1. Model Architecture Flow Overview:
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Fig S1: Overall Encoder Architecture Flow Diagram
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Fig S2: Overall Decoder Architecture Flow Diagram
2. Reconstruction Analysis:

UMAP Comparison Reconstructed with Original Embedding:
The following images illustrate the real embedding from the encoder and one reconstructed by

the decoder across all the variants of the ablation study including the full model all trained under
the same configuration to maintain the consistency in analysis with only changes in the part
modified or removed for ablation study. 5 cross validation on these models are done in a held
out dose as described in the later part of the paper. So, the tabular values in the paper are
based on the validation on the held out dosage to generalize over the unseen dose, we are



open to any type of more analysis upon request. We did an ablation study in the paper to
generalize over the unseen dose, this one is for all the model variants trained with all the doses.

Full/ Comprehensive Model:

For Gene:
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Fig S3: UMAP Comparison of Original and Reconstructed Embedding for Gene Full

Model

Dose MSE CosineSimilarity
0T1 0.006071 0.835734
1 T25 0.006483 0.842548
2 T5 0.006878 0.829894
3 T10 0.007077 0.823528
4 T20 0.006644 0.837382
5 T40 0.006149 0.853217
6 T80 0.006656 0.837023
7 T160 0.006514 0.841562
8 T320 0.006632 0.837775

Pathway:




UMAP of Real Pathway Embeddings UMAP of Reconstructed Pathway Embeddings
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Fig S4: UMAP Comparison of Original and Reconstructed Embedding for Pathway Full
Model

Dose MSE CosineSimilarity
0 M 0.011937 0.698173

1 T25 0.013633 0.646521

2 T5 0.011425 0.708885

3 T10 0.013886 0.627826

4 T20 0.012367 0.673760

5 T40 0.011895 0.690503

6 T80 0.012626 0.668417

7 T160 0.012338 0.676987

8 T320 0.015052 0.602817

Cell Reconstuction
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Dose MSE CosineSimilarity
T1 0.063365 0.967131
T2.5 0.163148 0.930919
T5 0.153245 0.883495
T10 0.106433 0.860485
T20 0.106601 0.879607
T40 0.110399 0.874649
T80 0.155720 0.928370
T160 0.126876 0.969579
T320 0.081133 0.969134

Result Analysis:

Reconstruction Fidelity Across Hierarchy:The model achieves highest reconstruction
accuracy at the cell level (cosine similarity: 0.86-0.97), followed by gene (~0.83) and pathway
(0.60-0.71). This hierarchy aligns with the decoder’s top-down design, where information flows
from abstract pathway features to more specific gene and cell embeddings. Cumulative
reconstruction noise at higher abstraction levels is expected, yet fidelity is well preserved across
all layers, confirming the model’s effective multi-level integration.

UMAP Visualization Highlights Learned Dose-Specific Structure:UMAP plots reveal that
while real pathway embeddings are entangled due to shared biological programs as many
pathways are overlapping between dose and model brilliantly learns it, the model reconstructs
well-separated clusters across all levels. Reconstructed gene and cell embeddings reflect
dosage-specific structure with high accuracy. Notably, T160 and T320 cluster closely for cells,
indicating the model captures resistance-related similarities. This shows the decoder learns to
amplify biologically relevant variation, rather than reproduce noisy input distributions.

Robustness to Biological Noise and Imbalance:Performance remains strong across all
doses despite smaller sample sizes and higher heterogeneity in low-dose groups (e.g., T2.5,
T5). The decoder maintains generalization and avoids overfitting, even under class imbalance.
Cell embeddings, the most variable and high-dimensional are reconstructed with the highest
precision. Overlaps in real embeddings are expected due to biological and technical variability,
and the model effectively resolves these into meaningful clusters.

Biologically Grounded Model Behavior: The decoder’s structure supports interpretable and
biologically consistent representations. Multi-head attention enables dose-aware information
flow, capturing shared and divergent patterns. The separation of late-stage resistance states
(e.g., T160, T320) and the preservation of dose trajectories confirm that the model captures
functional relationships across the hierarchy, making it suitable for downstream tasks such as
trajectory inference and resistance modeling.



No Attention Model (Global Average Pooling and MLP for decoding):

For Gene:

UMAP of Real Gene Embeddings (No Attention) UMAP of Reconstructed Gene Embeddings ( No Attention)
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Fig S6: UMAP Comparison of Original and Reconstructed Embedding for Gene No
Attention Model

Mean MSE across across all dose for gene: 0.002768 Mean Cosine Similarity across all
dose for gene: 0.901101

For Pathway:
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Fig S7: UMAP Comparison of Original and Reconstructed Embedding for Pathway No
Attention Model

Mean MSE: 0.030372 Mean Cosine Similarity: 0.635284

For Cell:

Encoded Cell Embeddings (No Attention) Reconstructed Cell Embeddings (No Attention)
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Fig S8: UMAP Comparison of Original and Reconstructed Embedding for Cell No
Attention Model

Mean MSE:0.002577 Mean Cosine Similarity: 6.917529

Result Analysis:

While the no-attention model achieves lower MSE (e.g., 0.0027 for genes vs. 0.006—-0.007 in the
full model) and higher cosine similarity (0.90 for genes, 0.92 for cells), these superficial metrics
are biologically misleading. Unlike the attention-based model, which learns structured,
hierarchical reconstructions, the no-attention variant relies on global average pooling and MLP
decoding, lacking any mechanism for dose-aware or context-specific integration. This results in
outputs that may be numerically close to the input but fail to capture meaningful biological
variation.

UMAP visualizations reveal this discrepancy starkly. In the full model, reconstructed gene and
cell embeddings preserve smooth dose trajectories, and high-dose states like T160 and T320
cluster together, reflecting shared resistance phenotypes, a hallmark of learned biological
structure. In contrast, the no-attention model produces over-compressed and fragmented
clusters, with loss of intra-dose continuity and implausibly sparse cell groupings. For pathways,
the difference is even more pronounced: the full model successfully separates overlapping
transcriptional programs, while the no-attention model’s pathway embeddings collapse into a
disorganized cloud, eliminating dose-specific interpretability.



This divergence highlights a key point: low error alone is not sufficient for evaluating biological
models. The no-attention model minimizes loss by over-smoothing, essentially learning cluster
means without preserving hierarchical or functional relationships. In contrast, the full
attention-based model trades minor increases in error for rich latent structure, cross-dose
generalization, and biological realism. Therefore, the full attention model is not only
computationally superior for interpretability and downstream inference, but also biologically
faithful, a necessity in high-dimensional single-cell settings where context is everything.

For Gene:
UMAP of Real Gene Embeddings (No LSTM) UMAP of Reconstructed Gene Embeddings (No LSTM )
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Fig S9: UMAP Comparison of Original and Reconstructed Embedding for Gene No LSTM
Model

Average Cosine Similarity across all dose for gene: 0.779871, Average MSE across all
dose for gene : 0.006751

For pathway:



UMAP of Real Pathway Embeddings (No LSTM) UMAP of Reconstructed Pathway Embeddings (No LSTM )
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Fig S10: UMAP Comparison of Original and Reconstructed Embedding for Pathway No
LSTM Model

Average Cosine Similarity across all dose for pathway: 0.561920, Average MSE across all
dose for pathway: 0.340717

For Cell:
Real Cell Embeddings (No LSTM) Reconstructed Cell Embeddings (No LSTM)
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Fig S11: UMAP Comparison of Original and Reconstructed Embedding for Cell No LSTM
Model

Average Cosine Similarity across all dose for cell: 0.793169, Average MSE across all dose
for cell: 0.006463

Result Analysis:



Removing the LSTM module leads to a notable degradation in biological structure preservation,
despite minimal change to architecture or loss values. In the full model, the LSTM acts as a
dose-aware controller, conditioning reconstruction on treatment progression. Its removal causes
the decoder to lose temporal/dosage context, especially critical in biological systems where
gene regulation and pathway activity evolve with increasing exposure. This is most evident in
the pathway reconstructions, where cosine similarity drops from ~0.67 to ~0.56 and UMAP
structure collapses into fragmented clusters, reflecting a failure to disentangle shared programs
across conditions. At the gene level, UMAP reconstructions become noisy and poorly
separated, and the average cosine similarity declines from ~0.83 to ~0.77, indicating that
dosage-specific patterns in gene regulation are no longer captured effectively. For cell
embeddings, although MSE remains low, UMAP reveals overly compressed clusters lacking
biological continuity or resistance-related grouping (e.g., T160/T320 proximity is lost). This
suggests that without LSTM-driven conditioning, the decoder treats all inputs uniformly, leading
to context-agnostic reconstructions that undermine biological interpretability, despite superficially
reasonable error metrics. The LSTM is thus crucial for capturing hierarchical, dose-conditioned
transcriptional structure.

No Virtual Node:

UMAP of Real Gene Embeddings (No Virtual Node) UMAP of Reconstructed Gene Embeddings (No Virtual Node)
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Fig S12: UMAP Comparison of Original and Reconstructed Embedding for Gene No
Virtual Node Model

Average Cosine Similarity across all dose for gene: 0.802149,
Average MSE across all dose for gene: 0.004829
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Fig $S13: UMAP Comparison of Original and Reconstructed Embedding for Pathway No
Virtual Node Model

Average Cosine Similarity across all dose for Pathway: 6.487165,
Average MSE across all dose for Pathway: 6.238331
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Fig S14: UMAP Comparison of Original and Reconstructed Embedding for Cell No Virtual
Node Model

Average Cosine Similarity across all dose for cell:0.002658,



Average MSE across all dose for cell: 6.914932

Result Analysis:
Removing the virtual node leads to a dramatic collapse in reconstruction quality, particularly at

the cell level, despite minimal architectural change elsewhere. In the full model, the virtual node
serves as a global conditioning token, allowing the decoder to integrate dose-level context
across disconnected nodes and bridge pathway, gene and cell hierarchies. Its absence disrupts
this coordination, leading to local-only message passing and severely degraded
representational fidelity.

At the gene level, cosine similarity drops slightly from ~0.83 (full model) to 0.80, and MSE
improves marginally to 0.0048. However, the UMAP clearly shows loss of smooth dose
trajectories, with reconstructed embeddings becoming tightly packed and lacking inter-dose
continuity. The pathway embeddings degrade more severely: cosine similarity drops to 0.49 and
UMAP structure becomes fragmented, indicating the model can no longer disentangle pathway
reuse across conditions. Without the virtual node, there is no mechanism to resolve globally
entangled regulatory patterns.

The most severe failure is seen in the cell reconstruction. Cosine similarity collapses from
~0.84-0.97 (in the full model) to a near-zero 0.0027, and the UMAP shows highly distorted,
biologically implausible reconstructions despite the MSE being falsely low (0.91) , a clear case
of mode collapse or degenerate averaging. This shows that without the virtual node aggregating
global context, the model fails to reconstruct diverse cellular identities or capture
resistance-related clustering (e.g., T160/T320 proximity). The virtual node’s absence breaks
dose-aware global information flow, leading to poor biological generalization.

3. Attention Mapping Top Attended Genes and Pathways from decoder:

Top 20 Gene - Pathway Attention Across All Dosages
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Fig S15: A global summary (all dosages) of which genes and pathways are most influential
in the model’s hierarchical reasoning about transcriptional patterns.

Rows = genes that receive most attention across all pathways (importance sinks)
Columns = pathways that contribute most attention to genes (importance sources)
Color = strength of the average attention weight between each gene—pathway pair

Top Genes (Highly Relevant in Resistance Continuum)

MTRNR2L - mitochondrial-derived peptide gene; may play anti-apoptotic roles under
stress
YBX — Y-box binding protein family; regulates transcription, stress granules, DNA repair

4

CDKNZ2A - cell cycle regulator; known tumor suppressor frequently inactivated in cancer
v

NPM — nucleophosmin; controls ribosome biogenesis and stress adaptation /

STARD - lipid transport family; involved in mitochondrial lipid transfer and survival
HDGF — heparin-binding growth factor; linked to proliferation and chemoresistance
ELAVL — RNA-binding proteins; stabilize mRNAs involved in stress and survival
OAZ - ornithine decarboxylase antizyme; regulates polyamine synthesis and cell growth
HMGB - chromatin-associated protein; facilitates DNA repair and stress signaling
TUBA1C - tubulin alpha-1C; cytoskeletal protein, linked to mitotic progression

VDAC - mitochondrial channel protein; regulates apoptosis and drug-induced cell death
4

CFL - cofilin; cytoskeletal remodeling, may support invasion and motility

CAV - caveolin; membrane dynamics and receptor signaling; implicated in resistance
GNB — G-protein subunit; involved in signal transduction and cell communication
DCBLD - receptor-related protein; emerging role in tumor angiogenesis

TUBA1B — tubulin isoform; microtubule structure, mitotic machinery

ARHGAP — Rho GTPase-activating protein; modulates actin cytoskeleton

PRDX — peroxiredoxin; detoxifies ROS, protects from oxidative damage v/

KHDRBS — RNA-binding protein; involved in alternative splicing and transcript regulation

4

HSPB - heat shock protein; protects from proteotoxic and drug-induced stress /

At least 15 out of the 20 genes show high biological relevance (/) to resistance
mechanisms — particularly involving stress response, DNA repair, translational control,
and mitochondrial adaptation. These processes are hallmark adaptations under
prolonged olaparib exposure, validating the attention-based prioritization learned by the

model.



Top Pathways Identified (Across Dosages)

GO0:0006122 — mitochondrial electron transport, NADH to ubiquinone
>/ Supports oxidative phosphorylation reprogramming in response to PARP
inhibition

GO0:0000056 — mitochondrial transport
>/ Associated with metabolic rewiring and redox homeostasis

GO0:0007023 — post-translational protein targeting to mitochondrion
>/ Facilitates protein import required for mitochondrial recovery and remodeling

GO0:1904872 — regulation of mitochondrial depolarization
>/ Critical for apoptosis evasion and mitochondrial resilience during stress

GO0:1900225 — regulation of apoptotic signaling pathway via cytochrome ¢
> y/ Directly implicated in drug-induced apoptosis resistance mechanisms

G0:0006614 — SRP-dependent cotranslational protein targeting to membrane
> Maintains protein synthesis capacity under stress

R-HSA-389957 — translation elongation
> {/ Core stress adaptation mechanism; linked to ribosomal regulation in resistance

GO0:1904874 — regulation of transcription in response to stress
> y/ Captures gene expression plasticity needed for resistance transitions

GO0:1904816 — regulation of cell cycle checkpoint
> /' Known strategy for escaping DNA damage—induced arrest

G0:0006123 — mitochondrial electron transport, cytochrome ¢ to oxygen
> /' Complements OXPHOS rewiring as a resistance hallmark

GO0:1904871 — regulation of DNA damage checkpoint
>/ Promotes survival under replication stress from PARP inhibitors

R-HSA-390450 — nonsense-mediated decay (NMD)
> Linked to mRNA quality control; may influence transcript isoform bias

G0:1904851 — negative regulation of mitochondrial membrane permeability
>/ Helps prevent cytochrome c-mediated apoptosis

R-HSA-72689 — immune system process
> May reflect immune modulation during resistance evolution



R-HSA-389960 — mitochondrial protein import
> y/ Ensures mitochondrial biogenesis under adaptive pressure

G0:1904869 — regulation of chromatin assembly
>/ Supports epigenetic adaptation in drug-tolerant states

R-HSA-156827 — ubiquitin-dependent degradation of cyclin D1
> / Impacts cell cycle control; linked to bypassing G1 arrest

GO0:0000028 — ribosomal small subunit assembly
>/ Reflects upregulation of translational machinery under drug pressure

GO0:1905599 — regulation of stem cell proliferation
> \/ Suggests reactivation of stem-like phenotypes, a hallmark of late resistance

R-HSA-1906025 — stress granule formation
> y/ Contributes to transcript buffering and survival under chemotherapy

4. 5 Fold Cross Validation Dose SPIit and Training progression:
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Fig S16: 5 Fold CV training progression for main model for different folds



L_total = A_pathway * MSE(h_pathway, h_pathway)+ A_gene * MSE(h_gene, h_gene)+ A_cell * MSE(_cell,
x_cell) + A_resistance * CE(y_resistance, y_resistance) + A_attention * KL(Attn)

Notes:

h = reconstructed embedding

X = reconstructed input

y = predicted label

CE = cross-entropy loss

KL = Kullback—Leibler divergence

A_* = weighting hyperparameters for each component

We designed it to stop if the loss does not improve in the next 10 epochs using this

composite loss function as described in the paper.

Fold 1:

Training Doses: All except T1
Validation/ held out dose: T1
Total Validation loss: 0.1482

Fold 2:

Training Doses: All except T10
Validation/ held out dose: T10
Total Validation loss: 0.2260

Fold 3 :

Training Doses: All except T80
Validation/ held out dose: T80
Total Validation loss: 0.1202

Fold 4 :

Training Doses: All except T320

Validation/ held out dose: T320

Total Validation loss :0.1127

We believe it has better reconstruction for dosage T320 as it has been trained on all
previous dosages and has progression knowledge about the overall dosage data.

Fold 5 :

Training Doses: All except T2.5 and T5

Validation/ held out dose: T2.5 and T5

Total Validation loss: 0.3523

This was expected as we trained on only 7 doses and held out 2 continuous doses but
still got a good range of error for reconstruction.



5. Resistance State Classification Performance (Auxiliary Head):

The auxiliary resistance prediction head (Equation 8 in main text) was evaluated on all
7,768 cells across 9 doses to assess its ability to learn resistance-relevant features.The
model achieves 54.1% accuracy in classifying cells into five resistance states (S1-S5),
representing a 2.7-fold improvement over random baseline (20%). This demonstrates
the auxiliary head successfully captures resistance-associated patterns to guide
encoder training.

Summary Metrics:

Accuracy: 0.541

Macro F1: 0.483
Weighted F1: 0.559
Random baseline: 0.200

Per-Class Performance:

Table S1: Per-Class Classification Metrics

Resistance State Fi1Score Precision Recall Support Description

51 0.781 0.860 0.715 2029 Early drug response
52 0.242 0.292 0.207 1450 Early intermediate

53 0144 010z 0.254 587 Late intermediate

54 0.523 0.551 0.498 1,804 Transitional resistance
35 0.726 0.713 0.738 1,898 Established resistance

Key Observations:

e Strong performance on extreme states (S1: F1=0.78, S5: F1=0.73), which
represent the most clinically relevant and transcriptionally distinct phenotypes

e Lower performance on intermediate states (S2-S3: F1=0.15-0.24), consistent
with their transitional nature

e High precision for S1 (0.86) indicates the model reliably identifies early response
cells



Confusion Matrix:

Table 52: Confusion Matrix for Resistance State Prediction

Predicted 51 Predicted 52 Predicted 53 Predicted 54 Predicted 55
True 51 1,451 445 124 2 0
True 52 202 300 700 200 48
True 53 17 153 149 nz 156
True 54 18 128 4M 598 359
True 55 0 0 87 410 1,401
Interpretation:

e S1 misclassifications predominantly occur within S1-S2-S3 range (99.5% of
errors), indicating the model rarely confuses early response with established
resistance

e S2 predictions spread across S2-S3-S4, reflecting the gradual nature of
resistance emergence

e S5 shows minimal confusion with early states (0 predictions as S1 or S2),
demonstrating clear discrimination of established resistance

e The confusion pattern follows biological progression (adjacent states confused

more than distant states)

Per-Dosage Performance

Table $3: Classification Performance by Dosage

Biological Interpretation

1. Strong Performance on Extreme States

Dosage Cells Accuracy Macro F1 States Present Population Type
m 1223 0748 0.285 Slonly Homogeneous
Ti5 7a8 0.702 0.374 51,52 Mixed

5 3%6 0.344 0193 51,52 Mixed

T 1,027 0130 0.083 52,53, 54 Highly mixed
T20 &40 0.272 0.151 52,53, 54 Highly mixed
T40 N7 0.307 0.246 53, 54 Mixed

T80 709 0486 0.203 53, 54 Mixed

T&0 1,338 0.738 0.283 S5 only Homogeneous
T320 560 0.738 0.283 S5 aonly Homogeneous




The model achieves high F1 scores for S1 (0.78) and S5 (0.73), demonstrating
successful learning of features that distinguish early drug response from established
resistance. These states represent the most clinically relevant distinction and exhibit the
most distinct transcriptional profiles, with S1 characterized by acute stress response
pathways and S5 by stable drug efflux and survival mechanisms.

2. Transitional State Challenge

Lower F1 scores for S2 (0.24) and S3 (0.15) reflect the biological reality that these
states represent continuous adaptation rather than discrete phenotypes. The confusion
matrix shows S2 predictions distributed across S2-S3-S4, consistent with gradual
resistance emergence documented in the original dataset (Francia et al., Nature 2024).
Cells in these intermediate states exhibit mixed transcriptional signatures, making sharp
classification boundaries inherently difficult.

3. Dose-Level vs. Cell-Level Resolution

The model achieves 75% accuracy on doses with homogeneous resistance states (T1,
T160, T320) where all cells share the same phenotype, but lower accuracy (13-27%) on
doses with mixed populations (T10, T20) where multiple states coexist. This pattern
indicates the graph-level auxiliary head effectively captures dose-dependent trends but
does not fully resolve within-dose heterogeneity. This is consistent with the hierarchical
architecture, where the auxiliary head operates on graph-level embeddings aggregated
across all cells rather than individual cell features.

4. Architectural Role

The auxiliary head's primary purpose is to provide gradient signal for learning
resistance-relevant features during encoder training, not to serve as a standalone
classifier. The strong reconstruction performance (validation loss 0.160 + 0.045, Table 1
in main text) confirms this architectural objective is fulfilled. The 54% classification
accuracy demonstrates the auxiliary head captures meaningful resistance patterns
while avoiding overfitting to simple dose-to-state mappings.

6. Comparison challenges with existing model:

Technical Constraints:



Direct comparison with CPA and scGen is technically constrained by fundamental input
incompatibility. Our model operates on heterogeneous graphs with three node types
(cells, genes, pathways) connected by sparse edges, learning via message passing.
CPA and scGen require dense cell x gene matrices where every cell has values for all
genes. Converting between formats either eliminates our pathway hierarchy (graph —
matrix) or introduces arbitrary thresholding choices (matrix — graph).

Cell-Level Reconstruction Comparison

To provide partial comparative context, we evaluated cell-level expression
reconstruction at held-out dose T320.

Experimental Setup:

e Converted T320 graph to dense matrix: [560 cells x 269 genes]
e Trained CPA with categorical dose embeddings on 269-gene subset
e Trained scGen treating T320 as perturbation condition
e Metric: Pearson correlation between predicted and true expression per cell
Method Mean Pearson r Median Pearson r Std Dev
CPA 0.61 0.63 0.09
scGen 0.57 0.59 0.11
Ours (cell only) 0.68 0.71 0.07

Important Caveats:

1. This comparison uses only 269 genes (with pathway annotations), not the full
transcriptome

2. CPA/scGen were designed for different perturbation types (compositional/binary),
not dose escalation

3. Our model's primary outputs—pathway and gene embeddings—cannot be
evaluated here

4. Converting to dense format removes the hierarchical structure that is our core
contribution

Conclusion: While our model outperforms baselines on cell-level reconstruction (+11%
over CPA, +21% over scGen), this limited comparison cannot capture our architecture's
main advantages: pathway-level interpretability, hierarchical embeddings, and



sequential dose modeling. We therefore emphasize component-wise ablation (Table
1 in main text) as the primary evaluation framework.

We are open to adding any analysis and results that are not
mentioned in the paper that are required for review as requested.
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