

Supplementary Information for

Weather-driven US milk yield losses and economic damages revealed by 9 million cows

Author List:

Eunkyoung Choi^{1*}, Frances V. Davenport², Ziyi Lin³, Ariel Ortiz-Bobea^{3,4}, Kirstan F. Reed⁵, Ermias Kebreab⁶, Nathaniel D. Mueller^{1,7}

Affiliations:

1. *Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA*
2. *Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA*
3. *Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA*
4. *Jeb E. Brooks School of Public Policy, Cornell University, Ithaca, NY, USA*
5. *KER Consulting, Sault Sainte Marie, MI, USA*
6. *Department of Animal Science, University of California, Davis, Davis, CA, USA*
7. *Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA*

* corresponding authors: kyoung.choi@colostate.edu

1 **Supplementary Methods**

2 **Data**

3 Daily weather data were obtained from PRISM¹ and AgERA5^{2,3}. PRISM (Parameter-elevation
4 Relationships on Independent Slopes Model) provides high-resolution, bias-corrected, station-based
5 climate fields at 4 km resolution across the US since 1895. We used daily maximum and minimum
6 temperatures (°C), maximum and minimum vapor pressure deficits (kPa), mean dew-point temperature
7 (°C), and precipitation (mm) for 2000–2025.

8

9 AgERA5, produced by the Copernicus Climate Change Service at the European Centre for Medium-
10 Range Weather Forecasts (ECWMF), is a bias-corrected version of ERA5 reanalysis tailored for
11 agricultural applications, available daily since 1979 at 0.1° (~ 10 km). We used daily maximum and
12 minimum temperatures (°K), maximum and minimum relative humidity (%), incoming solar radiation
13 flux (Wm²), and wind speed at 10m (m/s).

14

15 PRISM vapor pressure deficits were converted to relative humidity (%) using corresponding maximum
16 and minimum temperatures based on conversion equations⁴. AgERA5 wind speed at 10 m was adjusted to
17 2 m using conversion equations to simulate the surface-level wind speed⁴. In our analyses, all
18 temperatures are in a unit of °C. However, when it was multiplied to solar radiation, temperatures were
19 converted into Kelvin (°K) to avoid zero-multiplication artifacts. For simplicity, we refer to maximum
20 temperature as “daytime temperature”, minimum temperature as “nighttime temperature”, maximum
21 vapor pressure deficit as “daytime VPD”, minimum vapor pressure deficit as “nighttime VPD”, maximum
22 relative humidity as “nighttime RH”, and minimum relative humidity as “daytime RH”.

23

24 **Methods**

25 **Discovering causal relationship**

26 We built a Directed Acyclic Graph (DAG)⁵ to uncover the causal relationships between weather and milk
27 yields based on domain knowledge from animal and atmospheric sciences (**Supplementary Fig. 1**). In
28 this framework, “weather” refers to the three-day average preceding each test-day, consistent with animal
29 science evidence on high yield sensitivity to thermal stress during these periods^{6–8}. The DAG defines the
30 total causal effect of weather on milk yields, comprising both direct and indirect effects. The direct effect
31 indicates the impact of three-day average weather on milk yields, while the indirect effect includes
32 changes in milk yields via altered cow’s conditions from disease or feed changes in management. Feed
33 availability and quality are affected by weather, but typically on longer time scales than three days from
34 the test-day, and are strongly moderated by management decisions⁹. From the DAG, five variables were

35 identified as necessary to adjust for the estimation of the total causal effect of weather: weather,
36 seasonal/monthly variability, management-related impacts, geographical locations of county, and cow
37 lactation cycle with parity.

38

39 We note that our modeling approach differs from standard predictive machine learning (ML), which aims
40 solely to maximize out-of-sample prediction accuracy. For example, since high milking frequency is more
41 likely to lead to higher milk yields per cow, capturing this relationship in the predictive ML is helpful for
42 out-of-sample prediction skills. However, in causality-aware ML, milking frequency is a parent variable
43 that directly causes the outcome. Including it in the model would block the causal pathway from weather
44 to yield, thereby obscuring the true effect of weather. For this reason, milking frequency was excluded
45 from the model specification.

46

47 **Hierarchical clustering using a spearman correlation matrix**

48 Tree-based models are generally robust to correlated features. However, strong correlations can still
49 degrade performance or obscure variable importance. To address this, we applied hierarchical clustering
50 on the features' Spearman rank-order correlations (**Supplementary Fig. 4**). A clustering distance
51 threshold of 0.6 (\approx spearman correlation < 0.4) was selected based on visual inspection of the
52 dendrogram. From each cluster, a single representative feature was retained to form candidate weather
53 variable sets. This procedure initially produced >40 candidates, with 20 unique weather combinations
54 once dataset overlap was accounted for. Model performance was then compared between PRISM- and
55 AgERA5-based features. PRISM consistently outperformed AgERA5 for the same weather combinations
56 (e.g., All_day_RH vs. All_day_RH_AgERA5 in **Supplementary Table 1**). Therefore, PRISM was
57 prioritized as the source for most variables, while solar radiation and wind speed were included from
58 AgERA5, as they are not available in PRISM.

59

60 **Training and test set split by considering the full lactation cycle**

61 Cows can calve at anytime during the year, which complicates estimation of herd-specific management
62 trends and biological lactation cycles if data are split strictly by calendar year. A single lactation cycle can
63 span two calendar years, creating potential data leakage into validation or test sets. To prevent this, we
64 assigned a reference year to each parity based on the distribution of test-day records across calendar
65 years:

66 i. if $> 50\%$ of milk records fall within the calving year, the reference year is the calving year;

67 ii. if 40–50% of records fall in the calving year and calving occurs before September, the reference
68 year is the calving year;
69 iii. if 40–50% of records fall in the following year and calving occurs after September, the reference
70 year is the year after calving; and
71 iv. if < 40% of records fall in the calving year, the reference year is the year after calving.

72 Using these rules, each lactation cycle was fully contained within a single reference year. The dataset was
73 then partitioned into a training period (2000–2021) and test period (2022–2024).

75 **GridSearch procedures**

76 We performed a GridSearch to identify the combination of weather variables that maximized region-
77 specific average yield residuals. To ensure that the optima reflected realistic rather than rare conditions,
78 candidate ranges were restricted to the 5th–95th percentile weather range combination that provides the
79 highest region-specific average yield residuals. To exclude the optimum weather conditions from rare
80 weather, we constrained it to be between the 5th and 95th percentiles of each weather variable. Ranges for
81 each variable were determined based on Accumulated Local Effects (ALE) plots. We selected 4–5
82 continuous bins (at 3-percentile intervals) surrounding the peak point, which indicated the highest yield
83 response. When two peaks produced similarly high yields, both ranges were retained. Conversely, if an
84 isolated peak was surrounded by negative bins, it was excluded as likely noise. Gridsearch was then
85 applied across all candidate ranges to evaluate every possible combination of weather variables. Region-
86 specific average yields were computed for each combination, incorporating weights from **equation (4)** in
87 main text to reflect USDA cow population shares and to adjust for imbalances in test-day records across
88 cows.

90 **Calculation of cost function**

91 To select the key weather combinations among 20 candidate feature sets, we used a cost function
92 designed to evaluate the robustness of model performance across both cross-validation (CV) and test (out-
93 of-sample) predictions. Performance was assessed using two loss metrics: Root Mean Squared Error
94 (RMSE) and Mean Absolute Error (MAE). For each candidate model, RMSE and MAE were first
95 computed within each of the five CV folds as well as on the independent test set. To balance in sample
96 and out of sample performance, we averaged each metric across the five CV folds and then took the mean
97 of the CV average and test-set value to generate a final composite score. This approach weights the test
98 set while ensuring stability across folds. Final RMSE and MAE values for each candidate model are

99 reported in **Supplementary Table 1**. The units of both metrics are log-transformed milk residuals (kg per
100 cow per test-day).

101

102 **Supplemental Reference**

103 1. PRISM Climate Group. Oregon State University. <https://prism.oregonstate.edu/>.

104 2. Copernicus Climate Change Service. Agrometeorological indicators from 1979 up to 2019

105 derived from reanalysis. <https://doi.org/10.24381/CDS.6C68C9BB> (2019).

106 3. Boogaard, H. *et al.* Agrometeorological indicators from 1979 to present derived from reanalysis.

107 <https://doi.org/10.24381/cds.6c68c9bb>.

108 4. *Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements*. (Food and

109 Agriculture Organization of the United Nations, Rome, 1998).

110 5. Textor, J., Van Der Zander, B., Gilthorpe, M. S., Liśkiewicz, M. & Ellison, G. T. H. Robust

111 causal inference using directed acyclic graphs: the R package ‘dagitty’. *Int. J. Epidemiol.* dyw341 (2017)

112 doi:10.1093/ije/dyw341.

113 6. West, J. W., Mullinix, B. G. & Bernard, J. K. Effects of Hot, Humid Weather on Milk

114 Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. *J. Dairy Sci.* **86**, 232–242

115 (2003).

116 7. Bryant, J. R., López-Villalobos ,N., Pryce ,J. E., Holmes ,C. W. & and Johnson, D. L.

117 Quantifying the effect of thermal environment on production traits in three breeds of dairy cattle in New

118 Zealand. *N. Z. J. Agric. Res.* **50**, 327–338 (2007).

119 8. Hagiya, K. *et al.* Length of lags in responses of milk yield and somatic cell score on test day to

120 heat stress in Holsteins. *Anim. Sci. J. Nihon Chikusan Gakkaiho* **90**, 613–618 (2019).

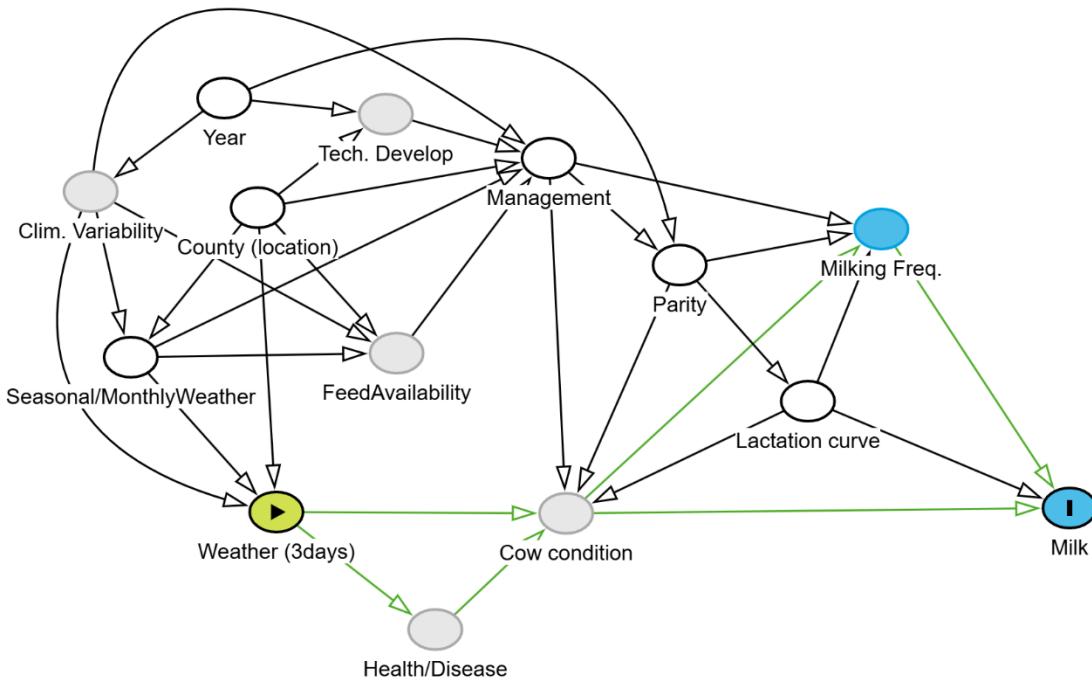
121 9. Adams, C., Clark, R. T., Klootenstein, T. J. & Volesky, D. Matching the Cow with Forage

122 Resources.

123 10. Lundberg, S. M. *et al.* From local explanations to global understanding with explainable AI for

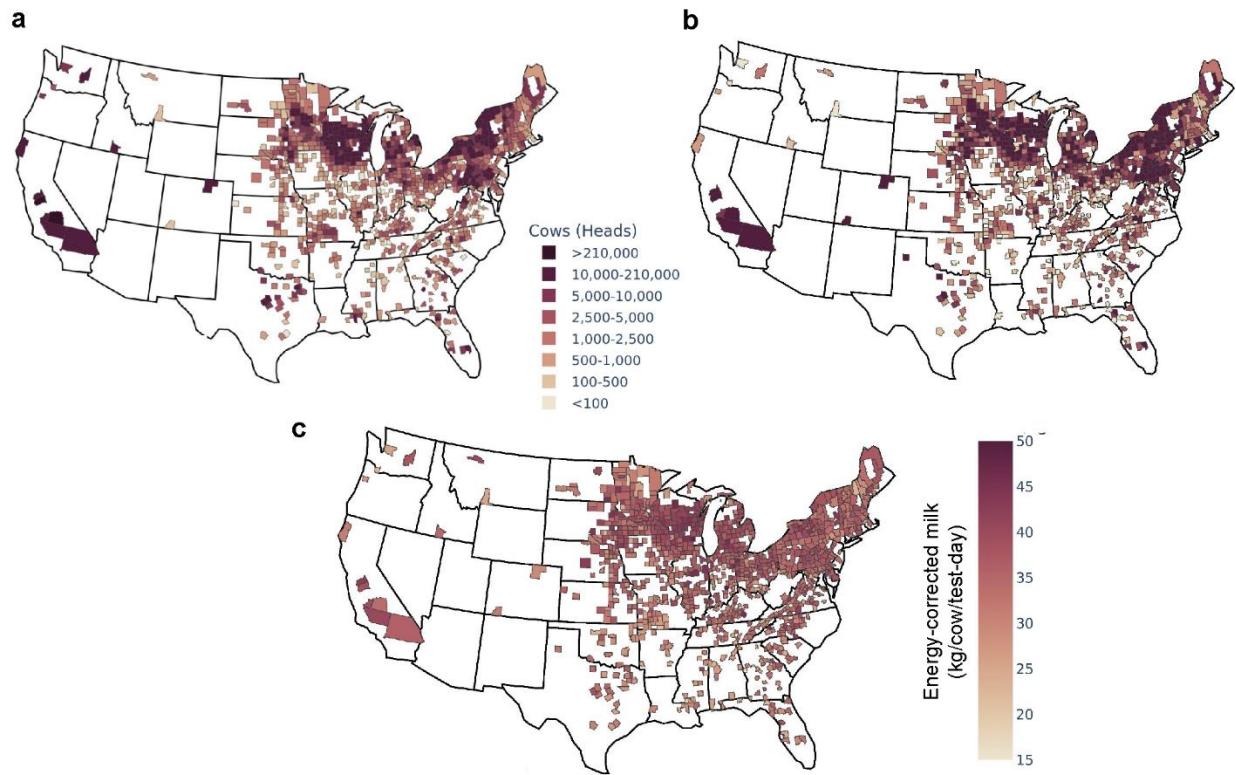
124 trees. *Nat. Mach. Intell.* **2**, 56–67 (2020).

125



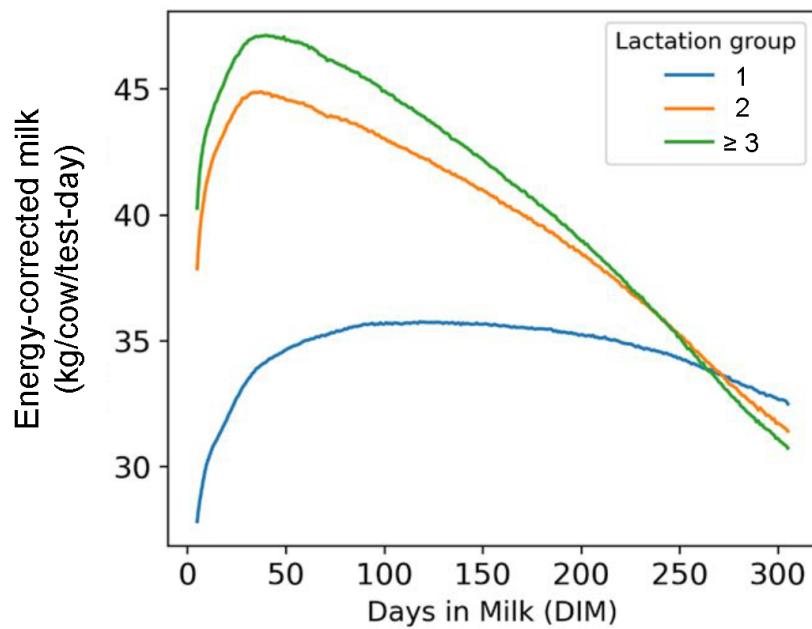
127

128 Fig. S1. Directed Acyclic Graph illustrating the causal relationship between weather and milk yields. The
 129 solid green oval with a triangle indicates the exposure, which is weather. The solid blue oval with
 130 a straight black line presents the target, which is milk yield. The solid blue oval with no line
 131 shows a parent variable for the target. Solid white ovals represent features that we can control for,
 132 while solid gray ovals represent unobserved features that cannot be controlled for. Each feature is
 133 modeled as a function of all features with arrows pointing to it. Green line arrows show the causal
 134 paths from the exposure to the target. In our DAG, multiple green line arrows indicate the total
 135 effect of weather on milk yields which combines both direct and indirect pathways through health
 136 and disease, cow condition, and milking frequency.



137

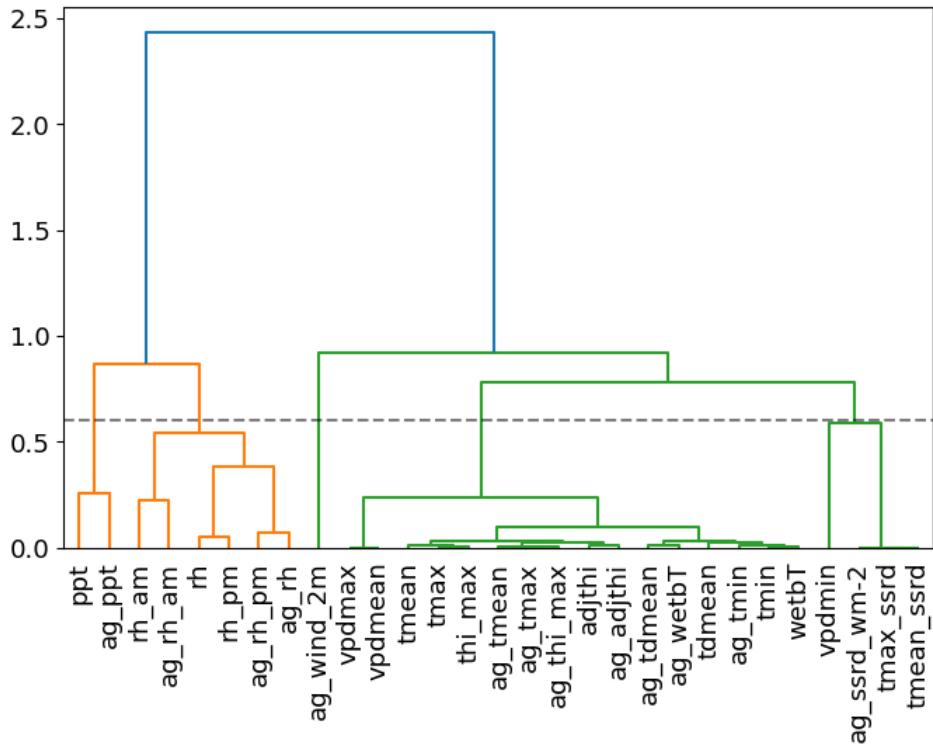
138 Fig. S2. County-level map of cow populations and milk yields. (a) USDA cow populations averaged
 139 across Census years (1997, 2002, 2007, 2012, 2017, and 2022). Counties that are not included in
 140 our sample are excluded. (b) Our sample-based (DRMS) cow populations averaged annually
 141 across 2000–2024. The legend for (a) and (b) is included between two panels. (c) Energy-
 142 corrected milk yields averaged annually across 2000–2024.



143

144 Fig. S3. Cows' lactation cycles across parities. Energy-corrected milk yields were averaged across cows
145 in the US. Lactation group 3 includes all parities greater than three.

146

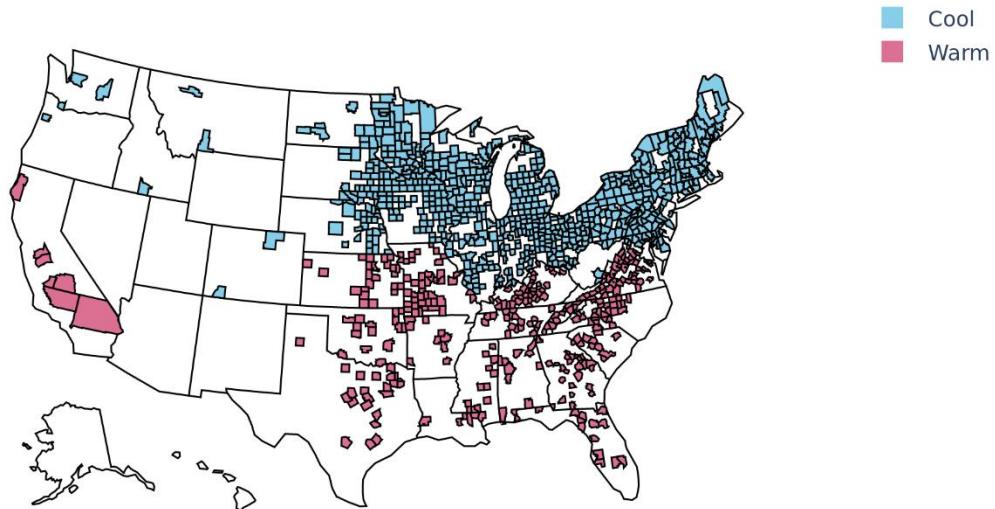


147

148 Fig. S4. Hierarchical clustering of weather variables based on a spearman correlation matrix. A distance
 149 threshold of 0.6 was applied to define clusters. The prefix “ag_” denotes variables from the
 150 AgERA5 dataset, while unlabeled variables correspond to PRISM dataset. Variable abbreviations
 151 are as follows: ppt = precipitation, tmax/tmin/tmean = maximum/minimum/mean temperature,
 152 tdmean = mean dew-point temperature, wetbT = wet-bulb temperature, vpdmax/vpdmin/vpdmean
 153 = maximum/minimum/mean vapor pressure deficits, rh_am/rh_pm = morning/afternoon relative
 154 humidity, wind_2m = wind speed at 2m height, ssrd = surface solar radiation downwards,
 155 thi_max = maximum Temperature and Humidity Index, and adjthi = adjusted Temperature and
 156 Humidity Index.

157

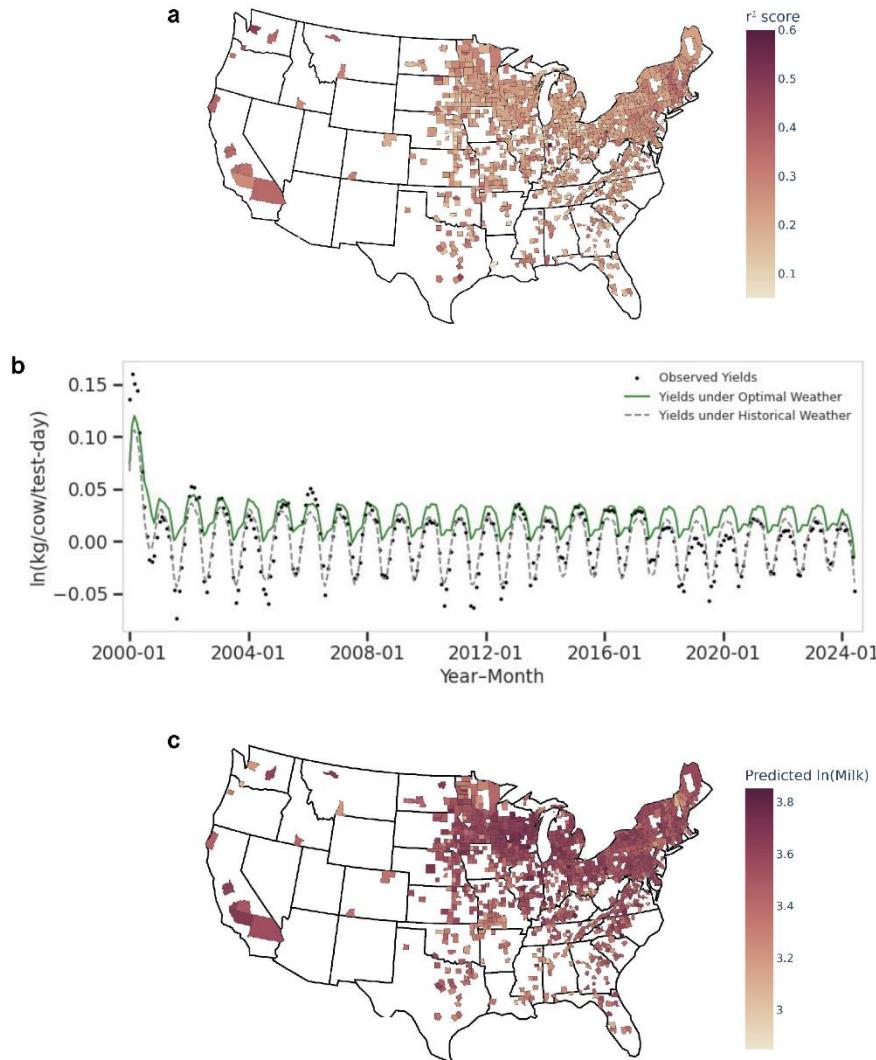
158



159

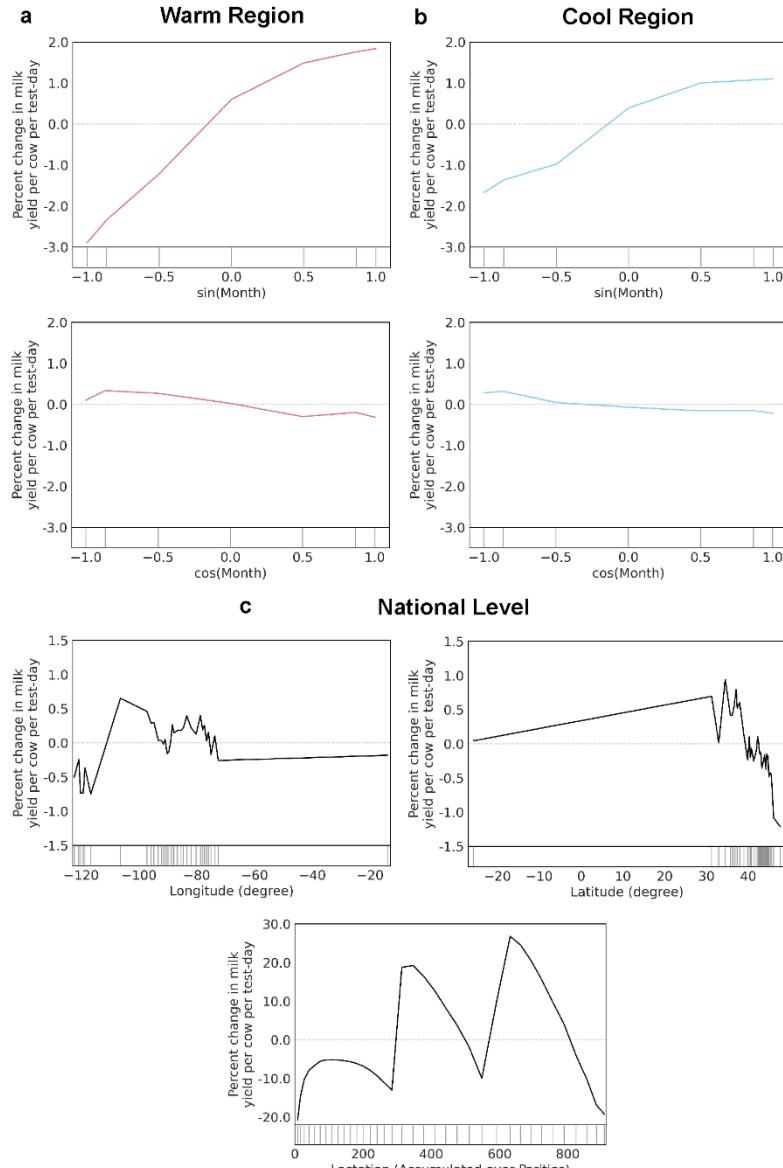
160 Fig. S5. County-level map of warm and cool regions

161



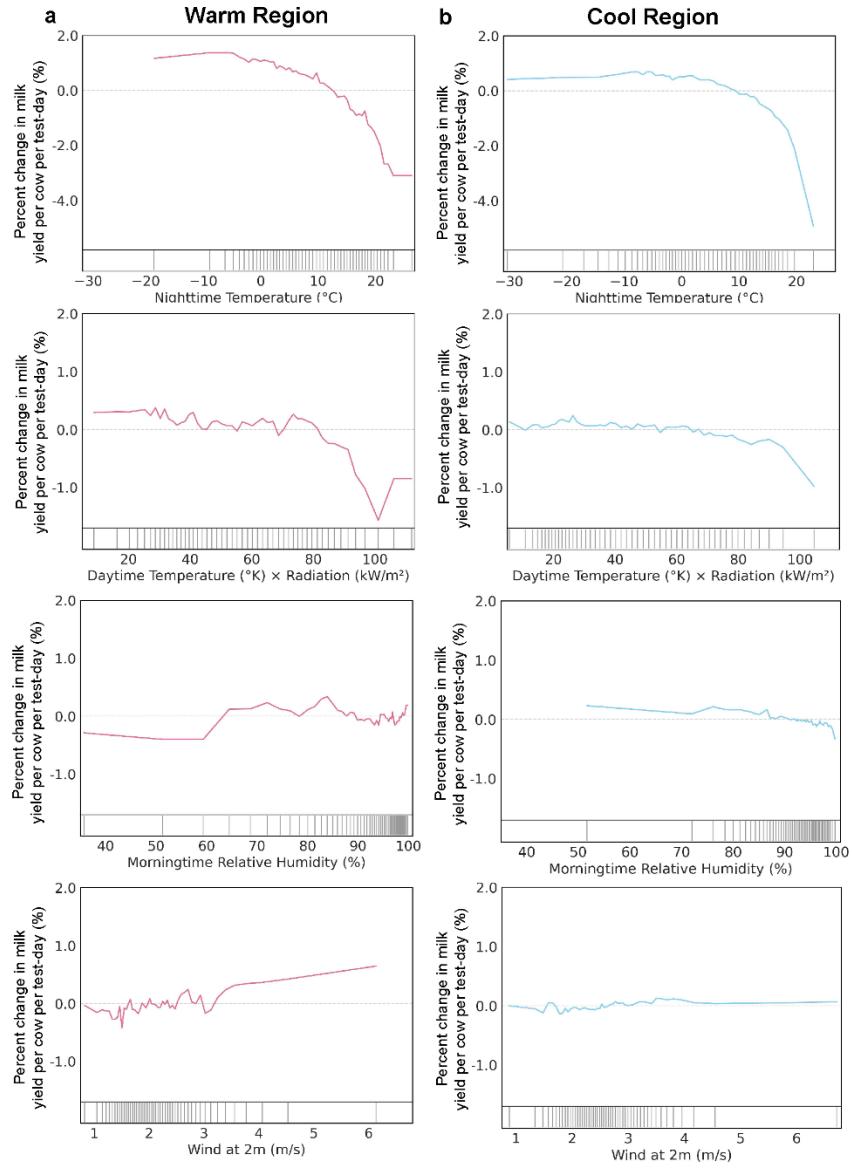
162

163 Fig. S6. Spatial and temporal evaluation of model predictions. (a) County-level predictive skill (R^2) of the
 164 final XGBoost model. (b) Timeseries of national average milk residual predictions under
 165 historical and optimum weather compared with observed residuals. (c) County-level spatial
 166 distribution of predicted values from the final XGBoost model, combined with herd-level
 167 management trends. Note that seven counties with poor predictive skill (negative R^2) were
 168 excluded for yield loss and economic damage analyses.



169

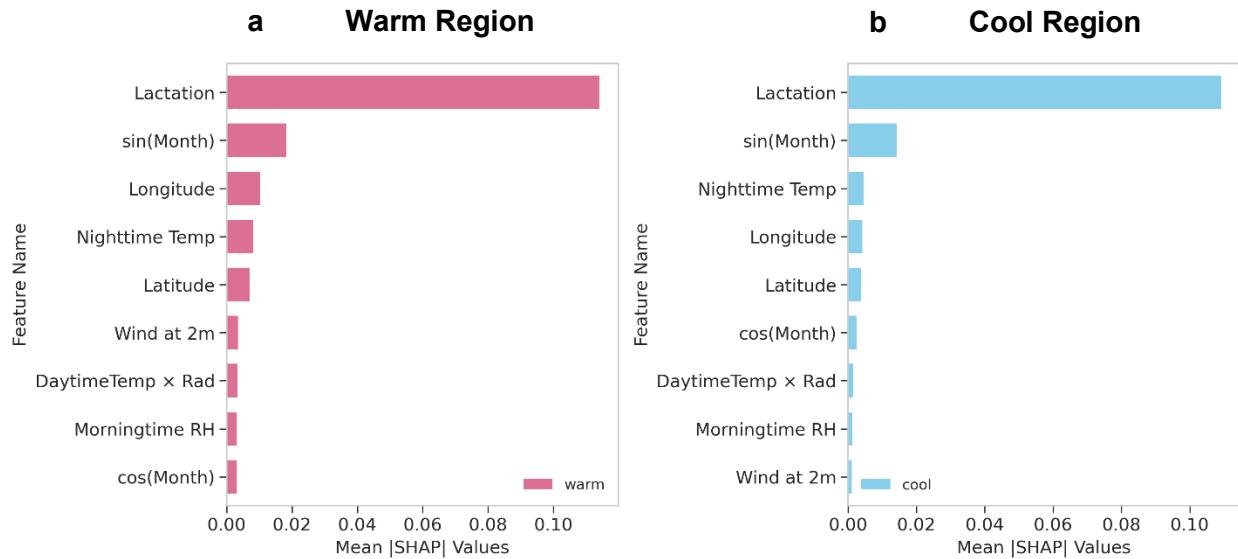
170 Fig. S7. Average milk yield sensitivity to non-weather variables in (a) warm region, (b) cool region, (c)
 171 nationwide. Solid lines show the estimated marginal change (%) in milk yield per cow per test-
 172 day to each non-weather variable using Accumulated Local Effects. The pink line indicates the
 173 yield sensitivity in warm region, the blue line indicates the yield sensitivity in cool region, and the
 174 black line indicates national level yield sensitivity. The rug plot on the bottom of each panel
 175 describes the distribution of weighted observations across percentiles (**Methods**).



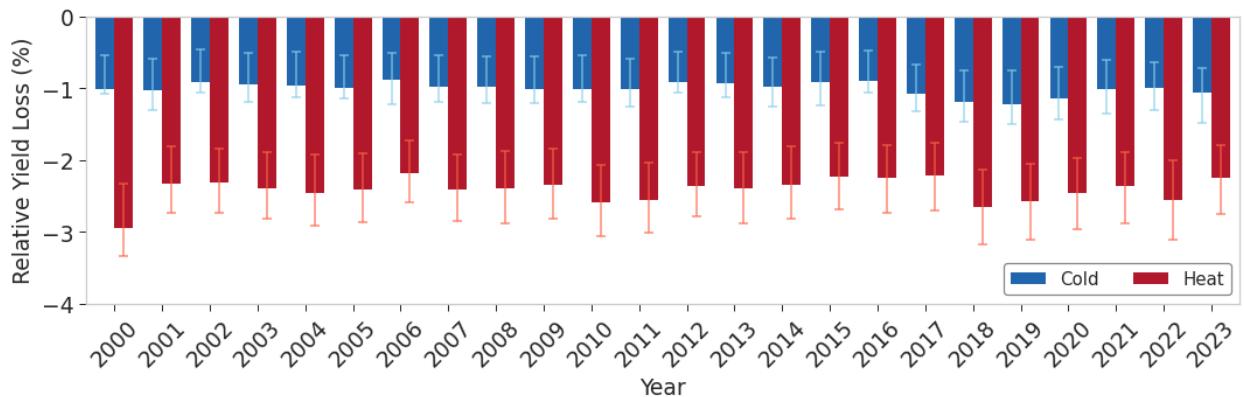
176

177 Fig. S8. Average milk yield sensitivity to weather variables in (a) warm and (b) cool regions, 2000–2024.

178 without weighting test-day record imbalance and USDA cow population differences. Solid lines
 179 show the estimated marginal change (%) in milk yield per cow per test-day to each weather
 180 variable using ALE, in pink for warm region and in blue for cool region. Positive and negative
 181 values denote predictions that are above or below the regional mean, respectively. The rug plot on
 182 the bottom of each panel describes the distribution of observations across percentiles (**Methods**).
 183



186 Fig. S9. Feature importance in predicting milk yield changes for (a) warm and (b) cool regions, using
 187 SHapley Additive exPlanations¹⁰.



189

190 Fig. S10. National-level annual average relative yield loss (%) for heat stress in red and cold stress in blue,

191 2000–2023.

Supplementary Tables

Candidates	Features																		Average Score across CV & Test			
	Lact- ation	Sea- son	Tavg	Tmin	Tmax	WetbT	Tdew	VPD avg	VPD min	VPD max	RH avg	RH min	RH max	Rad	Tavg x Rad	Tmax x Rad	Wind	PPT	THI max	Adj THI	RMSE	MAE
Baseline	V																			0.248340	0.182854	0.215597
NightRH	V	V		V										V			V	V		0.245525	0.180430	0.212977
NightVPD	V	V		V				V								V	V		0.245527	0.180430	0.212978	
DayVPD	V	V		V					V							V	V		0.245524	0.180435	0.212980	
Wetbt_- Solar	V	V			V											V	V		0.245523	0.180438	0.212981	
All_day_RH	V	V		V							V	V			V	V		0.245527	0.180434	0.212981		
NightVPD_P PT	V	V		V				V							V	V	V	0.245528	0.180434	0.212981		
Wetbt_Night Solar	V	V		V	V						V				V	V		0.245526	0.180437	0.212982		
DayRH	V	V		V							V				V	V	V	0.245529	0.180435	0.212982		
Basic2	V	V		V							V				V		V	0.245529	0.180439	0.212984		
Night_RHavg	V	V		V					V						V	V		0.245532	0.180437	0.212984		
All_day_RH_- agera5*	V	V		V						V	V				V	V		0.245532	0.180438	0.212985		
DayVPD_PP T	V	V		V					V						V	V	V	0.245530	0.180442	0.212986		
DayRH_PPT	V	V		V						V					V	V	V	0.245533	0.180442	0.212988		
Basic1	V	V		V	V	V								V		V	V	0.245531	0.180444	0.212988		
Basic3	V	V	V							V					V	V		0.245536	0.180444	0.212990		
AdjTHI_max_- Indiv	V	V			V						V		V			V			0.245536	0.180449	0.212992	
AdjTHI_Indi v	V	V	V							V		V			V			0.245550	0.180451	0.213000		
AdjTHI	V	V															V	0.245568	0.180452	0.213010		
THI_max	V	V															V	0.245581	0.180466	0.213023		
THI_Indiv	V	V	V							V								0.245611	0.180489	0.213050		
THI_max_Indi v	V	V		V							V							0.245611	0.180502	0.213057		

*agera5 version of weather combination candidate

194 **Table S1. Error scores of weather combination candidates across cross-validation and test set predictions.** In the features, T stands for
195 temperature (°C), WebT is wet-bult temperature (°C), VPD indicates vapor pressure deficits (kPa), RH denotes relative humidity (%), Rad is
196 downward incoming radiation flux (Wm²), PPT is precipitation (mm), THI is Temperature Humidity Index, and adjTHI is adjusted THI. Tavg x
197 Rad indicates the interactions of average temperature (°K) and downward incoming solar radiation (kWm²), and Tmax x Rad denotes the
198 interactions of maximum temperature (°K) and downward incoming solar radiation (kWm²). A check mark indicates inclusion of a given feature in
199 a candidate combination. All candidates except the baseline additionally included longitude, latitude, and sine- and cosine-transformed month to
200 capture seasonality, as well as lactation cycles across parities. The baseline model included only lactation cycles. Root Mean Squared Error
201 (RMSE) and Mean Absolute Error (MAE) were computed for cross-validation and test-set prediction separately, and their averages were used as
202 the final composite score to select the key weather combination. Units for RMSE and MAE are log-transformed milk residuals (kg/cow/test-day).

	# of Features <= 7	# of Features > 7
Number of Trees	200	250
Max Depth	10	12
Subsample ratio	0.9	0.9
Minium child weight	200	160
Learning rate	0.1	0.05

203 **Table S2. Final hyperparameters from Bayesian optimization.** Hyperparameter tuning was initially
 204 performed separately for each weather combination candidate. However, final hyperparameters converged
 205 to similar values across models. Differences mainly dependent on whether the number of features was
 206 fewer than or greater than seven (weather plus control variables including longitude, latitude, sine- and
 207 cosine-months, and lactation cycles across parities).