(t, θ)Rdθ, θ ∈ [π, 2π] (18)

For typical deposition conditions, the distance from the source to the substrate is sig-
nificantly larger than the substrate radius (R ≪ D). We therefore define the small
parameter ϵ = R

D ≪ 1, and expand the above expression in powers of ϵ to iso-
late the leading-order dependence of the deposited cross-section on system geometry.
Substituting Eq. (17) into Eq. (18), setting R = ϵD:

Acs(t) = −Kt
∫ 2π

π

Dn(1 + ϵ sin θ)n(D)(sin θ)

(D2(ϵ2 + 1 + 2ϵ sin(θ))
n+3
2

Rdθ

= −KtR
∫ 2π

π

Dn(D)

(D2)
n+3
2

(sin θ)(1 + ϵ sin θ)n

(ϵ2 + 1 + 2ϵ sin θ)
n+3
2

dθ

= −KtRD
n+1

Dn+3

∫ 2π

π

(sin θ)
(1 + ϵ sin θ)n

(ϵ2 + 1 + 2ϵ sin θ)
n+3
2

dθ

= −KtR
D2

∫ 2π

π

(sin θ)(1 + ϵ sin θ)n(ϵ2 + 1 + 2ϵ sin θ)−
n+3
2 dθ (19)

Expanding to first order in ϵ = R
D , dropping O(ϵ2), by the binomial theorem, we have

that (1 + x)a = 1 + ax + O(x2) + O(x3) + .... Applying this to Eq. (19), we expand
each term in the integrand:

Acs(t) = −KtR
D2

∫ 2π

π

(sin θ)(1+nϵ sin θ+O(ϵ2))(−(
n+ 3

2
)(2ϵ sin θ)+1+O(ϵ2))dθ (20)

Dropping second-order error terms (O(ϵ2)) at each step,

Acs(t) ≈ −KtR
D2

∫ 2π

π

(sin θ)(1 + nϵ sin θ)(1− (n+ 3)ϵ sin θ)dθ

≈ −KtR
D2

∫ 2π

π

(sin θ)(1− (nϵ sin θ)− (3ϵ sin θ) + (nϵ sin θ))dθ
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≈ −KtR
D2

∫ 2π

π

(sin θ)(1− 3ϵ sin θ)dθ

≈ −KtR
D2

∫ 2π

π

(sin θ − 3ϵ sin2 θ)dθ

≈ −KtR
D2

(−2− 3ϵ(
π

2
)). (21)

Adding the error term O(ϵ2) back in,

Acs(t) ≈ −KtR
D2

(−2− 3ϵπ

2
) +O(ϵ2) (22)

Since ϵ = R
D , substituting and distributing the above expression (need to change

to number, we get our final expression for the cross-sectional area of deposition
(Acs(t)).

Acs(t) ≈
2KtR

D2
+

3πKtR2

2D3
+O(

R2

D2
), [Acs(t)] = [m2] (23)

Here, the first term (2KtR
D2 ) is dominant, the second term (3πKtR2

2D3 ) is a small correc-

tion (∝ R
D ), and the rest is negligible by the aforementioned condition of R≪ D.

Now that we have the cross-sectional area of deposition Acs, we can proceed with
calculating the predicted resistance of the cylindrical substrate after time t seconds
of deposition and a constant volumetric ”flow-rate” of material K [m3s−1]. First, we
note that simple trace resistance is given by

Ω =
ρL

A
(24)

where Ω [Ω = ohms] is resistance, ρ [Ωm] is the resistivity of deposited material, L [m]
is the length of the substrate, and A [m2] is the cross-sectional area of the substrate.

The resistivity ratio, using the correction for thin metal layers based on the Fuchs-
Sondheimer (FS) and Mayadas-Shatzkes (MS) models (Jeong et al. (2023)) to account
for boundary and scattering effects in thin films, is given by:

ρ0
ρeff

≃ 1− 3

2
α+ 3α2 − 3α3 log(1 +

1

α
)− 3(1− P )

8k
(25)

where ρeff [Ωm] depends on the thickness f(t, θ), ρ0 [Ωm] is the bulk resistivity of Au,

k = f(t,θ)
l0

[mm−1] (unitless), and P is the fraction of electrons specularly scattered
at the external surfaces (Jeong et al. (2023); Mayadas (1968); Tellier and Tosser

(1977)). Additionally, α =
l0rgb

ag(1−rgb)
[Ωm] whereby l0 [m] is the mean free path of

electrons, rgb [m] is the grain boundary reflection constant, and ag [m] is average
material crystalline diameter.
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Let F (α) := 1− 3
2α+3α2 − 3α3 log(1+ 1

α ). Then, by the FS-MS model, we have that

ρ0
ρeff

∼= F (α)− 3(1− P )

8k
= F (α)− 3(1− P )

8

l0
f(t, θ)

(26)

To calculate the resistance across the entire cylindrical substrate, we can find longi-
tudinal conductance per unit length G(t) as the parallel sum over the cross-section of
the cylindrical substrate

G(t) =

∫ 2π

π

σeff (f(t, θ))f(t, θ)Rdθ, (27)

where effective conductance σeff (f(t, θ)) = (ρeff (f(t, θ)))
−1. Thus substituting into

Eq. (26),

ρ0σeff (f(t, θ)) ≃ F (α)− 3− 3P

8

lo
f(t, θ)

σeff (f(t, θ)) ≃
F (α)

ρ0
− 3− 3P

8

lo
ρ0f(t, θ)

(28)

Substituting Eq. (28) into Eq. (27) to find G(t),

G(t) =

∫ 2π

π

[
F (α)

ρ0
− 3− 3P

8

lo
ρ0f(t, θ)

]f(t, θ)Rdθ

=
F (α)

ρ0

∫ 2π

π

f(t, θ)Rdθ︸ ︷︷ ︸
Acs

−
∫ 2π

π

3− 3P

8

lo
ρ0
Rdθ

=
F (α)

ρ0
Acs(t)−

3− 3P

8

lo
ρ0

∫ 2π

π

Rdθ

=
F (α)

ρ0
Acs(t)−

3− 3P

8

lo
ρ0
πR

=
1

ρ0
[F (α)Acs(t)−

3− 3P

8
πRl0] (29)

Therefore, since resistance Rcyl = G(t)−1,

Rcyl(t) ∼=
Lcylρ0

F (α)Acs(t)− 3−3P
8 πRl0

=
Lcylρ0

F (α)(2KtR
D2 + 3πKtR2

2D3 +O(R
3

D4 ))− 3−3P
8 πRl0

=
Lcylρ0

F (α)(2KtR
D2 )(1 + 3πR

4D +O(R
2

D2 ))− 3−3P
8 πRl0

(30)
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To account for ambient deposition temperatures Tamb ̸= 25°C, in addition to mod-
ifications to the temperature-dependent constants listed above, we adjust Rcyl by
temperature-dependent constant Tadj := (1 + α(Tamb − 25°C))(Jeong et. al. 2023):

=
Lcylρ0

F (α)(2KtR
D2 )(1 + 3πR

4D +O(R
2

D2 ))− 3−3P
8 πRl0

Tadj (31)

Simplifying further,

Rcyl(t) =
Lcylρ0Tadj

R[F (α)(2Kt
D2 )(1 + 3πR

4D +O(R
2

D2 ))− 3−3P
8 πl0]

, R≪ D (32)

where F (α) = 1 − 3
2 (

l0rgb
ag(1−rgb)

) + 3(
l0rgb

ag(1−rgb)
)2 − 3(

l0rgb
ag(1−rgb)

)3 log(1 +
ag(1−rgb)

l0rgb
) and

Tadj = (1 +
l0rgb

ag(1−rgb)
(Tamb − 25°C)).

2 Additional Characterization

As discussed in Section 5.2.3 of the main article, we see island formation, flaking, and
cracking on wire substrates post-deposition (See Supplementary Figure 1).

Fig. 1 SEM images of wire substrate cross section after 1 µm Au deposition, noting the island
formation and flaking of the trace.

3 Project Resources

All code developed for this study is open-access, and is available on GitHub.
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