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1 Complete Derivation

First, we simplify the particle emission source to a point at S = (0,0,0). We center
a cylindrical substrate W of radius R about the z-axis at C = (0, D, 0), where D is
defined as the distance between substrate center C' and the emission source S, and take
a cross-section in the x-y plane (Figure 1). We parametrize the bottom hemisphere of
the circular cross—section of the cylinder by

P(6) = (Rcosf, Rsinf + D), 0 € [m,2x). (1)
as deposition only occurs on the bottom hemisphere of W facing the substrate. 17, (6)
is the outward unit normal at deposition point P along the surface of the cross section
and npo(0) is the same unit normal, but shifted to begin at S

Npo(0) = icosh + jsiné (2)

where # and j are versors in the x-axis and y-axis directions respectively and 1i,(6) ||
nyo(#). Let the particle emission source be simplified to a point at S = (0,0) (a



distance D > 0 below the center of the substrate cylinder) whereby the outward unit
normal to the source is fis = j. !
A ray of particles from the source S to the substrate at point P is therefore

() = SP(0) = tRcosf + j(Rsinf + D), 0 € [, 27 (3)
with magnitude

|7(0) = V/R? + D2 + 2RDsin 6 (4)
and thus unit vector

. 7(0) iRcosf + j(Rsin6 + D)
(o) = L) HEcosO ] . 5)
17(0) VR2 + D2+ 2RDsinf
Then, the cosine of the emission angle ¥ (6) between 1i; and #(0) can be defined as

(Rcos0)(0) 4+ (Rsinf + D)(1)  Rsinf+ D
171 G

and the incidence angle ¢(#) between 1, and -#(#) can be defined as

cos(v(0)) = #(0) - hy = (6)

cos(p(8)) = —7(8) - o = (—Rcosf)(cosf) + (—Rsinf — D)(sinf) _ —R— Dsind
(7)

il (171
Since we seek to model a differential particle flux onto the differential area of deposi-
tion, we can use the property of solid angle to do so, as depicted in Figure ??. Treating
the differential deposition area as dA, and the differential source area as dA,, we have
that the differential solid angle dw [sr], can be described as (Wang et. al. 2018)

dA, cos(¢p(0))
dw = —F—Zo—" (8)
IHOIE
Thus, in the cases when ¢(¢) = 0, (by Figure 1, this occurs when ¢ = 2I), deposition
is maximal, as dw is at its maximum (cos (0) = 1 = dw = ﬁ).
2

1.1 Deposition Profile

With this geometric setup, we can describe d®,,;+ as the differential deposition rate
at dA, and Lg [Nps~tm~2sr~1] as the particle radiance where N,, is defined as the
number of particles. Then, as discussed in (Wang et. al. 2018), we have that

AP emit(0) = L cos™ ((0))dAsdw, [®emit] = [Nps™] (9)
Introducing equation Eq. (8) into Eq. (9), we attain

) €08 eos(6(6)
et = £ rig)]e

dA,dA, (10)

1Note: This geometric setup is defined so that film growth occurs in the negative j direction, analogously
to experimental PVD systems.



To determine the local particle deposition density dJ,(6) [Npm_2s_1], we divide by
dAy:

cos™ (¢(0)) cos(¢(6))

dJ,(0) = L, ~ dA, (11)
’ GOk
Since we treat the source as a point emitter, integrating over its surface A, gives us
cos™ (16(9)) cos((0))
J,(0) = / L ~ dAs (12)
: A, 17(O)1?
We collapse constants by defining constant C' = L3 As [N,s~'] and solve for .J,(6):
cos" (1(0)) cos(¢(0))
Jp(0)=C — 13)
2 GOIE (

Next, we define Ps(0) € [0,1] as the sticking probability, i.e., the probability that
a deposited particle adheres to those deposited before it. The rate of film growth
f(t,0) [ms~1], then, is given by multiplying J,,(0) by the particle volume V,[m?N,!].
Combining these factors, we define constant K = CP;V,, [m3s~!]. Incorporating this
into Eq. (13), we get

i oy _ - Cos™ (10(0)) cos((0))
N Ol -
Integrating over time, we calculate f(t,6) [m],
" i v e 08" (10(8)) cos(4(6))
Substituting Eq. (6) and Eq. (7) into Eq. (15),
o A S 1
0) =K =
feo = x GOlk
F£(1.0) = _Kt(D+Rsin0)"(R+Dsin0) (16)
’ (R? + D? 4+ 2RDsin ) "%

However, note that limg_,~ o f(¢,0) < 0. Specifically, this occurs where the term
R + Dsin(#) > 0 (when sin(f) > —R/D), i.e. near the boundaries approaching
0 — m,27. In the raw analytic form, the model predicts small negative values near
these edges because the cosine projection term allows for slight “overhang” where the
surface normal begins to turn away from the source. However, in real physical vapor
deposition, these regions simply receive negligible flux rather than negative deposi-
tion. Since we assume D > R, as is with almost all PVD systems, we can simplify
the R + Dsin(f) term to Dsin(#), which is always negative across § = m — 2.
Therefore, we attain a final equation, modeling deposition at any point P(f) along



the circumference of the cylindrical substrate (fixed R) at time ¢:

(D + Rsin#)"(Dsin6)
(R? + D? 4+ 2RDsinf)"s"

f(t,0) = —Kt (17)

From above, we have that at some time ¢, substrate radius R, and angle around the
substrate § € [mr,2n], the thickness of deposition at that point can be represented
as Eq. (17). To evaluate the total conductive cross-section formed by the deposited
material A.(t) [m?], we integrate Eq. (17) over angle 6 from 7 — 27 (cross section in
the x-y plane):

27

Au(ty= | f(t,0)Rd9, ¢ [r,2n] (18)
s

For typical deposition conditions, the distance from the source to the substrate is sig-

nificantly larger than the substrate radius (R < D). We therefore define the small

parameter € = % < 1, and expand the above expression in powers of € to iso-

late the leading-order dependence of the deposited cross-section on system geometry.

Substituting Eq. (17) into Eq. (18), setting R = eD:

Acs(t) = —Kt/2” D" (1 4 esin)" (D)(sin 0)
. x (D2(e2 + 1+ 2esin(9)) "5

_ _KiR / 2" (D"<D) (50 6)(1 + esin )"

Rd6

do

n+3 n+3

D2)72" (2 + 1+ 2¢esinf) 2

Dn+1 27 1 . 0 n
— —KtR n+3/ (sing)— LT 4y
D ™ (2 + 1+ 2¢sind) 2

KtR [*7 ns
=~ (sinﬁ)(l+esin0)"(62+1+2651n0)7%d9 (19)
Expanding to first order in € = £, dropping O(€?), by the binomial theorem, we have
D
that (1 + )% = 1+ ar + O(2?) + O(23) + .... Applying this to Eq. (19), we expand
each term in the integrand:

27
- [gf (sin 0) (1--ne sin 0+0(e2)) (— ("2

T

Ags(t) =

)(2esin0)+1+0(€%))do (20)

Dropping second-order error terms (O(e?)) at each step,

KtR
~ 3

Acs(t) = /ZW(SiHO)(l + nesinf)(1 — (n 4+ 3)esinb)dl

KtR

2m
R —ﬁ/ (sinf)(1 — (nesind) — (3esinB) + (nesinf))dé



KtR [*"
~ =z / (sin@)(1 — 3esin #)do
KtR [*7
s / (sin @ — 3esin® 0)dh
KitR T
~— T2 (-2 - 36(5)) (21)
Adding the error term O(€?) back in,
KtR 3em
Aes(t) ~ —F(—Q - 7) +0(€%) (22)
Since € = %, substituting and distributing the above expression (need to change

to number, we get our final expression for the cross-sectional area of deposition

(Acs(t))-
_2KtR  3nKtR? R?

) T + DT S O(5), (0] = ) (23
Here, the first term (25£) is dominant, the second term (BWQIS?,RZ) is a small correc-

tion (o %), and the rest is negligible by the aforementioned condition of R <« D.

Now that we have the cross-sectional area of deposition A.s, we can proceed with
calculating the predicted resistance of the cylindrical substrate after time ¢ seconds
of deposition and a constant volumetric "flow-rate” of material K [m3s~1]. First, we
note that simple trace resistance is given by

ok

Q
A

(24)

where Q [ = ohms] is resistance, p [Q2m] is the resistivity of deposited material, L [m]
is the length of the substrate, and A [m?] is the cross-sectional area of the substrate.

The resistivity ratio, using the correction for thin metal layers based on the Fuchs-
Sondheimer (FS) and Mayadas-Shatzkes (MS) models (Jeong et al. (2023)) to account
for boundary and scattering effects in thin films, is given by:

Po 3(1-P)

Dett 8k
where pegr [€2m] depends on the thickness f(t, ), po [(2m] is the bulk resistivity of Au,
k= % [mm™1] (unitless), and P is the fraction of electrons specularly scattered
at the external surfaces (Jeong et al. (2023); Mayadas (1968); Tellier and Tosser

(1977)). Additionally, v = —=2"2®__ [(m] whereby Iy [m] is the mean free path of

ag(l—rgp)
electrons, 74, [m] is the grain boundary reflection constant, and a, [m] is average

material crystalline diameter.

3 1
~1-— e +3a? — 3a® log(1 + a) - (25)



Let F(a) :=1—2a+3a? —3a®log(1+ 1). Then, by the FS-MS model, we have that

o 3(1-P)
@ZF(Q)_78I€ =F(a) —

31-P) I
8  f(t,0)

(26)

To calculate the resistance across the entire cylindrical substrate, we can find longi-
tudinal conductance per unit length G(t) as the parallel sum over the cross-section of
the cylindrical substrate

2
G(t) = / oes s (f(t.6))£(t, 0)Rdo, (27)

where effective conductance arf(f(t,0)) = (pess(f(t,0)))~ . Thus substituting into
Eq. (26),
3—-3P |,
POJeff(f(taa)) = F(O[) - Tf(t 6)
Fla) 3-3P 1,
8 pOf t79)

Ueff(f(tv 9)) =
Substituting Eq. (28) into Eq. (27) to find G(t),

[ Flo) 3-3P |,
a0 = [ 1,0 - g o

27 2T 9
- M/ f(t,&)RdHf/ 3731 pg
T N— 3

Po T Po
ACS

F _ P o 27
_ (O‘)Acs(t) _3-3PL / RdO
Po 8  poJx

F —3P1
_ Flo) Auy(t) — 3=3P1L .
£0 8 Lo

1 3—3P
= —oIF(@)Acs(t) = =g Rlo] (29)

Therefore, since resistance R, = G(t)™?,

LcylpO
F(a)Acs(t) — 22227 RI,

1%

Rcyl (t)

o LcylpO

F(o) (258 4 3”21(531%2 + O(%i)) — 338 Ry
L.
_ yl L0 (30)

F(o)(ZEiR) (14 328 + O()) — 332 Rl




To account for ambient deposition temperatures T, # 25°C, in addition to mod-
ifications to the temperature-dependent constants listed above, we adjust R, by
temperature-dependent constant T,q; := (1 + o(Tamp — 25°C))(Jeong et. al. 2023):

_ LcylpO T 5 (31)
Fla)(ZE) (11 358 + O(1%)) — 222w kly "

Simplifying further,

LeyipoTag;
Rey(t) = 2Kt = v

RIF@ D0+ 58 + o) - a7 @

where F(a) = 1 = (5" ) + 3(5-1"4—)? = 3(;-1"— ) log(1 + “{=222)) and

. 2 ag(l_rgb) ag(l_"'gb) ag(l—rgb
Tﬂdj = (1 + #%(Tamb - 2500))

2 Additional Characterization

As discussed in Section 5.2.3 of the main article, we see island formation, flaking, and
cracking on wire substrates post-deposition (See Supplementary Figure 1).

p.

Fig. 1 SEM images of wire substrate cross section after 1 pum Au deposition, noting the island
formation and flaking of the trace.

3 Project Resources

All code developed for this study is open-access, and is available on GitHub.


https://github.com/adityatummala5/Thin-Film-Modeling.git
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