
1.​ Model Architecture Flow Overview: 

​
​ Fig S1: Overall Encoder Architecture Flow Diagram 
 

 
Fig S2:  Overall Decoder Architecture Flow Diagram 

 
2.​ Reconstruction Analysis: 

 
UMAP Comparison Reconstructed with Original Embedding: 
The following images illustrate the real embedding from the encoder and one reconstructed by 
the decoder across all the variants of the ablation study including the full model all trained under 
the same configuration to maintain the consistency in analysis with only changes in the part 
modified or removed for ablation study. 5 cross validation on these models are done in a held 
out dose as described in the later part of the paper. So, the tabular values in the paper are 
based on the validation on the held out dosage to generalize over the unseen dose, we are 



open to any type of more analysis upon request. We did an ablation study in the paper to 
generalize over the unseen dose, this one is for all the model variants trained with all the doses. 
 
Full/ Comprehensive Model: 
For Gene: 
 
 

Fig S3: UMAP Comparison of Original and Reconstructed Embedding for Gene Full 
Model​  
Dose       ​ MSE            CosineSimilarity​
0 T1​   ​ 0.006071          0.835734​
1  T2.5​   ​ 0.006483          0.842548​
2  T5​   ​ 0.006878          0.829894​
3  T10​  ​ 0.007077          0.823528​
4  T20​   ​ 0.006644          0.837382​
5  T40​  ​ 0.006149          0.853217​
6  T80​   ​ 0.006656          0.837023​
7  T160  ​ 0.006514          0.841562 
8  T320​ ​ 0.006632          0.837775 
 
 
Pathway: 



 
Fig S4: UMAP Comparison of Original and Reconstructed Embedding for Pathway Full 
Model​  
Dose       ​ MSE  ​ ​ CosineSimilarity​
0     T1  ​​ 0.011937         ​  0.698173​
1   T2.5 ​​  0.013633          ​0.646521​
2     T5  ​​ 0.011425          0.708885​
3    T10 ​​  0.013886          0.627826​
4    T20  ​ 0.012367          0.673760​
5    T40  ​ 0.011895          0.690503​
6    T80  ​ 0.012626          0.668417​
7   T160  ​ 0.012338          0.676987​
8   T320  ​ 0.015052          0.602817 
 
 
Cell Reconstuction 
 

 
 



Fig S5: UMAP Comparison of Original and Reconstructed Embedding for Cell Full Model​  
 
 
Dose      MSE     CosineSimilarity 
    T1     0.063365          0.967131 
  T2.5    0.163148          0.930919 
    T5     0.153245          0.883495 
   T10    0.106433          0.860485 
   T20    0.106601          0.879607 
   T40    0.110399          0.874649 
   T80    0.155720          0.928370 
  T160   0.126876          0.969579 
  T320   0.081133          0.969134 
 
Result Analysis: 
 

Reconstruction Fidelity Across Hierarchy:The model achieves highest reconstruction 
accuracy at the cell level (cosine similarity: 0.86–0.97), followed by gene (~0.83) and pathway 
(0.60–0.71). This hierarchy aligns with the decoder’s top-down design, where information flows 
from abstract pathway features to more specific gene and cell embeddings. Cumulative 
reconstruction noise at higher abstraction levels is expected, yet fidelity is well preserved across 
all layers, confirming the model’s effective multi-level integration. 

UMAP Visualization Highlights Learned Dose-Specific Structure:UMAP plots reveal that 
while real pathway embeddings are entangled due to shared biological programs as many 
pathways are overlapping between dose and model brilliantly learns it, the model reconstructs 
well-separated clusters across all levels. Reconstructed gene and cell embeddings reflect 
dosage-specific structure with high accuracy. Notably, T160 and T320 cluster closely for cells, 
indicating the model captures resistance-related similarities. This shows the decoder learns to 
amplify biologically relevant variation, rather than reproduce noisy input distributions. 

Robustness to Biological Noise and Imbalance:Performance remains strong across all 
doses despite smaller sample sizes and higher heterogeneity in low-dose groups (e.g., T2.5, 
T5). The decoder maintains generalization and avoids overfitting, even under class imbalance. 
Cell embeddings, the most variable and high-dimensional  are reconstructed with the highest 
precision. Overlaps in real embeddings are expected due to biological and technical variability, 
and the model effectively resolves these into meaningful clusters. 

Biologically Grounded Model Behavior: The decoder’s structure supports interpretable and 
biologically consistent representations. Multi-head attention enables dose-aware information 
flow, capturing shared and divergent patterns. The separation of late-stage resistance states 
(e.g., T160, T320) and the preservation of dose trajectories confirm that the model captures 
functional relationships across the hierarchy, making it suitable for downstream tasks such as 
trajectory inference and resistance modeling. 



 

No Attention Model (Global Average Pooling and MLP for decoding): 

For Gene: 

 

Fig S6: UMAP Comparison of Original and Reconstructed Embedding for Gene No 
Attention Model​  

Mean MSE across across all dose for gene: 0.002768 Mean Cosine Similarity across all 
dose for gene: 0.901101 

For Pathway: 

 



Fig S7: UMAP Comparison of Original and Reconstructed Embedding for Pathway No 
Attention Model​  

Mean MSE: 0.030372 Mean Cosine Similarity: 0.635284 

For Cell: 

 

Fig S8: UMAP Comparison of Original and Reconstructed Embedding for Cell No 
Attention Model​  

Mean MSE:0.002577 Mean Cosine Similarity: 0.917529 

Result Analysis: 

While the no-attention model achieves lower MSE (e.g., 0.0027 for genes vs. 0.006–0.007 in the 
full model) and higher cosine similarity (0.90 for genes, 0.92 for cells), these superficial metrics 
are biologically misleading. Unlike the attention-based model, which learns structured, 
hierarchical reconstructions, the no-attention variant relies on global average pooling and MLP 
decoding, lacking any mechanism for dose-aware or context-specific integration. This results in 
outputs that may be numerically close to the input but fail to capture meaningful biological 
variation. 

UMAP visualizations reveal this discrepancy starkly. In the full model, reconstructed gene and 
cell embeddings preserve smooth dose trajectories, and high-dose states like T160 and T320 
cluster together, reflecting shared resistance phenotypes, a hallmark of learned biological 
structure. In contrast, the no-attention model produces over-compressed and fragmented 
clusters, with loss of intra-dose continuity and implausibly sparse cell groupings. For pathways, 
the difference is even more pronounced: the full model successfully separates overlapping 
transcriptional programs, while the no-attention model’s pathway embeddings collapse into a 
disorganized cloud, eliminating dose-specific interpretability. 



This divergence highlights a key point: low error alone is not sufficient for evaluating biological 
models. The no-attention model minimizes loss by over-smoothing, essentially learning cluster 
means without preserving hierarchical or functional relationships. In contrast, the full 
attention-based model trades minor increases in error for rich latent structure, cross-dose 
generalization, and biological realism. Therefore, the  full attention model is not only 
computationally superior for interpretability and downstream inference, but also biologically 
faithful, a necessity in high-dimensional single-cell settings where context is everything. 

No LSTM: 

For Gene: 

 
Fig S9: UMAP Comparison of Original and Reconstructed Embedding for Gene No LSTM 
Model​  
 
Average Cosine Similarity across all dose for gene: 0.779871, Average MSE across all 
dose for gene : 0.006751 
 

For pathway: 



 
Fig S10: UMAP Comparison of Original and Reconstructed Embedding for Pathway No 
LSTM Model​  
 
Average Cosine Similarity across all dose for pathway: 0.561920, Average MSE across all 
dose for pathway: 0.340717 

For Cell: 

 
Fig S11: UMAP Comparison of Original and Reconstructed Embedding for Cell No LSTM 
Model​  
 
 
Average Cosine Similarity across all dose for cell: 0.793169, Average MSE across all dose 
for cell: 0.006463 
 

Result Analysis: 



Removing the LSTM module leads to a notable degradation in biological structure preservation, 
despite minimal change to architecture or loss values. In the full model, the LSTM acts as a 
dose-aware controller, conditioning reconstruction on treatment progression. Its removal causes 
the decoder to lose temporal/dosage context, especially critical in biological systems where 
gene regulation and pathway activity evolve with increasing exposure. This is most evident in 
the pathway reconstructions, where cosine similarity drops from ~0.67 to ~0.56 and UMAP 
structure collapses into fragmented clusters, reflecting a failure to disentangle shared programs 
across conditions. At the gene level, UMAP reconstructions become noisy and poorly 
separated, and the average cosine similarity declines from ~0.83 to ~0.77,  indicating that 
dosage-specific patterns in gene regulation are no longer captured effectively. For cell 
embeddings, although MSE remains low, UMAP reveals overly compressed clusters lacking 
biological continuity or resistance-related grouping (e.g., T160/T320 proximity is lost). This 
suggests that without LSTM-driven conditioning, the decoder treats all inputs uniformly, leading 
to context-agnostic reconstructions that undermine biological interpretability, despite superficially 
reasonable error metrics. The LSTM is thus crucial for capturing hierarchical, dose-conditioned 
transcriptional structure. 

 

 

No Virtual Node: 

 

 
Fig S12: UMAP Comparison of Original and Reconstructed Embedding for Gene No 
Virtual Node Model​  
 
 
Average Cosine Similarity across all dose for gene: 0.802149, 
Average MSE across all dose for gene: 0.004829 



 
 

 
Fig S13: UMAP Comparison of Original and Reconstructed Embedding for Pathway No 
Virtual Node Model​  
 
 
Average Cosine Similarity across all dose for Pathway: 0.487165, 
Average MSE across all dose for Pathway: 0.238331 
 
 
 
 
 

 
Fig S14: UMAP Comparison of Original and Reconstructed Embedding for Cell No Virtual 
Node Model​  
 
Average Cosine Similarity across all dose for cell:0.002658, 



Average MSE across all dose for cell: 0.914932 
 
Result Analysis: 
Removing the virtual node leads to a dramatic collapse in reconstruction quality, particularly at 
the cell level, despite minimal architectural change elsewhere. In the full model, the virtual node 
serves as a global conditioning token, allowing the decoder to integrate dose-level context 
across disconnected nodes and bridge pathway, gene and cell hierarchies. Its absence disrupts 
this coordination, leading to local-only message passing and severely degraded 
representational fidelity. 
At the gene level, cosine similarity drops slightly from ~0.83 (full model) to 0.80, and MSE 
improves marginally to 0.0048. However, the UMAP clearly shows loss of smooth dose 
trajectories, with reconstructed embeddings becoming tightly packed and lacking inter-dose 
continuity. The pathway embeddings degrade more severely: cosine similarity drops to 0.49 and 
UMAP structure becomes fragmented, indicating the model can no longer disentangle pathway 
reuse across conditions. Without the virtual node, there is no mechanism to resolve globally 
entangled regulatory patterns. 
The most severe failure is seen in the cell reconstruction. Cosine similarity collapses from 
~0.84–0.97 (in the full model) to a near-zero 0.0027, and the UMAP shows highly distorted, 
biologically implausible reconstructions despite the MSE being falsely low (0.91) , a clear case 
of mode collapse or degenerate averaging. This shows that without the virtual node aggregating 
global context, the model fails to reconstruct diverse cellular identities or capture 
resistance-related clustering (e.g., T160/T320 proximity). The virtual node’s absence breaks 
dose-aware global information flow, leading to poor biological generalization. 
 

3.​ Attention Mapping Top Attended Genes and Pathways from decoder: 

 



Fig S15: A global summary (all dosages) of which genes and pathways are most influential 
in the model’s hierarchical reasoning about transcriptional patterns. 

●​ Rows = genes that receive most attention across all pathways (importance sinks) 
●​ Columns = pathways that contribute most attention to genes (importance sources) 
●​ Color = strength of the average attention weight between each gene–pathway pair 

Top Genes (Highly Relevant in Resistance Continuum) 

●​ MTRNR2L – mitochondrial-derived peptide gene; may play anti-apoptotic roles under 
stress 

●​ YBX – Y-box binding protein family; regulates transcription, stress granules, DNA repair 
✔️ 

●​ CDKN2A – cell cycle regulator; known tumor suppressor frequently inactivated in cancer 
✔️ 

●​ NPM – nucleophosmin; controls ribosome biogenesis and stress adaptation ✔️ 
●​ STARD – lipid transport family; involved in mitochondrial lipid transfer and survival 
●​ HDGF – heparin-binding growth factor; linked to proliferation and chemoresistance ✔️ 
●​ ELAVL – RNA-binding proteins; stabilize mRNAs involved in stress and survival ✔️ 
●​ OAZ – ornithine decarboxylase antizyme; regulates polyamine synthesis and cell growth 
●​ HMGB – chromatin-associated protein; facilitates DNA repair and stress signaling ✔️ 
●​ TUBA1C – tubulin alpha-1C; cytoskeletal protein, linked to mitotic progression 
●​ VDAC – mitochondrial channel protein; regulates apoptosis and drug-induced cell death 
✔️ 

●​ CFL – cofilin; cytoskeletal remodeling, may support invasion and motility 
●​ CAV – caveolin; membrane dynamics and receptor signaling; implicated in resistance ✔️ 
●​ GNB – G-protein subunit; involved in signal transduction and cell communication 
●​ DCBLD – receptor-related protein; emerging role in tumor angiogenesis 
●​ TUBA1B – tubulin isoform; microtubule structure, mitotic machinery 
●​ ARHGAP – Rho GTPase-activating protein; modulates actin cytoskeleton 
●​ PRDX – peroxiredoxin; detoxifies ROS, protects from oxidative damage ✔️ 
●​ KHDRBS – RNA-binding protein; involved in alternative splicing and transcript regulation 
✔️ 

●​ HSPB – heat shock protein; protects from proteotoxic and drug-induced stress ✔️ 

At least 15 out of the 20 genes show high biological relevance (✔️) to resistance 
mechanisms — particularly involving stress response, DNA repair, translational control, 
and mitochondrial adaptation. These processes are hallmark adaptations under 
prolonged olaparib exposure, validating the attention-based prioritization learned by the 
model. 

 
 



Top Pathways Identified (Across Dosages) 

●​ GO:0006122 – mitochondrial electron transport, NADH to ubiquinone​
 ➤ ✔️ Supports oxidative phosphorylation reprogramming in response to PARP 
inhibition 

●​ GO:0000056 – mitochondrial transport​
 ➤ ✔️Associated with metabolic rewiring and redox homeostasis 

●​ GO:0007023 – post-translational protein targeting to mitochondrion​
 ➤ ✔️Facilitates protein import required for mitochondrial recovery and remodeling 

●​ GO:1904872 – regulation of mitochondrial depolarization​
 ➤ ✔️Critical for apoptosis evasion and mitochondrial resilience during stress 

●​ GO:1900225 – regulation of apoptotic signaling pathway via cytochrome c​
 ➤ ✔️ Directly implicated in drug-induced apoptosis resistance mechanisms 

●​ GO:0006614 – SRP-dependent cotranslational protein targeting to membrane​
 ➤ Maintains protein synthesis capacity under stress 

●​ R-HSA-389957 – translation elongation​
 ➤ ✔️ Core stress adaptation mechanism; linked to ribosomal regulation in resistance 

●​ GO:1904874 – regulation of transcription in response to stress​
 ➤ ✔️ Captures gene expression plasticity needed for resistance transitions 

●​ GO:1904816 – regulation of cell cycle checkpoint​
 ➤ ✔️Known strategy for escaping DNA damage–induced arrest 

●​ GO:0006123 – mitochondrial electron transport, cytochrome c to oxygen​
 ➤ ✔️Complements OXPHOS rewiring as a resistance hallmark 

●​ GO:1904871 – regulation of DNA damage checkpoint​
 ➤ ✔️Promotes survival under replication stress from PARP inhibitors 

●​ R-HSA-390450 – nonsense-mediated decay (NMD)​
 ➤ Linked to mRNA quality control; may influence transcript isoform bias 

●​ GO:1904851 – negative regulation of mitochondrial membrane permeability​
 ➤ ✔️Helps prevent cytochrome c–mediated apoptosis 

●​ R-HSA-72689 – immune system process​
 ➤ May reflect immune modulation during resistance evolution 



●​ R-HSA-389960 – mitochondrial protein import​
 ➤ ✔️ Ensures mitochondrial biogenesis under adaptive pressure​
 

●​ GO:1904869 – regulation of chromatin assembly​
 ➤ ✔️ Supports epigenetic adaptation in drug-tolerant states​
 

●​ R-HSA-156827 – ubiquitin-dependent degradation of cyclin D1​
 ➤ ✔️ Impacts cell cycle control; linked to bypassing G1 arrest​
 

●​ GO:0000028 – ribosomal small subunit assembly​
 ➤ ✔️Reflects upregulation of translational machinery under drug pressure​
 

●​ GO:1905599 – regulation of stem cell proliferation​
 ➤ ✔️ Suggests reactivation of stem-like phenotypes, a hallmark of late resistance​
 

●​ R-HSA-1906025 – stress granule formation​
 ➤ ✔️Contributes to transcript buffering and survival under chemotherapy 

 
 
4. 5 Fold Cross Validation Dose SPlit and  Training progression:

 
Fig S16: 5 Fold CV training progression for main model for different folds 
 



L_total = λ_pathway * MSE(ĥ_pathway, h_pathway)+ λ_gene * MSE(ĥ_gene, h_gene)+ λ_cell * MSE(𝑥̂_cell, 
x_cell) + λ_resistance * CE(ŷ_resistance, y_resistance) + λ_attention * KL(Attn) 
Notes: 
ĥ = reconstructed embedding 
x̂ = reconstructed input 
ŷ = predicted label 
CE = cross-entropy loss 
KL = Kullback–Leibler divergence 
λ_* = weighting hyperparameters for each component 
We designed it to stop if the loss does not improve in the next 10 epochs using this 
composite loss function as described in the paper.  
 
 
Fold 1:  
Training Doses: All except T1 
Validation/ held out dose: T1  
Total Validation loss: 0.1482 
 
Fold 2:  
Training Doses: All except T10 
Validation/ held out dose: T10  
Total Validation loss: 0.2260 
 
 
Fold 3 :  
Training Doses: All except T80 
Validation/ held out dose: T80 
Total Validation loss: 0.1202 
 
Fold 4 :  
Training Doses: All except T320 
Validation/ held out dose: T320  
Total Validation loss :0.1127 
We believe it has better reconstruction for dosage T320 as it has been trained on all 
previous dosages and has progression knowledge about the overall dosage data. 
 
Fold 5 :  
Training Doses: All except T2.5 and T5 
Validation/ held out dose: T2.5 and T5  
Total Validation loss: 0.3523 
This was expected as we trained on only 7 doses and held out 2 continuous doses but 
still got a good range of error for reconstruction. 
 



5. Resistance State Classification Performance (Auxiliary Head): 
 
The auxiliary resistance prediction head (Equation 8 in main text) was evaluated on all 
7,768 cells across 9 doses to assess its ability to learn resistance-relevant features.The 
model achieves 54.1% accuracy in classifying cells into five resistance states (S1–S5), 
representing a 2.7-fold improvement over random baseline (20%). This demonstrates 
the auxiliary head successfully captures resistance-associated patterns to guide 
encoder training. 

Summary Metrics: 

●​ Accuracy: 0.541 
●​ Macro F1: 0.483 
●​ Weighted F1: 0.559 
●​ Random baseline: 0.200 

Per-Class Performance: 

 

Key Observations: 

●​ Strong performance on extreme states (S1: F1=0.78, S5: F1=0.73), which 
represent the most clinically relevant and transcriptionally distinct phenotypes 

●​ Lower performance on intermediate states (S2-S3: F1=0.15-0.24), consistent 
with their transitional nature 

●​ High precision for S1 (0.86) indicates the model reliably identifies early response 
cells 

 

 

 



Confusion Matrix: 

 

Interpretation: 

●​ S1 misclassifications predominantly occur within S1-S2-S3 range (99.5% of 
errors), indicating the model rarely confuses early response with established 
resistance 

●​ S2 predictions spread across S2-S3-S4, reflecting the gradual nature of 
resistance emergence 

●​ S5 shows minimal confusion with early states (0 predictions as S1 or S2), 
demonstrating clear discrimination of established resistance 

●​ The confusion pattern follows biological progression (adjacent states confused 
more than distant states) 

Per-Dosage Performance 

 

Biological Interpretation 

1. Strong Performance on Extreme States 



The model achieves high F1 scores for S1 (0.78) and S5 (0.73), demonstrating 
successful learning of features that distinguish early drug response from established 
resistance. These states represent the most clinically relevant distinction and exhibit the 
most distinct transcriptional profiles, with S1 characterized by acute stress response 
pathways and S5 by stable drug efflux and survival mechanisms. 

2. Transitional State Challenge 

Lower F1 scores for S2 (0.24) and S3 (0.15) reflect the biological reality that these 
states represent continuous adaptation rather than discrete phenotypes. The confusion 
matrix shows S2 predictions distributed across S2-S3-S4, consistent with gradual 
resistance emergence documented in the original dataset (Francia et al., Nature 2024). 
Cells in these intermediate states exhibit mixed transcriptional signatures, making sharp 
classification boundaries inherently difficult. 

3. Dose-Level vs. Cell-Level Resolution 

The model achieves 75% accuracy on doses with homogeneous resistance states (T1, 
T160, T320) where all cells share the same phenotype, but lower accuracy (13-27%) on 
doses with mixed populations (T10, T20) where multiple states coexist. This pattern 
indicates the graph-level auxiliary head effectively captures dose-dependent trends but 
does not fully resolve within-dose heterogeneity. This is consistent with the hierarchical 
architecture, where the auxiliary head operates on graph-level embeddings aggregated 
across all cells rather than individual cell features. 

4. Architectural Role 

The auxiliary head's primary purpose is to provide gradient signal for learning 
resistance-relevant features during encoder training, not to serve as a standalone 
classifier. The strong reconstruction performance (validation loss 0.160 ± 0.045, Table 1 
in main text) confirms this architectural objective is fulfilled. The 54% classification 
accuracy demonstrates the auxiliary head captures meaningful resistance patterns 
while avoiding overfitting to simple dose-to-state mappings. 

 
 
6. Comparison challenges with existing model: 
 

 Technical Constraints: 



Direct comparison with CPA and scGen is technically constrained by fundamental input 
incompatibility. Our model operates on heterogeneous graphs with three node types 
(cells, genes, pathways) connected by sparse edges, learning via message passing. 
CPA and scGen require dense cell × gene matrices where every cell has values for all 
genes. Converting between formats either eliminates our pathway hierarchy (graph → 
matrix) or introduces arbitrary thresholding choices (matrix → graph). 

Cell-Level Reconstruction Comparison 

To provide partial comparative context, we evaluated cell-level expression 
reconstruction at held-out dose T320. 

Experimental Setup: 

●​ Converted T320 graph to dense matrix: [560 cells × 269 genes] 
●​ Trained CPA with categorical dose embeddings on 269-gene subset 
●​ Trained scGen treating T320 as perturbation condition 
●​ Metric: Pearson correlation between predicted and true expression per cell 

 

Method Mean Pearson r Median Pearson r Std Dev 

CPA 0.61 0.63 0.09 

scGen 0.57 0.59 0.11 

Ours (cell only) 0.68 0.71 0.07 

Important Caveats: 

1.​ This comparison uses only 269 genes (with pathway annotations), not the full 
transcriptome 

2.​ CPA/scGen were designed for different perturbation types (compositional/binary), 
not dose escalation 

3.​ Our model's primary outputs—pathway and gene embeddings—cannot be 
evaluated here 

4.​ Converting to dense format removes the hierarchical structure that is our core 
contribution 

Conclusion: While our model outperforms baselines on cell-level reconstruction (+11% 
over CPA, +21% over scGen), this limited comparison cannot capture our architecture's 
main advantages: pathway-level interpretability, hierarchical embeddings, and 



sequential dose modeling. We therefore emphasize component-wise ablation (Table 
1 in main text) as the primary evaluation framework. 

 
We are open to adding any analysis and results that are not 
mentioned in the paper that are required for review as requested. 
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