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1 

Large-scale afforestation/reforestation (AR) represents one of the most cost-effective approaches for 2 

carbon dioxide removal (CDR) and is therefore a central component of Paris-aligned land and energy 3 

transformation pathways. Using a dynamic land- and energy-system model, we assess the emergent 4 

biodiversity side effects and energy-system adjustments under varying scales of AR in Paris-aligned 5 

pathways. We show that increasing scales of AR markedly affect both the extent and pattern of habitat 6 

loss. While stringent climate action that avoids further conversion of forest and non-forest ecosystems 7 

offers substantial biodiversity co-benefits by reducing habitat loss, these benefits are largely offset at 8 

high levels of carbon-focused AR (>150 Mha) due to disproportionate losses of open habitats. 9 

Notably, we also find almost no effect of AR on energy-system transformations until 2050 and only 10 

limited effects of CDR from AR on long-term emissions. Our findings underline that near-term 11 

emission cuts remain critical for achieving the Paris Agreement and emphasise the need to shift from a 12 

dominant focus on large-scale tree planting to broader ecosystem restoration.13 

14 
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15 

Reaching the targets of the Paris Agreement requires deep and rapid decarbonisation across all sectors 16 

of the economy1,2. Most energy- and land-use transition pathways that align with these targets also rely 17 

on large-scale deployment of carbon dioxide removal (CDR) from the atmosphere to offset residual 18 

emissions and reach net-zero goals2,3. Among CDR options, afforestation/reforestation (AR) is widely 19 

regarded as one of the most cost-effective4–6 and has therefore become a central component of many 20 

countries' Nationally Determined Contributions (NDCs), as well as of global programmes such as the 21 

Bonn Challenge and private sector net-zero commitments7,8.  22 

When adapted to local conditions and based on native species, AR programmes may play a critical 23 

role in restoring important ecosystem functions and delivering substantial co-benefits for biodiversity 24 

by recreating former forest habitats9–11, in particular in many countries across Latin America, tropical 25 

Africa and Asia. However, ambitious AR deployment – often targeting land with low opportunity 26 

costs6 – typically entails a large-scale conversion of open ecosystems into closed forest ecosystems. 27 

While increasing carbon uptake from the atmosphere, this transformation could also lead to notable 28 

trade-offs for biodiversity by fundamentally altering the habitat conditions for a broad variety of 29 

species that have adapted to and critically depend on open ecosystems12–14.  30 

These open ecosystems are already under pressure. Over recent decades, agricultural intensification 31 

and land-use change have already caused steep declines especially in species adapted to open 32 

ecosystems, such as grasslands or savannas15,16. In Brazil, for example, non-forest ecosystems have the 33 

highest conservation risk indices17, while population declines of bird species across Europe and North 34 

America have been largest among those that prefer open habitats18,19. Many non-forest ecosystems on 35 

marginal lands are also being affected by land abandonment and woody encroachment20–22, a trend that 36 

could be further accelerated by ambitious AR programmes. This might not only have important 37 

consequences for local biodiversity, but a decline of contiguous open habitats, for instance, could also 38 

affect long-distance avian migration patterns23,24. 39 

Several earlier studies have evaluated the sustainability constraints of large-scale AR deployment. 40 

Based on a literature review, Deprez et al.25 identified emerging risks at scales of 100-300 Mha, while 41 

a more recent spatial analysis found a maximum reforestation potential of 195 Mha after the 42 

precautionary exclusion of problematic areas for AR26. However, neither study included quantitative 43 

analyses of the associated biodiversity implications of these proposed forest restoration potentials. 44 

Conversely, other research has examined the biodiversity consequences of land-use and energy system 45 

transformations suited for reaching ambitious climate targets, but did not quantify the emergent 46 

biodiversity side effects across different scales of AR deployment27,28. Moreover, changes in the 47 

energy system under Paris-aligned pathways that follow from more or less land-based CDR have not 48 

been put into relation to biodiversity side effects. Yet, a systematic assessment of biodiversity and 49 

energy systems responses at different levels of AR deployment is crucial in order to understand the 50 
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policy space, in which stringent climate change mitigation targets under the Paris Agreement can be 51 

reconciled with the biodiversity conservation goals under the Kunming-Montreal Global Biodiversity 52 

Framework (GBF). 53 

Here, we provide a quantitative assessment of biodiversity outcomes in response to different levels of 54 

carbon-focused AR deployment. We also explore how the energy system would respond to different 55 

levels of AR deployment under stringent climate change mitigation in line with the Paris Agreement. 56 

Our analysis is based on the REMIND–MAgPIE integrated assessment modelling (IAM) framework, 57 

which combines a global economy and energy system model with a global land system model.29–31. 58 

REMIND and MAgPIE are continuously validated and have been widely used to study sustainable 59 

land-use and energy transformations30,32,33. To assess the impact of AR deployment on biodiversity at a 60 

high level of detail, we extend the REMIND-MAgPIE framework by including the Spatial Economic 61 

Allocation Landscape Simulator34 (SEALS). SEALS downscales projected land-cover changes to a 62 

spatial resolution of 10 arc seconds (300 m × 300 m at the equator), using information on physical 63 

suitability, conversion eligibility, and empirically trained spatial adjacency relationships. 64 

65 

The primary objective of our scenario design is to isolate the effects of different levels of AR 66 

deployment on global energy system and land-use dynamics—and the associated biodiversity 67 

outcomes—under a stringent, Paris-aligned climate mitigation pathway. Core socioeconomic 68 

assumptions in our scenario set, including population and income growth, as well as projected food 69 

and energy demand, are based on the ‘middle-of-the-road’ shared socioeconomic pathway35 (SSP2). 70 

All scenarios are designed to be consistent with the Paris Agreement, limiting the global mean 71 

temperature increase to ‘well-below’ 2° C throughout the 21st century and reaching 1.5° C by the end 72 

of the century with a 50 % probability. Accordingly, cumulative CO2 emissions are constrained to not 73 

exceed a carbon budget of 750 GtCO2 from 2020 onwards. In line with the overall carbon budget, we 74 

endogenously derive a uniform carbon price which applies to all GHG emissions in the land and 75 

energy systems, incentivising a decarbonisation of the energy system and, for instance, 76 

disincentivising the conversion of carbon-rich ecosystems to agricultural land. Furthermore, 77 

lignocellulosic second-generation bioenergy crops and residues are limited to 100 EJ yr⁻¹ to ensure 78 

sustainability and comparability across scenarios36.   79 

Building on these shared assumptions, we explore a range of scenarios that differ in the total scale of 80 

AR deployment. In the AR150, AR250 and AR350 cases, AR deployment from 2020 onward is 81 

constrained to a global total of 150 Mha, 250 Mha and 350 Mha, respectively, with projected negative 82 

emissions of 0.9 GtCO2 yr⁻¹, 1.3 GtCO2 yr⁻¹ and 1.6 GtCO2 yr⁻¹ in 2050 (Figure 1). In the NDC 83 

scenario AR deployment after 2020 follows national pledges under countries’ ‘Nationally Determined 84 
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Contributions’ (NDCs) until 2030 with a global total of 63 Mha of AR and negative emissions of 0.5 85 

GtCO2 yr⁻¹ in 2050. The AR0 scenario assumes no additional AR after 2020, reflecting currently 86 

implemented AR programmes only. In the AR150, AR250 and AR350 scenarios AR is deployed 87 

through a combination between NDC targets and proportional rewards for expected carbon removals 88 

based on the carbon price. In addition, AR deployment is restricted to areas where the climatic 89 

conditions support forest growth (Supplementary Fig. 2). Forest growth rates are assumed to be 90 

consistent with natural succession of native vegetation but exclude disturbance effects such as fire or 91 

grazing (see Methods).  92 

We also modelled variants of each scenario (AR0, NDC, AR150, AR250, AR350) that included a 93 

stringent land conservation scheme targeting global biodiversity hotspots37 (BH). These variants aim 94 

to provide stylised examples and insights into how conservation planning may interact with AR 95 

deployment.  96 

97 

To evaluate the biodiversity outcomes associated with varying levels of AR deployment, we estimated 98 

changes in the area of habitat (AOH) of 27,726 vertebrate species, based on a fine-scale spatial 99 

allocation of modelled land-cover dynamics across our scenarios. We thereby link species habitat 100 
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preferences to spatial land cover information via a habitat-land cover model that systematically 101 

reduces commission (false presence) errors and achieves high accuracy38,39. AOH projections offer 102 

valuable insights into potential habitat change and related species extinction risks, making them a 103 

useful tool for conservation planning. As such, the AOH has been suggested as a complementary 104 

indicator for the IUCN Red List40,41. The set of species included in this study covers only about 2.2 % 105 

of recorded and ~0.3% of all currently predicted species42. However, it encompasses a wide range of 106 

taxa, species traits and habitat preferences, which has been shown to reliably capture national, regional 107 

and global biodiversity patterns10,41. The AOH indicator predominantly reflects a focus on conserving 108 

nature’s intrinsic value, as conceptualized in the ‘Nature for Nature’ perspective of the IPBES Nature 109 

Futures Framework43. Our analysis focuses on concerning AOH loss, here defined as a reduction of 110 

more than 5% of suitable habitat for species currently listed as threatened on the IUCN Red List, or 111 

more than 20% for currently non-threatened species, by 2050. We also aggregate outcomes according 112 

to species’ habitat preferences, including forest, open and mixed (forest and open) habitats.  113 

114 

Under a business-as-usual (BAU) scenario without additional land-use interventions, 1132 species 115 

could experience concerning AOH loss, mostly affecting species that prefer forest and mixed habitats 116 

(Figure 2). This loss was primarily driven by pasture and cropland expansion across Asia, Sub-117 

Saharan Africa and Latin America (Figure 3, Supplementary Figs. 4 & 5). In contrast, the incentive to 118 

avoid CO2 emissions from land conversion in line with the targets of the Paris Agreement alone (AR0) 119 

causes a drastic reduction in agricultural land expansion, especially across Asia and Sub-Saharan 120 

Africa. This reduces the number of species with concerning AOH loss globally by nearly one third. 121 

While AR deployment in line with countries’ current NDCs lowers the number of forest species 122 

affected by concerning AOH loss (–10%), it leads to a higher total number of affected species due to 123 
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increases among species dependent on open (+21%) and mixed (+15%) habitats, compared to the 124 

Paris-aligned scenario without AR (Figure 4).  125 

With increasing AR deployment two patterns emerge: (1) a marked decline in forest-dependent 126 

species with concerning AOH loss, and (2) a strong and disproportionate increase in open- and mixed-127 

habitat species experiencing concerning AOH losses (Figure 4). In the moderate AR150 scenario, the 128 

number of affected forest species declines by 36 %. However, the total number of species with 129 

concerning AOH loss (782) remains comparable to that in the AR0 scenario (772) because of the 130 

higher impacts across open- and mixed-habitat species. Under high AR deployment, the 131 

disproportionate increase in affected open- and mixed-habitat species even results in an increase in the 132 

total number of affected species (AR250: +17%; AR350: +36% relative to AR0). Hence, in the AR350 133 

scenario the total number of species with concerning AOH loss is only 7% lower than in the BAU 134 

scenario, yet with important differences in the species affected. Concerning AOH losses under high 135 

AR deployment are mostly driven by reductions in suitable habitat for open habitat bird and reptile 136 
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species as a result of forest expansion, particularly in Latin America (Figure 2; Supplementary Figs. 4, 137 

7 & 9).  Under high AR deployment (AR250 and AR350) forest expansion may surpass agricultural 138 

land expansion as the main driver of habitat loss (Figure 3). In the AR350 scenario the total area of 139 

concerning AOH loss caused by forest expansion alone (1.4 Gha) was more than double the area of 140 

concerning AOH loss from all land cover changes in the BAU scenario taken together (0.6 Gha). 141 

142 

The decline in the number of species that suffer from concerning AOH losses among forest habitat 143 

species with increasing levels of AR deployment is mirrored by substantial potential habitat gains 144 

across a broad set of forest-dependent species (Supplementary Fig. 11). Notably, already a moderate 145 

AR scenario (AR150) increases the number of forest-dependent species experiencing habitat gains by 146 
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82% relative to AR0, rising to 100% and 131% under the AR250 and AR350 scenarios, respectively. 147 

While our results also show that habitat gains would disproportionately benefit species with currently 148 

low conservation risk (Supplementary Fig. 12), AR deployment–even at a moderate level (AR150)–149 

would still lead to considerable habitat gains for currently threatened species. However, habitat gains 150 

from AR deployment critically depend on the quality of forest restoration and are often only realised 151 

with forest maturation over long time scales44. A direct comparison between habitat losses and gains 152 

presented here would thus be misleading not only due to their marked differences in the species 153 

affected, but also because habitat loss from land conversion occurs on a far shorter time scale than 154 

habitat restoration44. Although forest growth and associated carbon dynamics were included in our 155 

modelling approach, important qualitative differences between restored young secondary and mature 156 

forest ecosystems could not be captured here.  157 

158 

In our analysis we also aimed to quantify the extent to which improved spatial planning could reduce 159 

the biodiversity side effects of ambitious AR deployment. To this end, we assessed a variant of our 160 

core scenario set, in which the conservation of global biodiversity hotspots37 (BH) was prioritised over 161 

AR deployment, partially displacing it to other areas. These stylised scenario variants illustrate the 162 

significant co-benefits that could be obtained between carbon- and biodiversity-focused land 163 

protection and restoration approaches (Figure 4). In the AR350 scenario, the improved spatial 164 

planning halved the number of species with concerning AOH loss. As a result, biodiversity side effects 165 

in AR350 remained comparable to those in the AR150 scenario (without spatial planning), but with a 166 

78 % higher annual CO2 sequestration potential (0.9 vs.1.6 GtCO2 yr⁻¹ in 2050). Nonetheless, even 167 

with the added land conservation forest-dependent species were disproportionately favoured, while 168 

concerning AOH losses of open and mixed habitat species were only partly mitigated, especially under 169 

high AR deployment. These findings reflect the challenge of aligning ambitious land-based climate 170 

mitigation with strategies that simultaneously balance diverse conservation needs.  171 

172 

In terms of energy-system adjustments to varying levels of AR, we find that near-term emission 173 

reductions are far more important for adhering to a carbon budget consistent with the targets of the 174 

Paris Agreement than the scale of AR (Figure 5). Regarding near-term CO₂ emissions up to 2050, the 175 

additional cumulative carbon sequestration from AR in AR350 compared to AR0 is only 18.3 176 

GtCO₂—equivalent to 41% of CO₂ emissions in 2025 alone (44.4 GtCO₂). This suggests that 177 

deploying 350 Mha of AR by 2050 would provide only about five months of delay in near-term 178 

emission reductions. The difference in carbon uptake from AR between the AR150 and AR350 179 

scenarios is only 9.3 GtCO₂ by 2050—just 21% of 2025 CO₂ emissions—implying that an additional 180 

200 Mha of AR would only allow a further delay in near-term emission reductions of roughly three 181 

months. By 2100, however, AR350 could provide an additional 87.3 GtCO₂ and 50 GtCO₂ of 182 
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cumulative carbon uptake relative to AR0 and AR150, respectively. This suggests that, although CDR 183 

from AR has minimal impact on near-term emissions, it may still contribute to stabilising or reducing 184 

the global mean surface air temperature (GSAT) after 2050 (Figure 5h).  185 

The minor effect of AR on the near-term energy-system transformation required to meet the Paris 186 

Agreement is also reflected in the cropland area devoted to second-generation bioenergy crops, such 187 

as short-rotation coppice and bioenergy grasses, and in the corresponding negative emissions from 188 

BECCS, which exhibit only small variations across different levels of AR deployment (Figure 5f; 189 

Supplementary Fig. 13). Bioenergy crops predominantly replace food and feed crops on existing 190 
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cropland, as overall cropland decreases in all AR scenarios (Supplementary Figs. 13–15). Carbon 191 

prices in the energy and land systems likewise show only minor changes across different levels of AR 192 

deployment (Figure 5i). However, the spatial allocation of AR has a greater impact on modelled 193 

carbon prices than the total AR area itself, which became evident in the higher carbon prices observed 194 

in the NDC scenario as compared to the AR0 case. This was because in the NDC scenario, AR was 195 

exogenously prescribed based on country-level targets, which caused spatial shifts in agricultural 196 

production and corresponding initial leakage effects in CO2 emissions from land-use change 197 

(Figure 5e). 198 

199 

Several key insights have emerged from this model analysis. First, our results showed that increasing 200 

levels of AR deployment can substantially affect the scale and pattern of habitat loss. While avoided 201 

land conversion under stringent climate policy aligned with the Paris Agreement would offer notable 202 

co-benefits by reducing habitat loss, these benefits are largely offset at high levels of carbon-focused 203 

AR deployment (≥250 Mha) due to disproportionate losses of open habitats. Secondly, we find that 204 

improved spatial planning would enable higher carbon uptake with fewer biodiversity side effects. 205 

However, concerning losses in open habitats remain difficult to mitigate and would require more 206 

targeted conservation efforts. Our scenario of expanding land protection across global biodiversity 207 

hotspots offers a stylised example of how climate and biodiversity protection could provide important 208 

synergies. Yet the marked differences in conservation outcomes across species with divergent habitat 209 

preferences suggest that open habitat species are still widely neglected. This highlights the need for 210 

balancing conservation objectives in the context of protected area enlargement under the Global 211 

Biodiversity Framework (GBF)45. Lastly, our integrated analysis of energy and land system 212 

interactions showed that AR deployment has only a minor impact on cumulative CO2 emissions 213 

throughout the 21st century, and that rapid near-term emission reductions are far more critical than the 214 

scale of AR for meeting the targets of the Paris Agreement. Yet it is important to note that the 215 

relatively low carbon uptake potential of AR in our analysis largely reflects our assumption that forest 216 

growth rates are consistent with successional dynamics of native vegetation. While the use of fast-217 

growing forest plantations—often with non-native species—could result in higher carbon uptake 218 

rates46, such plantations would likely come with greater biodiversity and other sustainability trade-219 

offs47. 220 

These findings suggest that shifting from a dominant focus on large-scale tree planting to broader 221 

ecosystem management and restoration approaches in line with global biodiversity goals would not 222 

noticeably affect the required energy transition, while substantially reducing potential biodiversity 223 

trade-offs. This aligns with evidence from other studies showing that ecosystem-based approaches, 224 

targeting both forested and non-forested ecosystems, can simultaneously deliver high carbon removals 225 

and support biodiversity conservation15,48–51. More diverse land restoration approaches that consider 226 
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different conservation perspectives in cultured landscapes52 may also increase social acceptance and 227 

prevent trade-offs with other sustainability goals53,54. However, a strong emphasis on interventions that 228 

limit further land conversion and protect current forest and non-forest ecosystems is essential. This 229 

would not only avoid habitat loss and further CO2 emissions from land-use change but also preserve 230 

the high near-term carbon uptake potential of existing forest vegetation55, which also provided a 231 

substantial contribution in our analysis. In our analysis, we also assumed that fire or (native) grazing 232 

were suppressed in sites of AR deployment. While our findings imply no substantial impact on a 233 

Paris-aligned energy transition from a smaller AR area that may result from disturbance events, 234 

considerable disturbance losses in existing forest by contrast could have more severe implications for 235 

emission reductions56.  236 

Our study is subject to several limitations. First, our assessment of AOH changes was solely based on 237 

current species distributions and did not account for potential range shifts due to climate change. Our 238 

scenario set primarily focused on ambitious mitigation pathways associated with low-end climate 239 

change and we thus excluded climate impacts to reduce the overall complexity of our modelling 240 

approach. Although low-end climate change has been shown to have limited effects on land-use 241 

dynamics57, residual climate change is still expected to drive species range shifts58. Under higher 242 

emission trajectories, such as in our REF scenario, these range shifts could become more 243 

pronounced59. Yet habitat loss and fragmentation may also impede the ability of species to track 244 

temperature gradients58. The availability and accessibility of suitable habitat along elevational and 245 

latitudinal gradients will shape the extent to which range shifts affect future habitat change59,60, and 246 

thereby influence AOH outcomes especially for range-restricted species. Conservation measures that 247 

support species movement and sustain sufficient and contiguous habitat can markedly reduce climate-248 

driven habitat loss, even under high emission trajectories61.  Secondly, we did not consider how 249 

different growth stages during AR deployment would affect different species groups. Mixed young 250 

secondary forests may benefit both forest- and non-forest species, while forest specialists often favour 251 

mature forests62–64.  These successional dynamics could temporarily alleviate some of the projected 252 

negative consequences of AR for open habitat species. Thirdly, in our stylised climate change 253 

mitigation scenarios AR deployment was incentivised through a universal carbon price. Hence AR 254 

was spatially allocated solely based on projected carbon sequestration potentials—an approach 255 

commonly used in IAM studies30,32,65,66. Incorporating regionally differentiated AR incentives or 256 

broader criteria beyond carbon could result in different AR deployment patterns. Lastly, the relatively 257 

limited role of AR as a CDR option in our mitigation scenarios also reflects assumptions about 258 

bioenergy yields and the cost-effectiveness of BECCS as an alternative. Lower yields from short-259 

rotation coppice or bioenergy grasses would reduce BECCS efficiency and competitiveness and 260 

substantially increase its land footprint. Assessing the biodiversity impacts of BECCS was beyond the 261 

scope of this study, but evidence indicates notable biodiversity gains in farmed landscapes when 262 

annual food and feed crops are replaced with woody or perennial grass bioenergy crops67. 263 
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264 

265 

 Our quantitative analysis is based on the coupled integrated land- and energy 266 

system modelling framework REMIND-MAgPIE. It consists of the multiregional global energy-267 

economy model REMIND31 (v3.5.1) and the spatially-explicit land-system model MAgPIE29 268 

(v4.11.0). The framework furthermore draws on consistent biophysical information on crop yields, 269 

carbon dynamics, and water availability from the global vegetation, crop and hydrology model 270 

LPJmL68,69, and integrates the reduced-complexity climate model MAGICC70,71. 271 

 The Regional Model of Investments and Development (REMIND) uses a multiregional 272 

approach to cover the global economy and energy system30,31. The macro-economy of the twelve 273 

world regions (Supplementary Fig. 1; Supplementary Tab. 1) which group smaller countries while 274 

major economies (China, India, USA) are resolved individually, is modelled following a Ramsey-type 275 

growth model that uses a production function with constant elasticity of substitution and capital, 276 

labour and energy as the main production factors. The energy demand and associated costs resulting 277 

from economic activity are hard-linked to a detailed representation of the energy system that includes 278 

all major primary energy carriers, conversion technologies and end-use sectors (transport, industry, 279 

and buildings)31. In each region intertemporal welfare is first optimised separately, before the global 280 

solution is found by iteratively adjusting market prices for primary energy carriers and tradable goods 281 

until all market surpluses and deficits are cleared. Existing infrastructure, technology learning curves, 282 

and adjustment costs create path dependencies and inertia, which in turn constrain the transformation 283 

of the energy system. The model also tracks the emissions of all major greenhouse gases (GHG) from 284 

economic activity.  285 

 The Model of Agricultural Production and its Impact on the Environment (MAgPIE) is a 286 

land-system modelling framework developed to assess global land-use dynamics and their 287 

implications for sustainable development throughout the 21st century32,51. The model uses a dynamic 288 

cost-optimisation approach to spatially allocate the production of food, feed, bioenergy and biomass 289 

under socioeconomic and biophysical constraints in order to meet global demand. MAgPIE accounts 290 

for various cost components including factor requirements (capital, labour, fertiliser), investment into 291 

agricultural research & development, as well as transport, land conversion, trade and irrigation costs. It 292 

also considers the depreciation of capital stocks over time and costs for new investments into crop 293 

production, prioritising historical agricultural locations while restricting production shifts to areas with 294 

suitable climate and soil conditions but insufficient infrastructure. Trade flows are modelled as a 295 

combination of historical import and export patterns and comparative advantages in agricultural 296 

production with a modest trade liberalisation over time along the SSP2 pathway72. Socioeconomic 297 

constraints, such as trade or investments into agricultural productivity, are formulated at the scale of 298 

twelve model regions, which were aligned to the multiregional setup of REMIND. Spatially-explicit 299 
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biophysical information on vegetation, litter, and soil carbon stocks as well as water availability based 300 

on historical climate data73 were taken from LPJmL468,69 at 0.5 degree spatial resolution. Yield 301 

patterns for 19 food, feed and bioenergy crop functional types, grassland yields, as well as crop 302 

irrigation water requirements at 0.5 degree were derived from LPJmL5 simulations with unlimited 303 

nitrogen supply74. All model inputs at the 0.5-degree resolution were clustered to 200 spatial 304 

simulation units with similar biophysical properties using a k-means clustering approach75. MAgPIE 305 

covers all major crop and livestock species, non-food agricultural commodity production, as well as 306 

food waste and supply chain losses. CO2 emissions from land-use change are calculated based on 307 

carbon losses and uptake resulting from the conversion of forested and non-forest ecosystems and 308 

regrowth on abandoned/restored agricultural land between time steps76.  309 

Forest growth in MAgPIE is represented using the approach of Humpenöder et al.5 with updated 310 

parameters for the Chapman-Richards growth function for native vegetation and timber plantations 311 

from Braakhekke et al.46. For this analysis we used the growth curve for native vegetation to model 312 

forest growth in areas of AR deployment (NDC and carbon-price induced AR, see below). 313 

Consistently, we assumed that AR had the same carbon density, and thus consisted of the same 314 

species, found in the succession of native ecosystems over time77.  The age class distribution of 315 

existing forests was initialised using the Global Forest Age Dataset (GFAD V1.1) by Poulter et al.78. 316 

Future AR deployment was restricted to areas outside the boreal zone and to locations where climatic 317 

conditions support forest growth, excluding forest disturbance factors such as grazing or fire. Eligible 318 

areas for AR deployment were identified based on a minimum carbon density threshold of 20 t C ha⁻¹, 319 

using carbon density estimates for native vegetation derived from LPJmL4 data.  320 

In our integrated land- and energy-system modelling framework, REMIND and MAgPIE were run 321 

iteratively in a soft-coupled mode, thereby allowing for a high level of detail in process representation 322 

across both the land and energy systems79.  Information on GHG prices, second-generation 323 

lignocellulosic bioenergy demand and land-use related emissions were iteratively balanced and 324 

harmonised between the REMIND and MAgPIE models in order to generate consistent land-use and 325 

energy transition scenarios based on a single combined optimisation problem30–32. Cross-sectoral GHG 326 

emissions from REMIND-MAgPIE were then used to estimate corresponding changes in GHG 327 

concentrations in the atmosphere, radiative forcing levels and changes in the global mean surface air 328 

temperature (GSAT) with the reduced-complexity climate model MAGICC70,71 based on a 329 

probabilistic setup. 330 

 The Spatial Economic Allocation Landscape Simulator (SEALS) was applied to allocate land-331 

use projections from MAgPIE provided at the 0.5-degree level to a spatial scale suitable for assessing 332 

habitat change at a high level of detail34,51,77. SEALS operates at a spatial resolution of 10 arc-seconds 333 

(~300 m at the equator) and allocates projected land-cover changes by ranking grid cells using a 334 

composite suitability score. This score includes information on spatial adjacency—capturing how 335 
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surrounding land cover influences the likelihood of conversion—as well as physical properties such as 336 

soil quality, topography, climate, and accessibility, represented by travel time to the nearest market. 337 

Additionally, SEALS accounts for conversion eligibility constraints that restrict agricultural land 338 

expansion into urban land, current or future protected areas, and water bodies. The initial land-cover 339 

distribution is based on the 2020 ESA-CCI map. The 37 ESA-CCI land-cover classes were reclassified 340 

into seven functional land types: cropland, grassland, forest, non-forest vegetation (e.g., shrublands 341 

and herbaceous cover), urban, barren land, and water. Adjacency relationships are quantified by 342 

analysing both the proximity and the spatial agglomeration of neighbouring land-cover types. 343 

Suitability maps based on spatial adjacency, physical suitability and conversion eligibility are used to 344 

guide an iterative allocation process, by which projected land-use changes from MAgPIE between 345 

2020 and 2050 are assigned to the most suitable available locations until all coarse land-cover changes 346 

are spatially distributed at 10 arc-seconds. Model parameters for spatial adjacency and suitability are 347 

empirically calibrated using observed land-cover transitions from ESA-CCI data between 2000 and 348 

2010. The final set of coefficients was selected based on their ability to reproduce observed land-cover 349 

changes in withheld validation data from 2011 to 201577,80. 350 

 Area of habitat (AOH) refers to the area of a species’ geographic range that meets its 351 

habitat requirements40. We generated AOH maps for 6,374 amphibian, 9,124 bird, 5,351 mammal, and 352 

6,877 reptile species for the year 2020, and used land-cover projections based on REMIND-MAgPIE 353 

scenarios and SEALS to assess changes in AOH under different scales of AR deployment51. Species 354 

range polygons were obtained from the IUCN Red List database81 and BirdLife International82. In our 355 

analysis, we retained seasonal range information and assessed AOH changes separately for resident, 356 

breeding, non-breeding, and uncertain seasonality ranges. Ranges with unknown presence or no 357 

habitat preference information were excluded. Species’ habitat preferences were derived from the 358 

IUCN Red List database. The twelve major habitat types defined in the IUCN Habitats Classification 359 

Scheme83 were linked to spatial land cover information using the habitat–land cover translation model 360 

developed by Lumbierres et al.38. The model maps IUCN habitat classes to ESA CCI land cover 361 

classes based on varying strengths of association. We used the strongest habitat-land cover association 362 

threshold, which in prior studies has been shown to reduce commission errors without affecting 363 

validation performance of estimated AOH39,41. For artificial degraded forests and plantations, for 364 

which no associations exceeded the strongest threshold, we used the second-highest threshold, linking 365 

them to ESA CCI classes 12 (cropland, rainfed, tree or shrub cover), 20 (cropland, irrigated or post-366 

flooding), and 190 (urban areas) (see Supplementary Tab. 2). Habitat types classified as marginal or of 367 

no major importance in the IUCN Red List Database were excluded. For abandoned agricultural areas 368 

and locations of AR deployment we employed the same approach as in the MAgPIE simulations (see 369 

above). Consistent with this approach, land that maintained a carbon density ≤20 t C ha⁻¹ in the 370 

assessed time step was classified as non-forest vegetation (i.e., native grassland or shrubland), while 371 

land exceeding this threshold was considered forest vegetation.  372 
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AOH changes were estimated using two-step process approach with a pre-processing and a scenario 373 

analysis step51. In the pre-processing step, habitat preferences of each species were translated to ESA 374 

CCI land cover classes and unsuitable elevation zones were removed based on species-specific 375 

elevation limits from the IUCN database using WorldClim 1 km elevation data84. Species polygons 376 

with no area remaining within the elevation range were omitted from the set of assessed species. 377 

During scenario analysis, land-cover projections from REMIND-MAgPIE and SEALS were used to 378 

subtract unsuitable habitat from the pre-processed ranges to derive final AOH estimates for each 379 

scenario. For the baseline year 2020, AOH was derived directly from ESA CCI land-cover data. All 380 

spatial analyses were performed in R using the terra85 package, while data processing was parallelised 381 

and executed on a high-performance computing cluster using the foreach86 and doParallel87 packages 382 

because of the high computational demand. 383 

384 

The primary goal of our scenario set was to assess the emerging biodiversity and energy system 385 

responses of different levels of AR deployment under a stringent Paris-aligned climate change 386 

mitigation pathway. Regarding socioeconomic trends of population and income growth over time, we 387 

based our scenarios on the moderate ‘middle-of-the-road’ socioeconomic pathway (SSP2), which also 388 

assumes compliance with currently implemented land and energy policies (e.g. no cropland expansion 389 

in current protected areas51). Food demand projections were derived from population and income 390 

trajectories based on anthropometric and econometric approaches that consider body-height, age-391 

cohort, sex and body mass index distributions using elasticities obtained from historical data.  Energy 392 

demand is modelled using EDGE (‘Energy Demand GEnerator’) models for the transport88, industry31, 393 

and buildings89 sectors that account for sector-specific energy-demand drivers and trends following the 394 

SSP2 pathway, such as infrastructure inertia, consumer lifestyles, or floor space demand. Energy 395 

demand in each sector is also sensitive to GHG pricing under climate policy31.  396 

To limit the global mean temperature increase to ‘well-below’ 2° C throughout the 397 

21st century and to meet the 1.5° C target by the end of the century in line with the Paris Agreement, 398 

we constrained cumulative CO2 emissions to a total carbon budget of 750 GtCO2 from 2020 until 2100 399 

across all scenarios except of the ‘business-as-usual’ (BAU) case. To meet this constraint, we 400 

modelled linearly increasing GHG prices for all types of emissions across the land and energy 401 

systems. Modelled GHG prices remained sensitive to available CDR options such as AR deployment. 402 

In the energy sector, GHG prices incentivised a decarbonisation, a partial substitution of fossil fuels by 403 

bioenergy, and the deployment of carbon capture, especially through bioenergy with carbon capture 404 

and storage (BECCS). In the land sector, GHG prices strongly discouraged emissions from land-use 405 

change, especially from carbon-rich forest and non-forest ecosystems such as peatlands90. At the same 406 

time, AR deployment was incentivised through GHG pricing by calculating the expected CO₂ uptake 407 

over a 50-year planning horizon, multiplying it by the projected GHG price, discounting the result to 408 
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present value, and applying an annuity factor to convert it into an average annual reward. We here 409 

assumed that rewards for AR deployment were equivalent to the modelled GHG prices to maximise 410 

the incentive for AR deployment. However, to explore the implications of different levels of AR 411 

deployment, we imposed area-based constraints on AR after 2020 of 150 Mha, 250 Mha and 350 Mha 412 

in the AR150, AR250 and AR350 scenarios, respectively. In the AR0 scenario, no AR deployment 413 

was allowed after 2020, while in the NDC scenario AR followed country-specific targets submitted 414 

under nationally determined contributions (NDCs), which amounted to an area of 63 Mha of AR until 415 

2030. These NDC-based targets for AR were also included in the upper boundary for AR across the 416 

AR150, AR250 and AR350 scenarios, so that carbon-priced induced AR accounted for only 87 Mha, 417 

187 Mha and 287 Mha of AR, respectively, across these scenarios. All AR deployment was 418 

constrained to areas where climatic conditions support forest growth. These areas were identified 419 

using estimated carbon densities of the potential natural vegetation derived from LPJmL. Areas with a 420 

potential carbon density >20 tC ha-1 were classified as suitable for forest growth, yet without natural 421 

disturbances, e.g. through grazing or fire (Supplementary Fig. 2).   422 

For each the stylised AR0, NDC, AR150, AR250 and AR350 climate mitigation scenarios, we also 423 

modelled scenario variants that included stringent land conservation in biodiversity hotspots 424 

(BHs)37,91, in order to quantify interactions between conservation planning and AR deployment. 425 

Biodiversity hotspots host nearly 43% of global vertebrate species and over half of all endemic plant 426 

species. Yet, they are also characterised by a loss of native habitat of >70%. Prominent examples 427 

include the Atlantic Forest, the Cerrado, Mesoamerica, the Andes, and Chilean Forests in Latin 428 

America, and Madagascar, the Horn of Africa, and the Guinean Forests of West Africa. Land 429 

conservation in BHs included the protection of all remaining native vegetation and land restoration of 430 

land covers based on pre-industrial (1750) levels51 as reported in the LUH2v2 dataset92, instead of 431 

strict AR deployment.  432 

433 

The model results presented in this analysis are available via Zenodo at 434 

https://doi.org/10.5281/zenodo.17611595 (ref93). 435 

436 

The model code of the MAgPIE model is openly available under GNU Affero General Public License, 437 

version 3 (AGPLv3), and is accessible via GitHub at https://github.com/magpiemodel/magpie. The 438 

release version (MAgPIE 4.11.0) on which this work is based is available via Zenodo at 439 

https://doi.org/10.5281/zenodo.15862748 (ref94). MAgPIE 4.11.0 is accompanied by a technical model 440 

documentation (https://rse.pik-potsdam.de/doc/magpie/4.11.0/), which was compiled using the GAMS 441 

code documentation toolkit goxygen (ref95). REMIND is also openly available under GNU Affero 442 

General Public License, version 3 (AGPLv3) and available on GitHub. The model version used in this 443 

https://doi.org/10.5281/zenodo.17611595
https://github.com/magpiemodel/magpie
https://doi.org/10.5281/zenodo.15862748
https://rse.pik-potsdam.de/doc/magpie/4.11.0/
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study is 3.5.1, which can be downloaded at 444 

https://github.com/remindmodel/remind/releases/tag/v3.5.1. SEALS is also accessible via GitHub at 445 

https://github.com/jandrewjohnson/seals_dev/releases/tag/v1.0.0 and documented under 446 

https://justinandrewjohnson.com/earth_economy_devstack/seals_overview.html. 447 

448 
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