
Supplementary Material

1 Complex Kolmogorov Arnold Network
1.1 Explanation of the Limitations of KAN in Complex-Valued

Fitting
In this section, we will derive the limitations of the classical complex-valued computation
process in KAN and introduce how CKAN overcomes these limitations. Assume a KAN
with inputs x ∈ C; the output can be expressed by the following formula:

Φn(Φn−1(. . . (x))).

Among them, Φn represents the coupled one-dimensional spline function, whose hyperpa-
rameters are learned by backpropagation. The Kolmogorov–Arnold theorem, as the founda-
tional theorem of KAN, states that multivariate continuous functions can be approximated
by nested combinations of simpler functions. Therefore, KAN generalizes depth by coupling
multiple continuous functions. However, even with any finite depth extension, KAN still
exhibits limitations in the complex domain. We present the following theorem:

Theorem: Suppose the real and imaginary parts of x, each continuous, are input into
a KAN where both the input and output are one-dimensional. The statement can in fact
be generalized to multivariate functions under suitable continuity assumptions. If the KAN
fits the real and imaginary parts separately, then the result after the (n− 1)-th layer of the
KAN is denoted as Φn−1(x) = (Ψ1, . . . ,Ψm), which is continuous and monotonic, and the
structure of the final layer is represented as Φn = (Φ1

n,Φ
2
n). When Φ1

n(x) perfectly fits the
target function, there exists a real polynomial Pk(x), and Φ2

n(x) cannot be approximated in
the limit sense.

Proof: The idea of the proof is to fix Φ1
n(Φn−1(x)), Φ2

n(Φn−1(x)), while using Φn−1(x) as
the input, which restricts the network’s fitting capability. The proof process is established
after the network training is completed. Φ1

n has already perfectly fit the target function,
which can be arbitrary, and at this point, (Ψ1, . . . ,Ψm) is fixed.

Given the monotonic continuous output (Ψ1, . . . ,Ψm), construct a convolution form in
the function space:

P j
m(x) =

∫
Qm(x− z)Ψj(z) dz,

where
Qm =

∫
(1− x)mdx,
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and P j
m(x) is a polynomial. According to the approximation properties of polynomials and

the monotonic continuity of Φn−1(x), P j
m(x) will uniformly converge to Ψj(x).

Examining the function fitting space of Φ2
n(Φn−1(x)), due to the uniform continuity of the

spline function, Φ2
n(Ψj(x)) uniformly converges to Φ2

n(P
j
m(x)), and since the spline function

is a polynomial function, Φ2
n(P

j
m(x)) is also a polynomial function.

Due to the property of uniform convergence, when ∃Mj ∈ N such that for ∀m > Mj, the
convergence of P j

m(x) holds. However, examining all superscripts j, there exists a maximum
polynomial order M such that for all ∀j, the order of P j

m(x) is less than M .
Furthermore, since Φ2

n is also a polynomial function and its order MΦ is fixed once the
network is set, we can construct an arbitrary polynomial of order MΦM+1 that is not within
the fitting space Φ2

n(Φn−1(x)), meaning Φ2
n(x) cannot be approximated. This is determined

by the fundamental properties of polynomial bases.

1.2 Modification of KAN and Proposal of CKAN
It can be observed that the limitation of KAN regarding complex-valued fitting stems from
overfitting in either the real or imaginary part. When one part is fitted too completely,
it induces fitting limitations in the other part. From a network structure perspective, this
occurs because both the real and imaginary parts are computed using the same portion of
the network. Therefore, CKAN separates the real and imaginary parts into two pathways,
thereby lifting the limitations of KAN. The specific calculation formula is as follows:

ϕn(x) =
(
ϕr
n(ReΦ

r
n−1(x)), ϕ

i
n(ImΦi

n−1(x))
)
.

Here, ϕr
n represents the pathway for the real part in one layer of the model, and ϕi

n

represents the pathway for the imaginary part in one layer of the model. In practice, the
output of each layer is separated into phase and amplitude, primarily to simulate the form
of pulses.

1.3 Performance Test Results of CKAN
We designed the following experiment, using four models: CKAN, KAN 2.0, EFFKAN [1],
and WavKAN [2]. EFFKAN removes the adaptive adjustment of the activation function in
the original KAN, while WavKAN implements the KAN structure using wavelet functions.
The four models will respectively distill a pre-trained standard PINN to evaluate the fitting
capability of each model for pulses. The PINN solved for the standard single soliton, double
soliton, and dark soliton of the NLSe (SFig 1a) and two single solitons of the GP equation
[3]. The forms of NLSe and GPe are as follows:

iut − uxx + 2|u|2u = 0;

{
iut +

1
2
uxx + 2f(t)(|u1|2 + |u2|2)u1 + Vext(x, t)u1 − σu2 = 0,

iut +
1
2
uxx + 2f(t)(|u1|2 + |u2|2)u2 + Vext(x, t)u2 − σu1 = 0.
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Figure 1: CKAN performance validation and error summary. (a) Standard NLSe single-
soliton, double-soliton and dark-soliton solutions, together with the corresponding CKAN
distillation results. (b) Two single-soliton solutions of the GPe and the corresponding CKAN
distillation results. (c) Relative mean squared errors of the distillation results obtained by
different models. (d) Schematic diagram of the CKAN architecture. (SFig. 1).

Here, f(t) and Vext(x, t) = −1
2
ρx2−2α(t) denote the nonlinear coefficient and the external

potential, respectively, and

ρ =
d2

dt2
ln(2f(t))− (

d

dt
ln(2f(t)))2.
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We fix σ = 0 and consider two cases: (i) Vext(x, t) = 0 and f(t) = 0.5; (ii) Vext(x, t) =
−2x cos(t) and f(t) = 0.5e0.5. In both cases, the corresponding soliton solutions shown in
SFig 1b can be obtained. The error function used for distillation is the classic MSE error.
In all distillation tasks, CKAN performed the best (SFig 1c), demonstrating the superiority
of CKAN in handling complex-valued data among KAN networks and their variants.

2 Data Acquisition Process and Network Construction
Used for Training and Testing Supplementation

2.1 Laser Configuration
The specific design details of the fiber laser generating QML pulses are as follows (SFig 2a):
In the cavity structure design section, a 980 nm laser diode is mainly used as the pump to
provide energy for the operation of the resonant cavity; a wavelength division multiplexer is
used as the energy coupling device to couple the pump energy into the resonant cavity to
achieve excitation amplification; as previously mentioned, a 20 cm high-doping-concentration
erbium-doped fiber is selected as the gain medium to achieve pump laser frequency conver-
sion and the generation of Q-switched pulses; a polarization-independent isolator is used to
suppress back-reflection inside the resonant cavity and protect some unidirectional passive
components from damage caused by high peak-power laser radiation; the coupler is mainly
used for outputting the laser energy generated by the resonant cavity for subsequent appli-
cations and optical detection; and the polarization controller is used for fine adjustment of
the polarization state of pulses inside the resonant cavity. It should be noted that except for
the polarization controller and gain fiber, the remaining devices inside the resonant cavity
are all fusion-spliced with single-mode fiber (Corning, SMF-28e), with a total single-mode
fiber length of about 1.2 m, forming together with the gain fiber an all-fiber resonant cavity
with a total length of about 1.45 m, which together determine the oscillation frequency of
the mode-locked pulses.

The specific design details of the fiber laser generating MCS pulses are as follows (SFig
2b): In the microcavity structure design part, a Knot-type all-fiber microcavity is mainly
adopted to achieve the optical comb effect; it is then incorporated into the fiber laser, where
the fiber laser serves as the main cavity, using a 60 cm high-concentration erbium-doped gain
fiber to continuously provide gain for the microcavity; a polarization-dependent isolator is
used to suppress back-reflection inside the resonant cavity and to polarize the transmitted
optical field; the fiber coupler is mainly used for internal optical field measurement of the
laser, extracting 10% of the laser from the main cavity for subsequent laser measurement;
the polarization controller is used to adjust the intracavity polarization state and weak
birefringence effect. It should be noted that the free spectral range of the optical comb
generated by the fiber microcavity is approximately 0.064 nm, and the microcavity diameter
measured using a microscope corresponds to this value according to the conversion formula.
The overall structure adopts an all-fiber configuration, ensuring both stable output states
inside the cavity and the ability to switch between different intracavity states at any time
by adjusting the pump power.

The specific design details of the fiber laser generating traditional pulses are as follows
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Figure 2: Schematic diagram of the laser configuration used in the experiment. (a) Schematic
diagram of the laser configuration used for QML pulse generation, where SA denotes the
saturable absorber. (b) The laser used for MCS pulse generation, where MR denotes the mi-
croresonator. (c) The traditional cavity laser configuration in the oversampling experiment,
where LS-Oscilloscope denotes the low-speed oscilloscope used to sample pulses required for
oversampling prediction, and HS-Oscilloscope denotes the high-speed oscilloscope used to
sample the target pulses of the oversampling prediction (SFig. 2).
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(SFig 2c): The laser generating the output pulses mainly consists of an all-fiber structure
and uses conventional nonlinear polarization evolution technology to lock and operate the
intracavity mode states. The internal cavity structure includes a 980 nm laser diode as the
pump source to continuously provide pump energy for the resonant cavity to achieve excita-
tion amplification; a 20 cm high-doping-concentration erbium-doped fiber is used as the gain
medium to achieve wavelength conversion and gain amplification; a polarization-dependent
isolator is used to suppress back-reflection inside the resonant cavity and to polarize the
transmitted optical field to generate traditional mode-locked pulse output; the fiber coupler
is mainly used for internal optical field testing of the laser, extracting 10% of the energy
from the main cavity for subsequent laser measurement; the cavity contains two polarization
controllers, one for coarse adjustment and one for fine adjustment of the intracavity polar-
ization state. It should be noted that except for the polarization controllers and gain fiber,
the other device ends inside the resonant cavity are all fusion-spliced with single-mode fiber
(Corning, SMF-28e).

2.2 Introduction of the Nine Comparison Models
Unet is a classic architecture in the field of semantic segmentation, with a core structure
of “encoder–decoder + skip connections”: the encoder extracts multi-scale features through
downsampling (from details to semantics), the decoder restores resolution through upsam-
pling, and the skip connections fuse the high-resolution detailed features from the encoder
with the semantic features of the decoder. The following are Unet variants with differ-
ent backbones. To ensure experimental accuracy, the study directly uses the segmenta-
tion_models_pytorch package for model invocation, and the configuration is provided in
the GitHub link given in the main text:

Dual Path Unet++ (DPUN): A hybrid architecture combining the residual connections of
ResNet and the dense connections of DenseNet. It contains two parallel paths: the Residual
Path, which transmits original features through skip connections (similar to ResNet), and
the Dense Path, which accumulates historical features through concatenation. The dual-
path design enhances feature reuse and fusion capability. The study uses the variant with a
depth of 68 layers. When used as a Unet encoder, its dual-path feature extraction capability
is stronger, enabling it to capture richer multi-scale contextual information, suitable for
segmentation tasks in complex scenes.

EfficientUnet++ (EUN): Based on Compound Scaling design, it balances accuracy and
efficiency by uniformly scaling network depth, width, and input resolution. Its core module
is the Mobile Inverted Residual Block, which uses depthwise separable convolution to reduce
computation and incorporates the SE attention mechanism. The study uses a medium-scale
variant. When used as a Unet encoder, it extracts features more efficiently than traditional
ResNet under the same computational cost, suitable for resource-limited scenarios while
maintaining high accuracy.

MobileOne-S2-Unet++ (MO-S2): Uses MobileOne-S2 as the encoder. This backbone
is a high-efficiency network designed specifically for mobile devices, with the core being
structural re-parameterization. During training, multi-branch structures are used to enhance
feature learning ability, while during inference, the multi-branch structure is merged into a
single branch through algebraic operations to eliminate computational redundancy, achieving
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efficient inference. The study uses the variant that balances speed and accuracy. When used
as a Unet encoder, it can provide sufficient feature representation capability with extremely
low latency.

timm-SKResNet-Unet++ (SKUnet): Combines the SKResNet backbone from the timm
library. This backbone is an improved version of ResNet, with the core being the Selective
Kernel mechanism, which introduces convolution kernels of multiple sizes into convolution
layers. Through an attention mechanism, the network dynamically learns the kernel weights
and adaptively selects the most suitable kernel size based on the input features, enhancing
adaptability to multi-scale targets. When used as a Unet encoder, it can more flexibly
capture target features at different scales, suitable for tasks where target size varies greatly.

ResNet-Unet (ResUnet): Uses ResNet as the backbone. This backbone addresses the
gradient vanishing problem in deep networks through residual connections. Its core module is
the residual block, which allows the network depth to increase significantly while maintaining
stable feature extraction ability. It is one of the most classic backbones in computer vision.
As the encoder of Unet, it is one of the most widely used combinations, with simple structure
and stable performance.

Fourier Neural Operator (FNO): An operator learning model based on Fourier transform,
which breaks through the efficiency limitations of traditional CNNs and Transformers in
modeling global dependencies in high-dimensional space. Traditional methods relying on
local convolution struggle to capture long-range dependencies, and although Transformers
can model global dependencies, their computational complexity increases quadratically with
input size. The core of FNO is the introduction of Fourier layers, mapping input features to
the frequency domain through Fourier transform. In the frequency domain, a small number
of low-frequency components dominate global information for feature transformation, and
the features are mapped back to the spatial domain through inverse Fourier transform. Its
advantages include computational complexity that grows linearly with input size and efficient
modeling of global dependencies in high-dimensional space. It is suitable for tasks such as
solving partial differential equations, fluid dynamics simulation, and weather forecasting that
require modeling global physical laws.

Fourier Neural Operator-big (FNO-big): A parameter-expanded version of the FNO
model.

Unet-Fourier Neural Operator (UFNO): A combined model of Unet and FNO, integrating
the skip-connection encoder–decoder structure of Unet with the Fourier-domain modeling
capability of FNO. Its encoder replaces traditional convolution with Fourier layers from FNO,
capturing global dependencies through frequency-domain transformation while extracting
multi-scale features; the decoder restores resolution through upsampling and fuses the high-
resolution local features from the encoder with the global semantic features generated by the
decoder through skip connections. This design preserves Unet’s precise local feature capture
capability while enhancing the modeling of global physical laws (such as long-range spatial
correlations) through FNO, making it especially suitable for tasks that require balancing
local detail and global dependencies.

Unet-Fourier Neural Operator-big (UFNO-big): A parameter-expanded version of the
UFNO model.

Koopman Operator (KO): Koopman theory is a mathematical tool for studying nonlinear
dynamical systems, and the Koopman operator is its data-driven extension. For nonlinear
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dynamical systems, by introducing observable functions, the system can be mapped into
a linear space, thereby transforming nonlinear evolution into a linear evolution process in
the linear space, achieving a linearized description of the system. Its application scenarios
include time series prediction, dynamical system control, and physical system modeling.

2.3 SNOO Training Process

Figure 3: The components of each module of SNOO and the two-stage training method.
Train step 1 requires the network to freeze the internal linear operator structure and train
itself by reconstructing pulses. Train step 2 requires the network to freeze the external
framework and train the internal linear operator in an autoregressive manner. Note that the
operators consist of multiple layers and are embedded into the links of Unet++ (SFig. 3).
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2.4 Different Training Methods of SNOO

Figure 4: Different training methods of SNOO. (a) When training the internal linear oper-
ator, all trainable parameters of the external framework are not frozen. (b) When training
the internal linear operator, all trainable parameters of the external framework are frozen.
(c) When training the internal linear operator, only the head part of the external framework
is open for training (SFig. 4).
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