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Supplementary Methods
Data
Daily weather data were obtained from PRISM!' and AgERAS5%3, PRISM (Parameter-elevation

Relationships on Independent Slopes Model) provides high-resolution, bias-corrected, station-based
climate fields at 4 km resolution across the US since 1895. We used daily maximum and minimum
temperatures (°C), maximum and minimum vapor pressure deficits (kPa), mean dew-point temperature

(°C), and precipitation (mm) for 2000-2025.

AgERAS, produced by the Copernicus Climate Change Service at the European Centre for Medium-
Range Weather Forecasts (ECWMF), is a bias-corrected version of ERAS reanalysis tailored for
agricultural applications, available daily since 1979 at 0.1° (~ 10 km). We used daily maximum and
minimum temperatures (°K), maximum and minimum relative humidity (%), incoming solar radiation

flux (Wm?), and wind speed at 10m (m/s).

PRISM vapor pressure deficits were converted to relative humidity (%) using corresponding maximum
and minimum temperatures based on conversion equations*. AgERAS wind speed at 10 m was adjusted to
2 m using conversion equations to simulate the surface-level wind speed®. In our analyses, all
temperatures are in a unit of °C. However, when it was multiplied to solar radiation, temperatures were
converted into Kelvin (°K) to avoid zero-multiplication artifacts. For simplicity, we refer to maximum
temperature as “daytime temperature”, minimum temperature as “nighttime temperature”, maximum
vapor pressure deficit as “daytime VPD”, minimum vapor pressure deficit as “nighttime VPD”, maximum

relative humidity as “nighttime RH”, and minimum relative humidity as “daytime RH”.

Methods
Discovering causal relationship

We built a Directed Acyclic Graph (DAG)’ to uncover the causal relationships between weather and milk
yields based on domain knowledge from animal and atmospheric sciences (Supplementary Fig. 1). In
this framework, “weather” refers to the three-day average preceding each test-day, consistent with animal
science evidence on high yield sensitivity to thermal stress during these periods®®. The DAG defines the
total causal effect of weather on milk yields, comprising both direct and indirect effects. The direct effect
indicates the impact of three-day average weather on milk yields, while the indirect effect includes
changes in milk yields via altered cow’s conditions from disease or feed changes in management. Feed
availability and quality are affected by weather, but typically on longer time scales than three days from

the test-day, and are strongly moderated by management decisions’. From the DAG, five variables were
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identified as necessary to adjust for the estimation of the total causal effect of weather: weather,
seasonal/monthly variability, management-related impacts, geographical locations of county, and cow

lactation cycle with parity.

We note that our modeling approach differs from standard predictive machine learning (ML), which aims
solely to maximize out-of-sample prediction accuracy. For example, since high milking frequency is more
likely to lead to higher milk yields per cow, capturing this relationship in the predictive ML is helpful for
out-of-sample prediction skills. However, in causality-aware ML, milking frequency is a parent variable
that directly causes the outcome. Including it in the model would block the causal pathway from weather
to yield, thereby obscuring the true effect of weather. For this reason, milking frequency was excluded

from the model specification.

Hierarchical clustering using a spearman correlation matrix

Tree-based models are generally robust to correlated features. However, strong correlations can still
degrade performance or obscure variable importance. To address this, we applied hierarchical clustering
on the features’ Spearman rank-order correlations (Supplementary Fig. 4). A clustering distance
threshold of 0.6 (= spearman correlation < 0.4) was selected based on visual inspection of the
dendrogram. From each cluster, a single representative feature was retained to form candidate weather
variable sets. This procedure initially produced >40 candidates, with 20 unique weather combinations
once dataset overlap was accounted for. Model performance was then compared between PRISM- and
AgERAS5-based features. PRISM consistently outperformed AgERAS for the same weather combinations
(e.g., All_day RH vs. All day RH_AgERAS5 in Supplementary Table 1). Therefore, PRISM was
prioritized as the source for most variables, while solar radiation and wind speed were included from

AgERADS, as they are not available in PRISM.

Training and test set split by considering the full lactation cycle

Cows can calve at anytime during the year, which complicates estimation of herd-specific management
trends and biological lactation cycles if data are split strictly by calendar year. A single lactation cycle can
span two calendar years, creating potential data leakage into validation or test sets. To prevent this, we
assigned a reference year to each parity based on the distribution of test-day records across calendar

years:

i.  if>50% of milk records fall within the calving year, the reference year is the calving year;
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ii.  i1f40-50% of records fall in the calving year and calving occurs before September, the reference
year is the calving year;

iii.  if40-50% of records fall in the following year and calving occurs after September, the reference
year is the year after calving; and

iv.  if <40% of records fall in the calving year, the reference year is the year after calving.

Using these rules, each lactation cycle was fully contained within a single reference year. The dataset was

then partitioned into a training period (2000-2021) and test period (2022-2024).

GridSearch procedures

We performed a GridSearch to identify the combination of weather variables that maximized region-
specific average yield residuals. To ensure that the optima reflected realistic rather than rare conditions,
candidate ranges were restricted to the 57—95" percentile weather range combination that provides the
highest region-specific average yield residuals. To exclude the optimum weather conditions from rare
weather, we constrained it to be between the 5th and 95" percentiles of each weather variable. Ranges for
each variable were determined based on Accumulated Local Effects (ALE) plots. We selected 4—5
continuous bins (at 3—percentile intervals) surrounding the peak point, which indicated the highest yield
response. When two peaks produced similarly high yields, both ranges were retained. Conversely, if an
isolated peak was surrounded by negative bins, it was excluded as likely noise. Gridsearch was then
applied across all candidate ranges to evaluate every possible combination of weather variables. Region-
specific average yields were computed for each combination, incorporating weights from equation (4) in
main text to reflect USDA cow population shares and to adjust for imbalances in test-day records across

COWS.

Calculation of cost function

To select the key weather combinations among 20 candidate feature sets, we used a cost function
designed to evaluate the robustness of model performance across both cross-validation (CV) and test (out-
of-sample) predictions. Performance was assessed using two loss metrics: Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE). For each candidate model, RMSE and MAE were first
computed within each of the five CV folds as well as on the independent test set. To balance in sample
and out of sample performance, we averaged each metric across the five CV folds and then took the mean
of the CV average and test-set value to generate a final composite score. This approach weights the test

set while ensuring stability across folds. Final RMSE and MAE values for each candidate model are



99  reported in Supplementary Table 1. The units of both metrics are log-transformed milk residuals (kg per
100  cow per test-day).
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128 Fig. S1. Directed Acyclic Graph illustrating the causal relationship between weather and milk yields. The

129 solid green oval with a triangle indicates the exposure, which is weather. The solid blue oval with
130 a straight black line presents the target, which is milk yield. The solid blue oval with no line

131 shows a parent variable for the target. Solid white ovals represent features that we can control for,
132 while solid gray ovals represent unobserved features that cannot be controlled for. Each feature is
133 modeled as a function of all features with arrows pointing to it. Green line arrows show the causal
134 paths from the exposure to the target. In our DAG, multiple green line arrows indicate the total
135 effect of weather on milk yields which combines both direct and indirect pathways through health

136 and disease, cow condition, and milking frequency.
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Fig. S2. County-level map of cow populations and milk yields. (a) USDA cow populations averaged
across Census years (1997, 2002, 2007, 2012, 2017, and 2022). Counties that are not included in
our sample are excluded. (b) Our sample-based (DRMS) cow populations averaged annually
across 2000-2024. The legend for (a) and (b) is included between two panels. (c) Energy-

corrected milk yields averaged annually across 2000-2024.
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Fig. S3. Cows’ lactation cycles across parities. Energy-corrected milk yields were averaged across cows

in the US. Lactation group 3 includes all parities greater than three.
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Fig. S4. Hierarchical clustering of weather variables based on a spearman correlation matrix. A distance
threshold of 0.6 was applied to define clusters. The prefix “ag ” denotes variables from the
AgERAS dataset, while unlabeled variables correspond to PRISM dataset. Variable abbreviations
are as follows: ppt = precipitation, tmax/tmin/tmean = maximum/minimum/mean temperature,
tdmean = mean dew-point temperature, wetbT = wet-bulb temperature, vpdmax/vpdmin/vpdmean
= maximum/minimum/mean vapor pressure deficits, rh_am/rh pm = morning/afternoon relative
humidity, wind 2m = wind speed at 2m height, ssrd = surface solar radiation downwards,
thi_max = maximum Temperature and Humidity Index, and adjthi = adjusted Temperature and

Humidity Index.
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160  Fig. S5. County-level map of warm and cool regions
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163  Fig. S6. Spatial and temporal evaluation of model predictions. (a) County-level predictive skill (R?) of the

164 final XGBoost model. (b) Timeseries of national average milk residual predictions under
165 historical and optimum weather compared with observed residuals. (¢) County-level spatial
166 distribution of predicted values from the final XGBoost model, combined with herd-level
167 management trends. Note that seven counties with poor predictive skill (negative R?) were

168 excluded for yield loss and economic damage analyses.
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Fig. S7. Average milk yield sensitivity to non-weather variables in (a) warm region, (b) cool region, (c)
nationwide. Solid lines show the estimated marginal change (%) in milk yield per cow per test-
day to each non-weather variable using Accumulated Local Effects. The pink line indicates the
yield sensitivity in warm region, the blue line indicates the yield sensitivity in cool region, and the
black line indicates national level yield sensitivity. The rug plot on the bottom of each panel

describes the distribution of weighted observations across percentiles (Methods).
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177  Fig. S8. Aaverage milk yield sensitivity to weather variables in (a) warm and (b) cool regions, 2000—2024.

178 without weighting test-day record imbalance and USDA cow population differences. Solid lines
179 show the estimated marginal change (%) in milk yield per cow per test-day to each weather

180 variable using ALE, in pink for warm region and in blue for cool region. Positive and negative
181 values denote predictions that are above or below the regional mean, respectively. The rug plot on
182 the bottom of each panel describes the distribution of observations across percentiles (Methods).

183
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186  Fig. S9. Feature importance in predicting milk yield changes for (a) warm and (b) cool regions, using

187 SHapley Additive exPlanations'.
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Supplementary Tables

Features Average Score across CV & Test

Candidates La}ct- Sea Tavg| Tmin | Tmax | WetbT | Tdew VPD VPD VPD|RH R.H RH Rad Tavg | Tmax Wind | PPT THI| Adj RMSE MAE Final
ation | son avg | min | max |avg|min| max x Rad | x Rad max | THI

Baseline % 0.248340 10.182854 |0.215597
NightRH v v v % v | v 0.245525 |0.180430 |0.212977
NightVPD v | v 4 v 4 v 0.245527 [0.180430 ]0.212978
DayVPD v v v % v | v 0.245524 |0.180435 |0.212980
Wetbt
Solar vV 4 i 0.245523 |0.180438 |0.212981
Allday RH | v | v v v v | v 0.245527 |0.180434 |0.212981
NightVPD_P
PT VoV v v Vo vV 0.245528 |0.180434 |0.212981
Wetbt Night
Solar Vv v 4 v VoV 0.245526 |0.180437 [0.212982
DayRH v |V % v v Vv |V 0.245529 [0.180435 [0.212982
Basic2 v v % % % % 0.245529 |0.180439 |0.212984
Night RHavg| |y | i v v % v 0.245532 [0.180437 [0.212984
All day RH
ageras* V1Y v A4 V1Y 0245532 [0.180438 |0.212985
DayVPD_PP
T v v v v ViV 0.245530 [0.180442 |0.212986
DayRH PPT | v | v % v | v 0.245533 |0.180442 |0.212988
Basicl % % v % v % 0.245531 [0.180444 0.212988
Basci3 v vy % v | v 0.245536 |0.180444 |0.212990
AdjTHImax
Indiv i v v 4 v 0.245536 |0.180449 [0.212992
AdjTHI Indi
v ViV v 4 v 0.245550 |0.180451 [0.213000
AdjTHI Vv | v V' 10.245568 [0.180452 [0.213010
THImax v v v 0.245581 |0.180466 |0.213023
THL Indiv | v |v | v v 0.245611 |0.180489 |0.213050
THImax_Indi
v oV v v 0.245611 |0.180502 |0.213057

*agera5 version of weather combination candidate
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Table S1. Error scores of weather combination candidates across cross-validation and test set predictions. In the features, T stands for
temperature (°C), WetbT is wet-bult temperature (°C), VPD indicates vapor pressure deficits (kPa), RH denotes relative humidity (%), Rad is
downward incoming radiation flux (Wm?), PPT is precipitation (mm), THI is Temperature Humidity Index, and adjTHI is adjusted THI. Tavg x
Rad indicates the interactions of average temperature (°K) and downward incoming solar radiation (kWm?), and Tmax x Rad denotes the
interactions of maximum temperature (°K) and downward incoming solar radiation (kWm?). A check mark indicates inclusion of a given feature in
a candidate combination. All candidates except the baseline additionally included longitude, latitude, and sine- and cosine-transformed month to
capture seasonality, as well as lactation cycles across parities. The baseline model included only lactation cycles. Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) were computed for cross-validation and test-set prediction separately, and their averages were used as

the final composite score to select the key weather combination. Units for RMSE and MAE are log-transformed milk residuals (kg/cow/test-day).



# of Features <=7 # of Features > 7
Number of Trees 200 250
Max Depth 10 12
Subsample ratio 0.9 0.9
Minium child weight 200 160
Learning rate 0.1 0.05

203  Table S2. Final hyperparameters from Bayesian optimization. Hyperparameter tuning was initially
204  performed separately for each weather combination candidate. However, final hyperparameters converged
205  to similar values across models. Differences mainly dependent on whether the number of features was
206  fewer than or greater than seven (weather plus control variables including longitude, latitude, sine- and

207  cosine-months, and lactation cycles across parities).



