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Supplementary Methods 1 

Data 2 

Daily weather data were obtained from PRISM1 and AgERA52,3. PRISM (Parameter-elevation 3 

Relationships on Independent Slopes Model) provides high-resolution, bias-corrected, station-based 4 

climate fields at 4 km resolution across the US since 1895. We used daily maximum and minimum 5 

temperatures (°C), maximum and minimum vapor pressure deficits (kPa), mean dew-point temperature 6 

(°C), and precipitation (mm) for 2000–2025. 7 

 8 

AgERA5, produced by the Copernicus Climate Change Service at the European Centre for Medium-9 

Range Weather Forecasts (ECWMF), is a bias-corrected version of ERA5 reanalysis tailored for 10 

agricultural applications, available daily since 1979 at 0.1° (~ 10 km). We used daily maximum and 11 

minimum temperatures (°K), maximum and minimum relative humidity (%), incoming solar radiation 12 

flux (Wm2), and wind speed at 10m (m/s). 13 

 14 

PRISM vapor pressure deficits were converted to relative humidity (%) using corresponding maximum 15 

and minimum temperatures based on conversion equations4. AgERA5 wind speed at 10 m was adjusted to 16 

2 m using conversion equations to simulate the surface-level wind speed4. In our analyses, all 17 

temperatures are in a unit of °C. However, when it was multiplied to solar radiation, temperatures were 18 

converted into Kelvin (°K) to avoid zero-multiplication artifacts. For simplicity, we refer to maximum 19 

temperature as “daytime temperature”, minimum temperature as “nighttime temperature”, maximum 20 

vapor pressure deficit as “daytime VPD”, minimum vapor pressure deficit as “nighttime VPD”, maximum 21 

relative humidity as “nighttime RH”, and minimum relative humidity as “daytime RH”. 22 

 23 

Methods 24 

Discovering causal relationship 25 

We built a Directed Acyclic Graph (DAG)5 to uncover the causal relationships between weather and milk 26 

yields based on domain knowledge from animal and atmospheric sciences (Supplementary Fig. 1). In 27 

this framework, “weather” refers to the three-day average preceding each test-day, consistent with animal 28 

science evidence on high yield sensitivity to thermal stress during these periods6–8. The DAG defines the 29 

total causal effect of weather on milk yields, comprising both direct and indirect effects. The direct effect 30 

indicates the impact of three-day average weather on milk yields, while the indirect effect includes 31 

changes in milk yields via altered cow’s conditions from disease or feed changes in management. Feed 32 

availability and quality are affected by weather, but typically on longer time scales than three days from 33 

the test-day, and are strongly moderated by management decisions9. From the DAG, five variables were 34 



 

identified as necessary to adjust for the estimation of the total causal effect of weather: weather, 35 

seasonal/monthly variability, management-related impacts, geographical locations of county, and cow 36 

lactation cycle with parity. 37 

 38 

We note that our modeling approach differs from standard predictive machine learning (ML), which aims 39 

solely to maximize out-of-sample prediction accuracy. For example, since high milking frequency is more 40 

likely to lead to higher milk yields per cow, capturing this relationship in the predictive ML is helpful for 41 

out-of-sample prediction skills. However, in causality-aware ML, milking frequency is a parent variable 42 

that directly causes the outcome. Including it in the model would block the causal pathway from weather 43 

to yield, thereby obscuring the true effect of weather. For this reason, milking frequency was excluded 44 

from the model specification. 45 

 46 

Hierarchical clustering using a spearman correlation matrix 47 

Tree-based models are generally robust to correlated features. However, strong correlations can still 48 

degrade performance or obscure variable importance. To address this, we applied hierarchical clustering 49 

on the features’ Spearman rank-order correlations (Supplementary Fig. 4). A clustering distance 50 

threshold of 0.6 (≈ spearman correlation < 0.4) was selected based on visual inspection of the 51 

dendrogram. From each cluster, a single representative feature was retained to form candidate weather 52 

variable sets. This procedure initially produced >40 candidates, with 20 unique weather combinations 53 

once dataset overlap was accounted for. Model performance was then compared between PRISM- and 54 

AgERA5-based features. PRISM consistently outperformed AgERA5 for the same weather combinations 55 

(e.g., All_day_RH vs. All_day_RH_AgERA5 in Supplementary Table 1). Therefore, PRISM was 56 

prioritized as the source for most variables, while solar radiation and wind speed were included from 57 

AgERA5, as they are not available in PRISM. 58 

 59 

Training and test set split by considering the full lactation cycle 60 

Cows can calve at anytime during the year, which complicates estimation of herd-specific management 61 

trends and biological lactation cycles if data are split strictly by calendar year. A single lactation cycle can 62 

span two calendar years, creating potential data leakage into validation or test sets. To prevent this, we 63 

assigned a reference year to each parity based on the distribution of test-day records across calendar 64 

years: 65 

i. if > 50% of milk records fall within the calving year, the reference year is the calving year; 66 



 

ii. if 40–50% of records fall in the calving year and calving occurs before September, the reference 67 

year is the calving year; 68 

iii. if 40–50% of records fall in the following year and calving occurs after September, the reference 69 

year is the year after calving; and 70 

iv. if < 40% of records fall in the calving year, the reference year is the year after calving. 71 

Using these rules, each lactation cycle was fully contained within a single reference year. The dataset was 72 

then partitioned into a training period (2000–2021) and test period (2022-2024).  73 

 74 

GridSearch procedures 75 

We performed a GridSearch to identify the combination of weather variables that maximized region-76 

specific average yield residuals. To ensure that the optima reflected realistic rather than rare conditions, 77 

candidate ranges were restricted to the 5th–95th percentile weather range combination that provides the 78 

highest region-specific average yield residuals. To exclude the optimum weather conditions from rare 79 

weather, we constrained it to be between the 5th and 95th percentiles of each weather variable. Ranges for 80 

each variable were determined based on Accumulated Local Effects (ALE) plots. We selected 4–5 81 

continuous bins (at 3–percentile intervals) surrounding the peak point, which indicated the highest yield 82 

response. When two peaks produced similarly high yields, both ranges were retained. Conversely, if an 83 

isolated peak was surrounded by negative bins, it was excluded as likely noise. Gridsearch was then 84 

applied across all candidate ranges to evaluate every possible combination of weather variables. Region-85 

specific average yields were computed for each combination, incorporating weights from equation (4) in 86 

main text to reflect USDA cow population shares and to adjust for imbalances in test-day records across 87 

cows. 88 

  89 

Calculation of cost function 90 

To select the key weather combinations among 20 candidate feature sets, we used a cost function 91 

designed to evaluate the robustness of model performance across both cross-validation (CV) and test (out-92 

of-sample) predictions. Performance was assessed using two loss metrics: Root Mean Squared Error 93 

(RMSE) and Mean Absolute Error (MAE). For each candidate model, RMSE and MAE were first 94 

computed within each of the five CV folds as well as on the independent test set. To balance in sample 95 

and out of sample performance, we averaged each metric across the five CV folds and then took the mean 96 

of the CV average and test-set value to generate a final composite score. This approach weights the test 97 

set while ensuring stability across folds. Final RMSE and MAE values for each candidate model are 98 



 

reported in Supplementary Table 1. The units of both metrics are log-transformed milk residuals (kg per 99 

cow per test-day).    100 

  101 
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Supplementary Figures 126 

 127 

Fig. S1. Directed Acyclic Graph illustrating the causal relationship between weather and milk yields. The 128 

solid green oval with a triangle indicates the exposure, which is weather. The solid blue oval with 129 

a straight black line presents the target, which is milk yield. The solid blue oval with no line 130 

shows a parent variable for the target. Solid white ovals represent features that we can control for, 131 

while solid gray ovals represent unobserved features that cannot be controlled for. Each feature is 132 

modeled as a function of all features with arrows pointing to it. Green line arrows show the causal 133 

paths from the exposure to the target. In our DAG, multiple green line arrows indicate the total 134 

effect of weather on milk yields which combines both direct and indirect pathways through health 135 

and disease, cow condition, and milking frequency. 136 



 

 137 

Fig. S2. County-level map of cow populations and milk yields. (a) USDA cow populations averaged 138 

across Census years (1997, 2002, 2007, 2012, 2017, and 2022). Counties that are not included in 139 

our sample are excluded. (b) Our sample-based (DRMS) cow populations averaged annually 140 

across 2000–2024. The legend for (a) and (b) is included between two panels. (c) Energy-141 

corrected milk yields averaged annually across 2000–2024. 142 



 

 143 

Fig. S3. Cows’ lactation cycles across parities. Energy-corrected milk yields were averaged across cows 144 

in the US. Lactation group 3 includes all parities greater than three. 145 

 146 



 

 147 

Fig. S4. Hierarchical clustering of weather variables based on a spearman correlation matrix. A distance 148 

threshold of 0.6 was applied to define clusters. The prefix “ag_” denotes variables from the 149 

AgERA5 dataset, while unlabeled variables correspond to PRISM dataset. Variable abbreviations 150 

are as follows: ppt = precipitation, tmax/tmin/tmean = maximum/minimum/mean temperature, 151 

tdmean = mean dew-point temperature, wetbT = wet-bulb temperature, vpdmax/vpdmin/vpdmean 152 

= maximum/minimum/mean vapor pressure deficits, rh_am/rh_pm = morning/afternoon relative 153 

humidity, wind_2m = wind speed at 2m height, ssrd = surface solar radiation downwards, 154 

thi_max = maximum Temperature and Humidity Index, and adjthi = adjusted Temperature and 155 

Humidity Index. 156 

  157 



 

 158 

 159 

Fig. S5. County-level map of warm and cool regions 160 

 161 



 

 162 

Fig. S6. Spatial and temporal evaluation of model predictions. (a) County-level predictive skill (R2) of the 163 

final XGBoost model. (b) Timeseries of national average milk residual predictions under 164 

historical and optimum weather compared with observed residuals. (c) County-level spatial 165 

distribution of predicted values from the final XGBoost model, combined with herd-level 166 

management trends. Note that seven counties with poor predictive skill (negative R2) were 167 

excluded for yield loss and economic damage analyses. 168 



 

 169 

Fig. S7. Average milk yield sensitivity to non-weather variables in (a) warm region, (b) cool region, (c) 170 

nationwide. Solid lines show the estimated marginal change (%) in milk yield per cow per test-171 

day to each non-weather variable using Accumulated Local Effects. The pink line indicates the 172 

yield sensitivity in warm region, the blue line indicates the yield sensitivity in cool region, and the 173 

black line indicates national level yield sensitivity. The rug plot on the bottom of each panel 174 

describes the distribution of weighted observations across percentiles (Methods). 175 



 

 176 

Fig. S8. Aaverage milk yield sensitivity to weather variables in (a) warm and (b) cool regions, 2000–2024. 177 

without weighting test-day record imbalance and USDA cow population differences. Solid lines 178 

show the estimated marginal change (%) in milk yield per cow per test-day to each weather 179 

variable using ALE, in pink for warm region and in blue for cool region. Positive and negative 180 

values denote predictions that are above or below the regional mean, respectively. The rug plot on 181 

the bottom of each panel describes the distribution of observations across percentiles (Methods). 182 

 183 



 

 184 

 185 

Fig. S9. Feature importance in predicting milk yield changes for (a) warm and (b) cool regions, using 186 

SHapley Additive exPlanations10.  187 

  188 

a          Warm Region b          Cool Region 



 

 189 

Fig. S10. National-level annual average relative yield loss (%) for heat stress in red and cold stress in blue, 190 

2000–2023.191 



 

Supplementary Tables 192 

*agera5 version of weather combination candidate 193 

 Features Average Score across CV & Test 

Candidates 
Lact-

ation 

Sea

son 
Tavg Tmin Tmax WetbT Tdew 

VPD

avg 

VPD

min 

VPD

max 

RH

avg 

RH

min 

RH_

max 
Rad 

Tavg 

x Rad 

Tmax 

x Rad 
Wind PPT 

THI

max 

Adj 

THI 
RMSE MAE Final 

Baseline ⩗                    0.248340 0.182854 0.215597 

NightRH ⩗ ⩗  ⩗         ⩗   ⩗ ⩗    0.245525 0.180430 0.212977 

NightVPD ⩗ ⩗  ⩗     ⩗       ⩗ ⩗    0.245527 0.180430 0.212978 

DayVPD ⩗ ⩗  ⩗      ⩗      ⩗ ⩗    0.245524 0.180435 0.212980 

Wetbt_ 

Solar 
⩗ ⩗    ⩗          ⩗ ⩗    

0.245523 0.180438 0.212981 

All_day_RH ⩗ ⩗  ⩗        ⩗ ⩗   ⩗ ⩗    0.245527 0.180434 0.212981 

NightVPD_P

PT 
⩗ ⩗  ⩗     ⩗       ⩗ ⩗ ⩗   

0.245528 0.180434 0.212981 

Wetbt_Night

_Solar 
⩗ ⩗  ⩗  ⩗       ⩗   ⩗ ⩗    

0.245526 0.180437 0.212982 

DayRH ⩗ ⩗  ⩗        ⩗    ⩗ ⩗ ⩗   0.245529 0.180435 0.212982 

Basic2 ⩗ ⩗  ⩗        ⩗   ⩗  ⩗    0.245529 0.180439 0.212984 

Night_RHavg ⩗ ⩗  ⩗       ⩗     ⩗ ⩗    0.245532 0.180437 0.212984 

All_day_RH_

agera5* 
⩗ ⩗  ⩗        ⩗ ⩗   ⩗ ⩗    

0.245532 0.180438 0.212985 

DayVPD_PP

T 
⩗ ⩗  ⩗      ⩗      ⩗ ⩗ ⩗   

0.245530 0.180442 0.212986 

DayRH_PPT ⩗ ⩗  ⩗        ⩗    ⩗ ⩗ ⩗   0.245533 0.180442 0.212988 

Basic1 ⩗ ⩗  ⩗ ⩗  ⩗       ⩗   ⩗ ⩗   0.245531 0.180444 0.212988 

Basci3 ⩗ ⩗ ⩗        ⩗     ⩗ ⩗    0.245536 0.180444 0.212990 

AdjTHImax_

Indiv 
⩗ ⩗   ⩗       ⩗  ⩗   ⩗    

0.245536 0.180449 0.212992 

AdjTHI_Indi

v 
⩗ ⩗ ⩗        ⩗   ⩗   ⩗    

0.245550 0.180451 0.213000 

AdjTHI ⩗ ⩗                  ⩗ 0.245568 0.180452 0.213010 

THImax ⩗ ⩗                 ⩗  0.245581 0.180466 0.213023 

THI_Indiv ⩗ ⩗ ⩗        ⩗          0.245611 0.180489 0.213050 

THImax_Indi

v 
⩗ ⩗   ⩗       ⩗         

0.245611 0.180502 0.213057 



 

Table S1. Error scores of weather combination candidates across cross-validation and test set predictions. In the features, T stands for 194 

temperature (°C), WetbT is wet-bult temperature (°C), VPD indicates vapor pressure deficits (kPa), RH denotes relative humidity (%), Rad is 195 

downward incoming radiation flux (Wm2), PPT is precipitation (mm), THI is Temperature Humidity Index, and adjTHI is adjusted THI. Tavg x 196 

Rad indicates the interactions of average temperature (°K) and downward incoming solar radiation (kWm2), and Tmax x Rad denotes the 197 

interactions of maximum temperature (°K) and downward incoming solar radiation (kWm2). A check mark indicates inclusion of a given feature in 198 

a candidate combination. All candidates except the baseline additionally included longitude, latitude, and sine- and cosine-transformed month to 199 

capture seasonality, as well as lactation cycles across parities. The baseline model included only lactation cycles. Root Mean Squared Error 200 

(RMSE) and Mean Absolute Error (MAE) were computed for cross-validation and test-set prediction separately, and their averages were used as 201 

the final composite score to select the key weather combination. Units for RMSE and MAE are log-transformed milk residuals (kg/cow/test-day). 202 



 

 # of Features <= 7 # of Features > 7 

Number of Trees 200 250 

Max Depth 10 12 

Subsample ratio 0.9 0.9 

Minium child weight 200 160 

Learning rate 0.1 0.05 

Table S2. Final hyperparameters from Bayesian optimization. Hyperparameter tuning was initially 203 

performed separately for each weather combination candidate. However, final hyperparameters converged 204 

to similar values across models. Differences mainly dependent on whether the number of features was 205 

fewer than or greater than seven (weather plus control variables including longitude, latitude, sine- and 206 

cosine-months, and lactation cycles across parities).  207 


