

Biodiversity side effects of carbon-focused reforestation under Paris-aligned transformation pathways

Patrick von Jeetze

v.jeetze@pik-potsdam.de

Potsdam Institute for Climate Impact Research (PIK) <https://orcid.org/0000-0002-1197-4412>

Isabelle Weindl

Potsdam Institute for Climate Impact Research <https://orcid.org/0000-0002-7651-6930>

Justin Johnson

University of Minnesota <https://orcid.org/0000-0001-9903-1787>

Gabriel Abrahão

Potsdam Institute for Climate Impact Research (PIK)

Leon Merfort

Potsdam Institute for Climate Impact Research (PIK) e. V. <https://orcid.org/0000-0003-1704-6892>

Florian Humpenöder

Potsdam Institute for Climate Impact Research <https://orcid.org/0000-0003-2927-9407>

Jan Dietrich

Potsdam Institute for Climate Impact Research <https://orcid.org/0000-0002-4309-6431>

Hermann Lotze-Campen

Potsdam Institute for Climate Impact Research <https://orcid.org/0000-0002-0003-5508>

Alexander Popp

Potsdam Institute for Climate Impact Research <https://orcid.org/0000-0001-9500-1986>

Article

Keywords:

Posted Date: January 19th, 2026

DOI: <https://doi.org/10.21203/rs.3.rs-8223917/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

Biodiversity side effects of carbon-focused reforestation under Paris-aligned transformation pathways

Patrick von Jeetze^{1,2,*}, Isabelle Weindl¹, Justin Andrew Johnson³, Gabriel Abrahao¹, Leon Merfort¹, Florian Humpenöder¹, Jan Philipp Dietrich¹, Hermann Lotze-Campen^{1,2}, Alexander Popp^{1,4}

¹Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412 Potsdam, Germany

²Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Germany

³Department of Applied Economics, University of Minnesota, 1940 Buford Ave, Saint Paul, MN 55105 USA

⁴Faculty of Organic Agricultural Sciences, University of Kassel, Witzenhausen, Germany

*Corresponding author. E-mail: vjeetze@pik-potsdam.de

1 **Abstract**

2 Large-scale afforestation/reforestation (AR) represents one of the most cost-effective approaches for
3 carbon dioxide removal (CDR) and is therefore a central component of Paris-aligned land and energy
4 transformation pathways. Using a dynamic land- and energy-system model, we assess the emergent
5 biodiversity side effects and energy-system adjustments under varying scales of AR in Paris-aligned
6 pathways. We show that increasing scales of AR markedly affect both the extent and pattern of habitat
7 loss. While stringent climate action that avoids further conversion of forest and non-forest ecosystems
8 offers substantial biodiversity co-benefits by reducing habitat loss, these benefits are largely offset at
9 high levels of carbon-focused AR (>150 Mha) due to disproportionate losses of open habitats.
10 Notably, we also find almost no effect of AR on energy-system transformations until 2050 and only
11 limited effects of CDR from AR on long-term emissions. Our findings underline that near-term
12 emission cuts remain critical for achieving the Paris Agreement and emphasise the need to shift from a
13 dominant focus on large-scale tree planting to broader ecosystem restoration.

15 **Main**

16 Reaching the targets of the Paris Agreement requires deep and rapid decarbonisation across all sectors
17 of the economy^{1,2}. Most energy- and land-use transition pathways that align with these targets also rely
18 on large-scale deployment of carbon dioxide removal (CDR) from the atmosphere to offset residual
19 emissions and reach net-zero goals^{2,3}. Among CDR options, afforestation/reforestation (AR) is widely
20 regarded as one of the most cost-effective⁴⁻⁶ and has therefore become a central component of many
21 countries' Nationally Determined Contributions (NDCs), as well as of global programmes such as the
22 Bonn Challenge and private sector net-zero commitments^{7,8}.

23 When adapted to local conditions and based on native species, AR programmes may play a critical
24 role in restoring important ecosystem functions and delivering substantial co-benefits for biodiversity
25 by recreating former forest habitats⁹⁻¹¹, in particular in many countries across Latin America, tropical
26 Africa and Asia. However, ambitious AR deployment – often targeting land with low opportunity
27 costs⁶ – typically entails a large-scale conversion of open ecosystems into closed forest ecosystems.
28 While increasing carbon uptake from the atmosphere, this transformation could also lead to notable
29 trade-offs for biodiversity by fundamentally altering the habitat conditions for a broad variety of
30 species that have adapted to and critically depend on open ecosystems¹²⁻¹⁴.

31 These open ecosystems are already under pressure. Over recent decades, agricultural intensification
32 and land-use change have already caused steep declines especially in species adapted to open
33 ecosystems, such as grasslands or savannas^{15,16}. In Brazil, for example, non-forest ecosystems have the
34 highest conservation risk indices¹⁷, while population declines of bird species across Europe and North
35 America have been largest among those that prefer open habitats^{18,19}. Many non-forest ecosystems on
36 marginal lands are also being affected by land abandonment and woody encroachment²⁰⁻²², a trend that
37 could be further accelerated by ambitious AR programmes. This might not only have important
38 consequences for local biodiversity, but a decline of contiguous open habitats, for instance, could also
39 affect long-distance avian migration patterns^{23,24}.

40 Several earlier studies have evaluated the sustainability constraints of large-scale AR deployment.
41 Based on a literature review, Deprez et al.²⁵ identified emerging risks at scales of 100-300 Mha, while
42 a more recent spatial analysis found a maximum reforestation potential of 195 Mha after the
43 precautionary exclusion of problematic areas for AR²⁶. However, neither study included quantitative
44 analyses of the associated biodiversity implications of these proposed forest restoration potentials.
45 Conversely, other research has examined the biodiversity consequences of land-use and energy system
46 transformations suited for reaching ambitious climate targets, but did not quantify the emergent
47 biodiversity side effects across different scales of AR deployment^{27,28}. Moreover, changes in the
48 energy system under Paris-aligned pathways that follow from more or less land-based CDR have not
49 been put into relation to biodiversity side effects. Yet, a systematic assessment of biodiversity and
50 energy systems responses at different levels of AR deployment is crucial in order to understand the

51 policy space, in which stringent climate change mitigation targets under the Paris Agreement can be
52 reconciled with the biodiversity conservation goals under the Kunming-Montreal Global Biodiversity
53 Framework (GBF).

54 Here, we provide a quantitative assessment of biodiversity outcomes in response to different levels of
55 carbon-focused AR deployment. We also explore how the energy system would respond to different
56 levels of AR deployment under stringent climate change mitigation in line with the Paris Agreement.
57 Our analysis is based on the REMIND–MAgPIE integrated assessment modelling (IAM) framework,
58 which combines a global economy and energy system model with a global land system model.^{29–31}.
59 REMIND and MAgPIE are continuously validated and have been widely used to study sustainable
60 land-use and energy transformations^{30,32,33}. To assess the impact of AR deployment on biodiversity at a
61 high level of detail, we extend the REMIND-MAgPIE framework by including the Spatial Economic
62 Allocation Landscape Simulator³⁴ (SEALS). SEALS downscales projected land-cover changes to a
63 spatial resolution of 10 arc seconds (300 m × 300 m at the equator), using information on physical
64 suitability, conversion eligibility, and empirically trained spatial adjacency relationships.

65 **Scenario Design**

66 The primary objective of our scenario design is to isolate the effects of different levels of AR
67 deployment on global energy system and land-use dynamics—and the associated biodiversity
68 outcomes—under a stringent, Paris-aligned climate mitigation pathway. Core socioeconomic
69 assumptions in our scenario set, including population and income growth, as well as projected food
70 and energy demand, are based on the ‘middle-of-the-road’ shared socioeconomic pathway³⁵ (SSP2).
71 All scenarios are designed to be consistent with the Paris Agreement, limiting the global mean
72 temperature increase to ‘well-below’ 2° C throughout the 21st century and reaching 1.5° C by the end
73 of the century with a 50 % probability. Accordingly, cumulative CO₂ emissions are constrained to not
74 exceed a carbon budget of 750 GtCO₂ from 2020 onwards. In line with the overall carbon budget, we
75 endogenously derive a uniform carbon price which applies to all GHG emissions in the land and
76 energy systems, incentivising a decarbonisation of the energy system and, for instance,
77 disincentivising the conversion of carbon-rich ecosystems to agricultural land. Furthermore,
78 lignocellulosic second-generation bioenergy crops and residues are limited to 100 EJ yr⁻¹ to ensure
79 sustainability and comparability across scenarios³⁶.

80 Building on these shared assumptions, we explore a range of scenarios that differ in the total scale of
81 AR deployment. In the AR150, AR250 and AR350 cases, AR deployment from 2020 onward is
82 constrained to a global total of 150 Mha, 250 Mha and 350 Mha, respectively, with projected negative
83 emissions of 0.9 GtCO₂ yr⁻¹, 1.3 GtCO₂ yr⁻¹ and 1.6 GtCO₂ yr⁻¹ in 2050 (Figure 1). In the NDC
84 scenario AR deployment after 2020 follows national pledges under countries’ ‘Nationally Determined

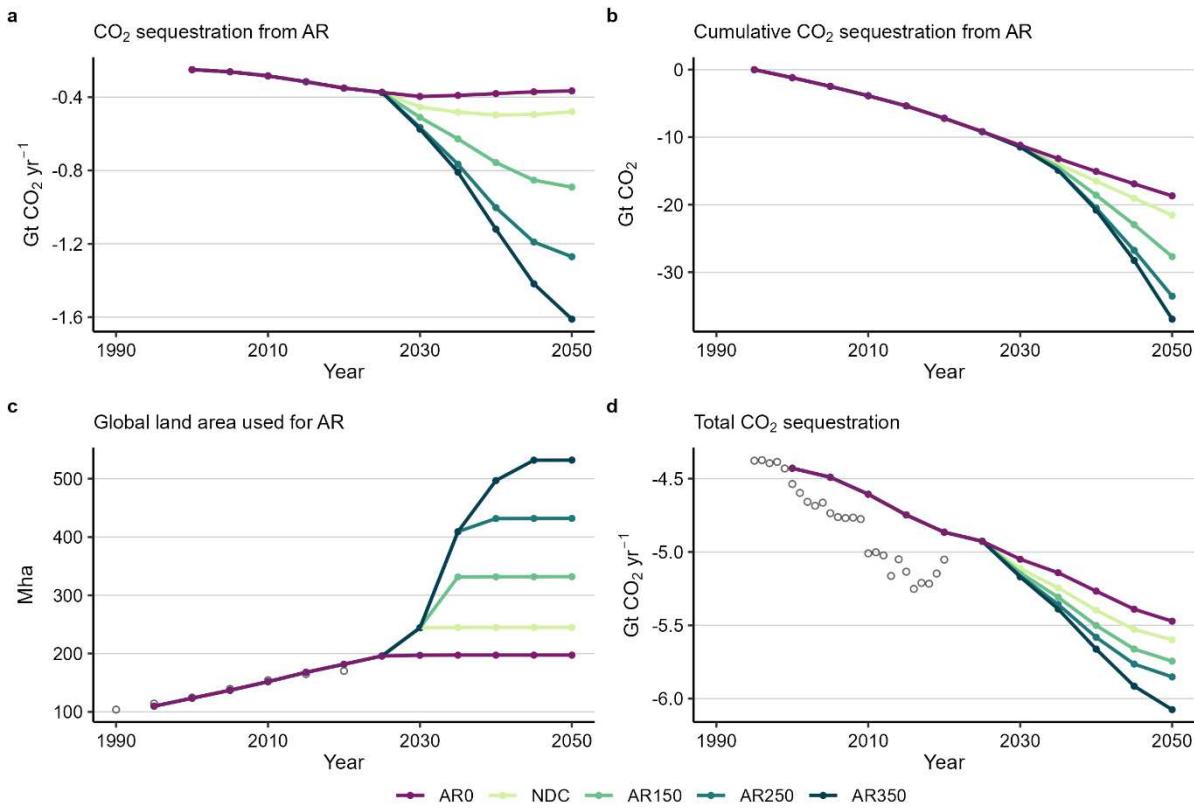


Fig. 1: CO₂ sequestration and land area used for AR until 2050 across the modelled scenarios. **a** Modelled time series of CO₂ removal from the atmosphere from AR deployment. Forest growth rates and associated carbon uptake was assumed to be consistent with the succession of native vegetation. **b** Modelled cumulative CO₂ uptake from AR over time. **c** Global land area used for AR. AR was deployed based on expected carbon removal over a 50-year planning horizon, with global area constraints (NDC, AR150, AR250 and AR350) for AR deployment applied after 2020. **d** Estimated total CO₂ sequestration by the biosphere.

85 Contributions' (NDCs) until 2030 with a global total of 63 Mha of AR and negative emissions of 0.5
 86 GtCO₂ yr⁻¹ in 2050. The AR0 scenario assumes no additional AR after 2020, reflecting currently
 87 implemented AR programmes only. In the AR150, AR250 and AR350 scenarios AR is deployed
 88 through a combination between NDC targets and proportional rewards for expected carbon removals
 89 based on the carbon price. In addition, AR deployment is restricted to areas where the climatic
 90 conditions support forest growth (Supplementary Fig. 2). Forest growth rates are assumed to be
 91 consistent with natural succession of native vegetation but exclude disturbance effects such as fire or
 92 grazing (see Methods).

93 We also modelled variants of each scenario (AR0, NDC, AR150, AR250, AR350) that included a
 94 stringent land conservation scheme targeting global biodiversity hotspots³⁷ (BH). These variants aim
 95 to provide stylised examples and insights into how conservation planning may interact with AR
 96 deployment.

97 Results

98 To evaluate the biodiversity outcomes associated with varying levels of AR deployment, we estimated
 99 changes in the area of habitat (AOH) of 27,726 vertebrate species, based on a fine-scale spatial
 100 allocation of modelled land-cover dynamics across our scenarios. We thereby link species habitat

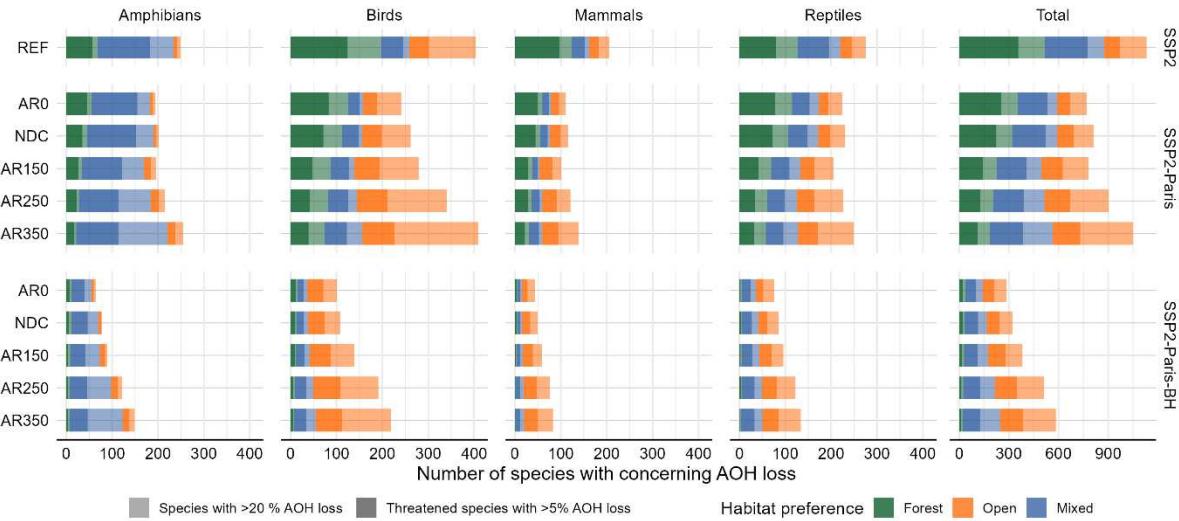


Fig. 2: Number of species with concerning AOH loss by 2050 and their habitat preference across modelled scenarios. Concerning AOH encompasses species with more than 20 % of AOH loss or currently threatened species with more than 5 % AOH loss by 2050.

101 preferences to spatial land cover information via a habitat-land cover model that systematically
 102 reduces commission (false presence) errors and achieves high accuracy^{38,39}. AOH projections offer
 103 valuable insights into potential habitat change and related species extinction risks, making them a
 104 useful tool for conservation planning. As such, the AOH has been suggested as a complementary
 105 indicator for the IUCN Red List^{40,41}. The set of species included in this study covers only about 2.2 %
 106 of recorded and ~0.3% of all currently predicted species⁴². However, it encompasses a wide range of
 107 taxa, species traits and habitat preferences, which has been shown to reliably capture national, regional
 108 and global biodiversity patterns^{10,41}. The AOH indicator predominantly reflects a focus on conserving
 109 nature's intrinsic value, as conceptualized in the 'Nature for Nature' perspective of the IPBES Nature
 110 Futures Framework⁴³. Our analysis focuses on concerning AOH loss, here defined as a reduction of
 111 more than 5% of suitable habitat for species currently listed as threatened on the IUCN Red List, or
 112 more than 20% for currently non-threatened species, by 2050. We also aggregate outcomes according
 113 to species' habitat preferences, including forest, open and mixed (forest and open) habitats.

114 **High AR deployment reshapes scale and patterns of concerning AOH loss**

115 Under a business-as-usual (BAU) scenario without additional land-use interventions, 1132 species
 116 could experience concerning AOH loss, mostly affecting species that prefer forest and mixed habitats
 117 (Figure 2). This loss was primarily driven by pasture and cropland expansion across Asia, Sub-
 118 Saharan Africa and Latin America (Figure 3, Supplementary Figs. 4 & 5). In contrast, the incentive to
 119 avoid CO₂ emissions from land conversion in line with the targets of the Paris Agreement alone (AR0)
 120 causes a drastic reduction in agricultural land expansion, especially across Asia and Sub-Saharan
 121 Africa. This reduces the number of species with concerning AOH loss globally by nearly one third.
 122 While AR deployment in line with countries' current NDCs lowers the number of forest species
 123 affected by concerning AOH loss (~10%), it leads to a higher total number of affected species due to

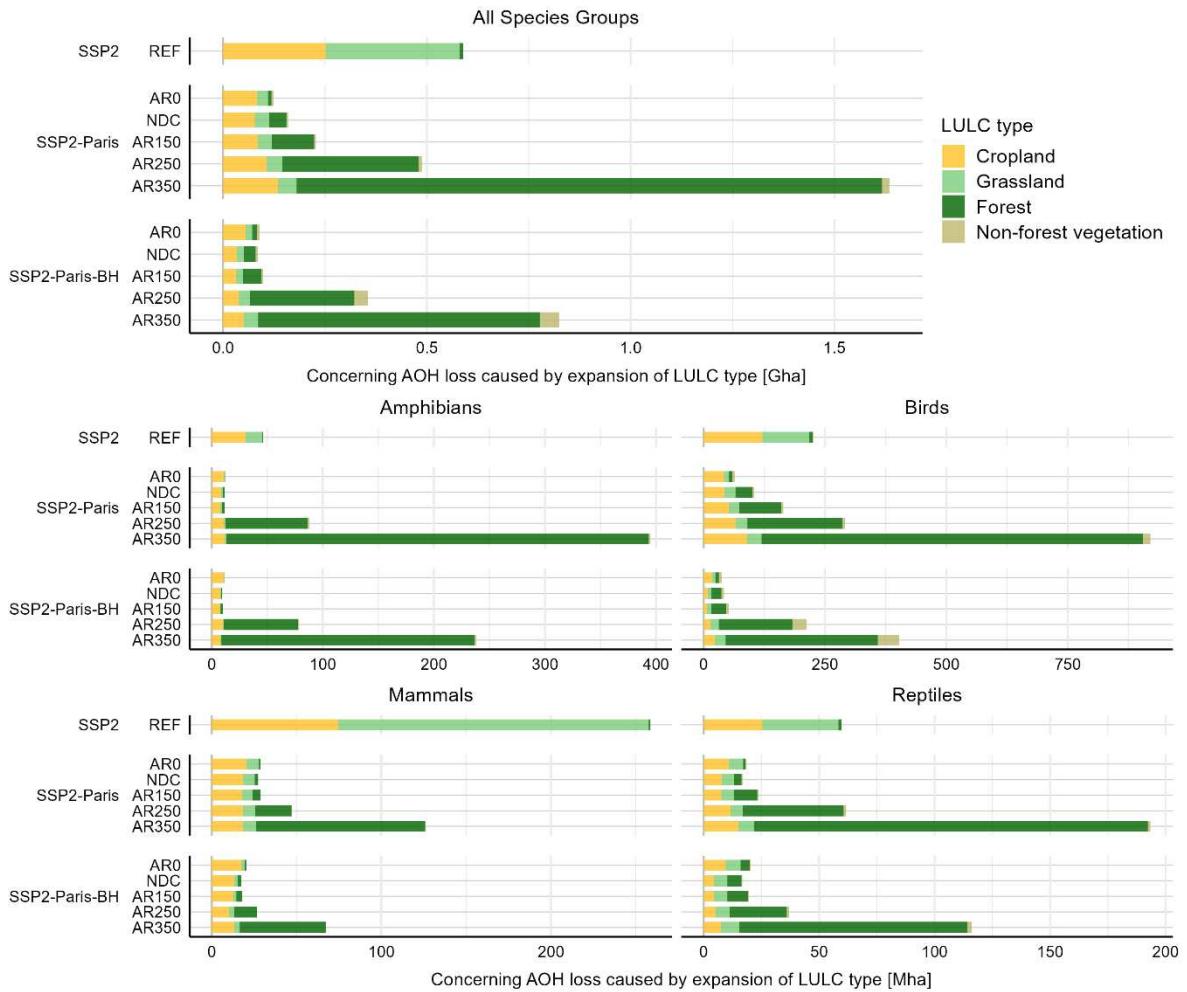


Fig. 3: Sum of concerning habitat loss from 2020 to 2050 caused by the expansion of aggregated land-use/land-cover (LULC) types across different species groups. The total area of concerning AOH loss exceeds the projected global and regional LULC change. This is because the expansion of a single LULC type can result in AOH loss for multiple species simultaneously. Consequently, this metric reflects the relative importance of different LULC expansions for habitat loss, with a greater weight in areas affecting a larger number of species.

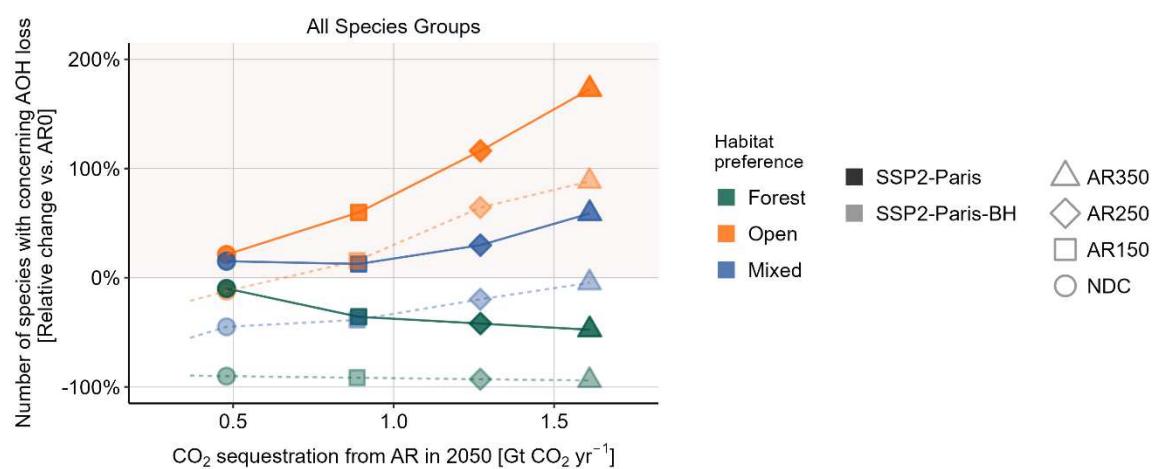
124 increases among species dependent on open (+21%) and mixed (+15%) habitats, compared to the
 125 Paris-aligned scenario without AR (Figure 4).
 126 With increasing AR deployment two patterns emerge: (1) a marked decline in forest-dependent
 127 species with concerning AOH loss, and (2) a strong and disproportionate increase in open- and mixed-
 128 habitat species experiencing concerning AOH losses (Figure 4). In the moderate AR150 scenario, the
 129 number of affected forest species declines by 36 %. However, the total number of species with
 130 concerning AOH loss (782) remains comparable to that in the AR0 scenario (772) because of the
 131 higher impacts across open- and mixed-habitat species. Under high AR deployment, the
 132 disproportionate increase in affected open- and mixed-habitat species even results in an increase in the
 133 total number of affected species (AR250: +17%; AR350: +36% relative to AR0). Hence, in the AR350
 134 scenario the total number of species with concerning AOH loss is only 7% lower than in the BAU
 135 scenario, yet with important differences in the species affected. Concerning AOH losses under high
 136 AR deployment are mostly driven by reductions in suitable habitat for open habitat bird and reptile

137 species as a result of forest expansion, particularly in Latin America (Figure 2; Supplementary Figs. 4,
 138 7 & 9). Under high AR deployment (AR250 and AR350) forest expansion may surpass agricultural
 139 land expansion as the main driver of habitat loss (Figure 3). In the AR350 scenario the total area of
 140 concerning AOH loss caused by forest expansion alone (1.4 Gha) was more than double the area of
 141 concerning AOH loss from all land cover changes in the BAU scenario taken together (0.6 Gha).

142 **Potential habitat gains from AR are qualitatively different than losses**

143 The decline in the number of species that suffer from concerning AOH losses among forest habitat
 144 species with increasing levels of AR deployment is mirrored by substantial potential habitat gains
 145 across a broad set of forest-dependent species (Supplementary Fig. 11). Notably, already a moderate
 146 AR scenario (AR150) increases the number of forest-dependent species experiencing habitat gains by

a



b

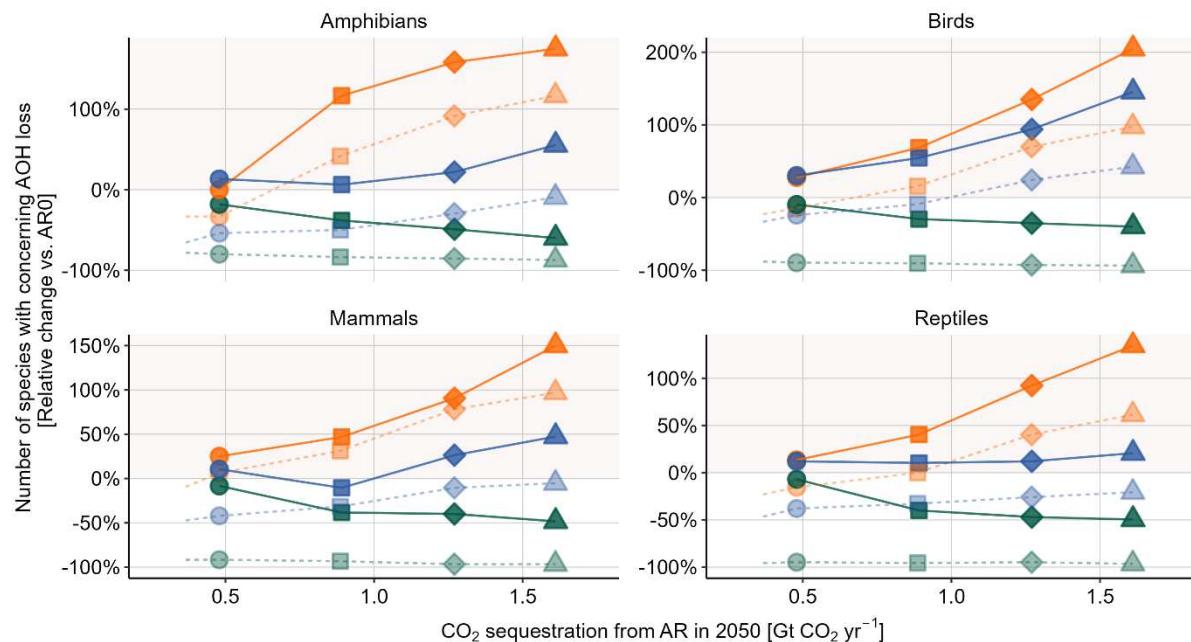


Fig. 4: CO₂-sequestration and relative change in the number of species with concerning habitat loss across AR scenarios and different species groups. The response of species with different habitat preference is shown in different colours, while shaded lines show scenario variants with an additional protection of biodiversity hotspots (BH).

147 82% relative to AR0, rising to 100% and 131% under the AR250 and AR350 scenarios, respectively.
148 While our results also show that habitat gains would disproportionately benefit species with currently
149 low conservation risk (Supplementary Fig. 12), AR deployment—even at a moderate level (AR150)—
150 would still lead to considerable habitat gains for currently threatened species. However, habitat gains
151 from AR deployment critically depend on the quality of forest restoration and are often only realised
152 with forest maturation over long time scales⁴⁴. A direct comparison between habitat losses and gains
153 presented here would thus be misleading not only due to their marked differences in the species
154 affected, but also because habitat loss from land conversion occurs on a far shorter time scale than
155 habitat restoration⁴⁴. Although forest growth and associated carbon dynamics were included in our
156 modelling approach, important qualitative differences between restored young secondary and mature
157 forest ecosystems could not be captured here.

158 **Spatial planning can notably reduce biodiversity side effects of AR**

159 In our analysis we also aimed to quantify the extent to which improved spatial planning could reduce
160 the biodiversity side effects of ambitious AR deployment. To this end, we assessed a variant of our
161 core scenario set, in which the conservation of global biodiversity hotspots³⁷ (BH) was prioritised over
162 AR deployment, partially displacing it to other areas. These stylised scenario variants illustrate the
163 significant co-benefits that could be obtained between carbon- and biodiversity-focused land
164 protection and restoration approaches (Figure 4). In the AR350 scenario, the improved spatial
165 planning halved the number of species with concerning AOH loss. As a result, biodiversity side effects
166 in AR350 remained comparable to those in the AR150 scenario (without spatial planning), but with a
167 78 % higher annual CO₂ sequestration potential (0.9 vs. 1.6 GtCO₂ yr⁻¹ in 2050). Nonetheless, even
168 with the added land conservation forest-dependent species were disproportionately favoured, while
169 concerning AOH losses of open and mixed habitat species were only partly mitigated, especially under
170 high AR deployment. These findings reflect the challenge of aligning ambitious land-based climate
171 mitigation with strategies that simultaneously balance diverse conservation needs.

172 **The scale of AR only has minor impact on emission reductions**

173 In terms of energy-system adjustments to varying levels of AR, we find that near-term emission
174 reductions are far more important for adhering to a carbon budget consistent with the targets of the
175 Paris Agreement than the scale of AR (Figure 5). Regarding near-term CO₂ emissions up to 2050, the
176 additional cumulative carbon sequestration from AR in AR350 compared to AR0 is only 18.3
177 GtCO₂—equivalent to 41% of CO₂ emissions in 2025 alone (44.4 GtCO₂). This suggests that
178 deploying 350 Mha of AR by 2050 would provide only about five months of delay in near-term
179 emission reductions. The difference in carbon uptake from AR between the AR150 and AR350
180 scenarios is only 9.3 GtCO₂ by 2050—just 21% of 2025 CO₂ emissions—implying that an additional
181 200 Mha of AR would only allow a further delay in near-term emission reductions of roughly three
182 months. By 2100, however, AR350 could provide an additional 87.3 GtCO₂ and 50 GtCO₂ of

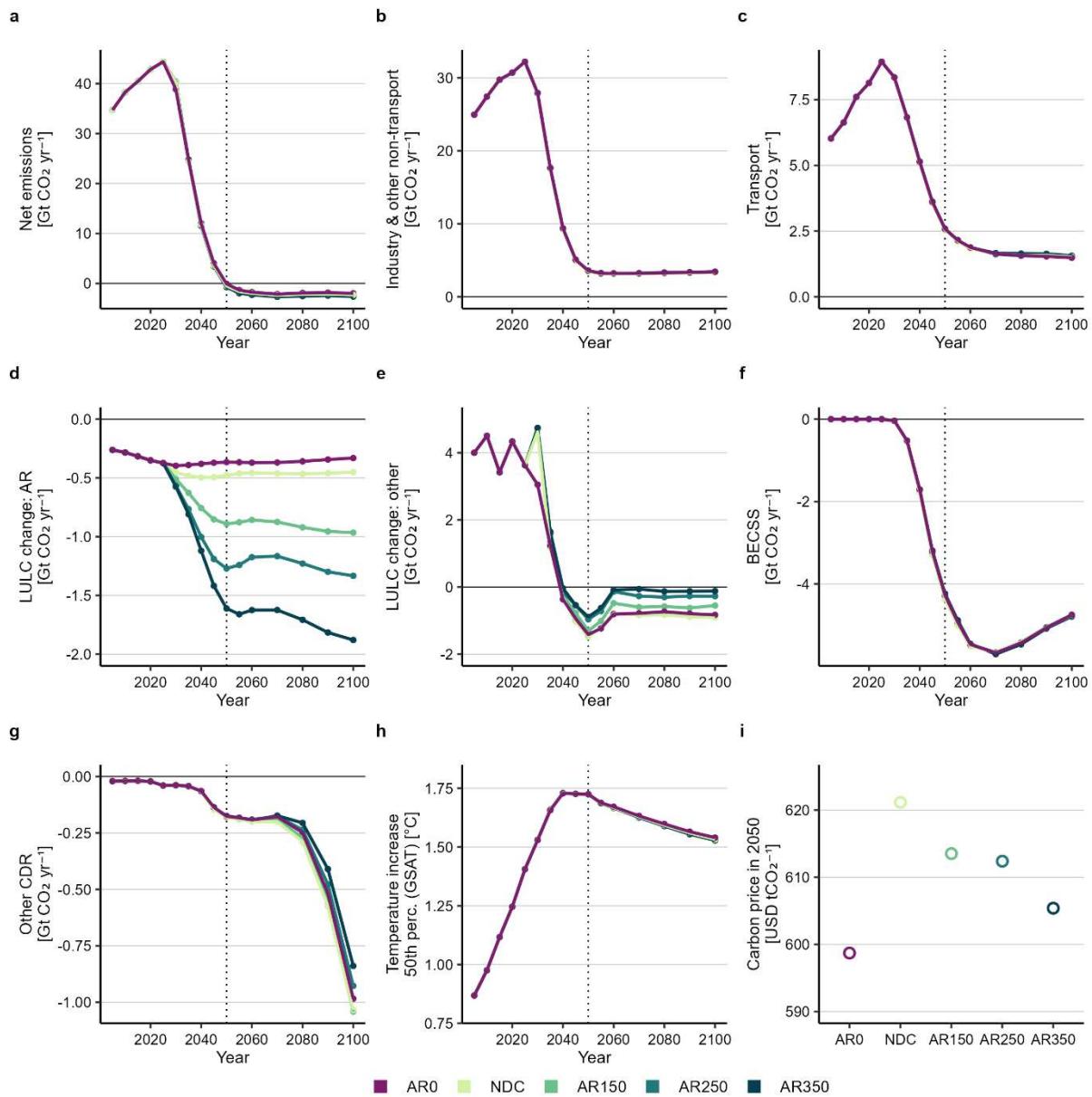


Fig. 5: Projected CO₂ emissions across different components, temperature increase and carbon prices. **a** Projected global net CO₂ for the different scenarios. **b-g** CO₂ emission components including industry and other non-transport (**b**), transport (**c**), land-use/land-cover (LULC) change emissions from AR (**d**), other LULC change emissions (**e**), bioenergy with carbon capture and storage (BECCS) (**f**), and other CDR including direct air carbon capture and storage (DACCs) (**g**). **h** Global mean surface air temperature (GSAT) increase (50th percentile). **i** Carbon prices across the land and energy system in 2050. Carbon prices are phased in after 2025 and remain constant after 2050.

183 cumulative carbon uptake relative to AR0 and AR150, respectively. This suggests that, although CDR
 184 from AR has minimal impact on near-term emissions, it may still contribute to stabilising or reducing
 185 the global mean surface air temperature (GSAT) after 2050 (Figure 5h).

186 The minor effect of AR on the near-term energy-system transformation required to meet the Paris
 187 Agreement is also reflected in the cropland area devoted to second-generation bioenergy crops, such
 188 as short-rotation coppice and bioenergy grasses, and in the corresponding negative emissions from
 189 BECCS, which exhibit only small variations across different levels of AR deployment (Figure 5f;
 190 Supplementary Fig. 13). Bioenergy crops predominantly replace food and feed crops on existing

191 cropland, as overall cropland decreases in all AR scenarios (Supplementary Figs. 13–15). Carbon
192 prices in the energy and land systems likewise show only minor changes across different levels of AR
193 deployment (Figure 5i). However, the spatial allocation of AR has a greater impact on modelled
194 carbon prices than the total AR area itself, which became evident in the higher carbon prices observed
195 in the NDC scenario as compared to the AR0 case. This was because in the NDC scenario, AR was
196 exogenously prescribed based on country-level targets, which caused spatial shifts in agricultural
197 production and corresponding initial leakage effects in CO₂ emissions from land-use change
198 (Figure 5e).

199 **Discussion**

200 Several key insights have emerged from this model analysis. First, our results showed that increasing
201 levels of AR deployment can substantially affect the scale and pattern of habitat loss. While avoided
202 land conversion under stringent climate policy aligned with the Paris Agreement would offer notable
203 co-benefits by reducing habitat loss, these benefits are largely offset at high levels of carbon-focused
204 AR deployment (≥ 250 Mha) due to disproportionate losses of open habitats. Secondly, we find that
205 improved spatial planning would enable higher carbon uptake with fewer biodiversity side effects.
206 However, concerning losses in open habitats remain difficult to mitigate and would require more
207 targeted conservation efforts. Our scenario of expanding land protection across global biodiversity
208 hotspots offers a stylised example of how climate and biodiversity protection could provide important
209 synergies. Yet the marked differences in conservation outcomes across species with divergent habitat
210 preferences suggest that open habitat species are still widely neglected. This highlights the need for
211 balancing conservation objectives in the context of protected area enlargement under the Global
212 Biodiversity Framework (GBF)⁴⁵. Lastly, our integrated analysis of energy and land system
213 interactions showed that AR deployment has only a minor impact on cumulative CO₂ emissions
214 throughout the 21st century, and that rapid near-term emission reductions are far more critical than the
215 scale of AR for meeting the targets of the Paris Agreement. Yet it is important to note that the
216 relatively low carbon uptake potential of AR in our analysis largely reflects our assumption that forest
217 growth rates are consistent with successional dynamics of native vegetation. While the use of fast-
218 growing forest plantations—often with non-native species—could result in higher carbon uptake
219 rates⁴⁶, such plantations would likely come with greater biodiversity and other sustainability trade-
220 offs⁴⁷.

221 These findings suggest that shifting from a dominant focus on large-scale tree planting to broader
222 ecosystem management and restoration approaches in line with global biodiversity goals would not
223 noticeably affect the required energy transition, while substantially reducing potential biodiversity
224 trade-offs. This aligns with evidence from other studies showing that ecosystem-based approaches,
225 targeting both forested and non-forested ecosystems, can simultaneously deliver high carbon removals
226 and support biodiversity conservation^{15,48–51}. More diverse land restoration approaches that consider

227 different conservation perspectives in cultured landscapes⁵² may also increase social acceptance and
228 prevent trade-offs with other sustainability goals^{53,54}. However, a strong emphasis on interventions that
229 limit further land conversion and protect current forest and non-forest ecosystems is essential. This
230 would not only avoid habitat loss and further CO₂ emissions from land-use change but also preserve
231 the high near-term carbon uptake potential of existing forest vegetation⁵⁵, which also provided a
232 substantial contribution in our analysis. In our analysis, we also assumed that fire or (native) grazing
233 were suppressed in sites of AR deployment. While our findings imply no substantial impact on a
234 Paris-aligned energy transition from a smaller AR area that may result from disturbance events,
235 considerable disturbance losses in existing forest by contrast could have more severe implications for
236 emission reductions⁵⁶.

237 Our study is subject to several limitations. First, our assessment of AOH changes was solely based on
238 current species distributions and did not account for potential range shifts due to climate change. Our
239 scenario set primarily focused on ambitious mitigation pathways associated with low-end climate
240 change and we thus excluded climate impacts to reduce the overall complexity of our modelling
241 approach. Although low-end climate change has been shown to have limited effects on land-use
242 dynamics⁵⁷, residual climate change is still expected to drive species range shifts⁵⁸. Under higher
243 emission trajectories, such as in our REF scenario, these range shifts could become more
244 pronounced⁵⁹. Yet habitat loss and fragmentation may also impede the ability of species to track
245 temperature gradients⁵⁸. The availability and accessibility of suitable habitat along elevational and
246 latitudinal gradients will shape the extent to which range shifts affect future habitat change^{59,60}, and
247 thereby influence AOH outcomes especially for range-restricted species. Conservation measures that
248 support species movement and sustain sufficient and contiguous habitat can markedly reduce climate-
249 driven habitat loss, even under high emission trajectories⁶¹. Secondly, we did not consider how
250 different growth stages during AR deployment would affect different species groups. Mixed young
251 secondary forests may benefit both forest- and non-forest species, while forest specialists often favour
252 mature forests^{62–64}. These successional dynamics could temporarily alleviate some of the projected
253 negative consequences of AR for open habitat species. Thirdly, in our stylised climate change
254 mitigation scenarios AR deployment was incentivised through a universal carbon price. Hence AR
255 was spatially allocated solely based on projected carbon sequestration potentials—an approach
256 commonly used in IAM studies^{30,32,65,66}. Incorporating regionally differentiated AR incentives or
257 broader criteria beyond carbon could result in different AR deployment patterns. Lastly, the relatively
258 limited role of AR as a CDR option in our mitigation scenarios also reflects assumptions about
259 bioenergy yields and the cost-effectiveness of BECCS as an alternative. Lower yields from short-
260 rotation coppice or bioenergy grasses would reduce BECCS efficiency and competitiveness and
261 substantially increase its land footprint. Assessing the biodiversity impacts of BECCS was beyond the
262 scope of this study, but evidence indicates notable biodiversity gains in farmed landscapes when
263 annual food and feed crops are replaced with woody or perennial grass bioenergy crops⁶⁷.

264 **Methods**

265 **Model descriptions**

266 **REMIND-MAgPIE.** Our quantitative analysis is based on the coupled integrated land- and energy
267 system modelling framework REMIND-MAgPIE. It consists of the multiregional global energy-
268 economy model REMIND³¹ (v3.5.1) and the spatially-explicit land-system model MAgPIE²⁹
269 (v4.11.0). The framework furthermore draws on consistent biophysical information on crop yields,
270 carbon dynamics, and water availability from the global vegetation, crop and hydrology model
271 LPJmL^{68,69}, and integrates the reduced-complexity climate model MAGICC^{70,71}.

272 **REMIND.** The Regional Model of Investments and Development (REMIND) uses a multiregional
273 approach to cover the global economy and energy system^{30,31}. The macro-economy of the twelve
274 world regions (Supplementary Fig. 1; Supplementary Tab. 1) which group smaller countries while
275 major economies (China, India, USA) are resolved individually, is modelled following a Ramsey-type
276 growth model that uses a production function with constant elasticity of substitution and capital,
277 labour and energy as the main production factors. The energy demand and associated costs resulting
278 from economic activity are hard-linked to a detailed representation of the energy system that includes
279 all major primary energy carriers, conversion technologies and end-use sectors (transport, industry,
280 and buildings)³¹. In each region intertemporal welfare is first optimised separately, before the global
281 solution is found by iteratively adjusting market prices for primary energy carriers and tradable goods
282 until all market surpluses and deficits are cleared. Existing infrastructure, technology learning curves,
283 and adjustment costs create path dependencies and inertia, which in turn constrain the transformation
284 of the energy system. The model also tracks the emissions of all major greenhouse gases (GHG) from
285 economic activity.

286 **MAgPIE.** The Model of Agricultural Production and its Impact on the Environment (MAgPIE) is a
287 land-system modelling framework developed to assess global land-use dynamics and their
288 implications for sustainable development throughout the 21st century^{32,51}. The model uses a dynamic
289 cost-optimisation approach to spatially allocate the production of food, feed, bioenergy and biomass
290 under socioeconomic and biophysical constraints in order to meet global demand. MAgPIE accounts
291 for various cost components including factor requirements (capital, labour, fertiliser), investment into
292 agricultural research & development, as well as transport, land conversion, trade and irrigation costs. It
293 also considers the depreciation of capital stocks over time and costs for new investments into crop
294 production, prioritising historical agricultural locations while restricting production shifts to areas with
295 suitable climate and soil conditions but insufficient infrastructure. Trade flows are modelled as a
296 combination of historical import and export patterns and comparative advantages in agricultural
297 production with a modest trade liberalisation over time along the SSP2 pathway⁷². Socioeconomic
298 constraints, such as trade or investments into agricultural productivity, are formulated at the scale of
299 twelve model regions, which were aligned to the multiregional setup of REMIND. Spatially-explicit

300 biophysical information on vegetation, litter, and soil carbon stocks as well as water availability based
301 on historical climate data⁷³ were taken from LPJmL4^{68,69} at 0.5 degree spatial resolution. Yield
302 patterns for 19 food, feed and bioenergy crop functional types, grassland yields, as well as crop
303 irrigation water requirements at 0.5 degree were derived from LPJmL5 simulations with unlimited
304 nitrogen supply⁷⁴. All model inputs at the 0.5-degree resolution were clustered to 200 spatial
305 simulation units with similar biophysical properties using a k-means clustering approach⁷⁵. MAgPIE
306 covers all major crop and livestock species, non-food agricultural commodity production, as well as
307 food waste and supply chain losses. CO₂ emissions from land-use change are calculated based on
308 carbon losses and uptake resulting from the conversion of forested and non-forest ecosystems and
309 regrowth on abandoned/restored agricultural land between time steps⁷⁶.

310 Forest growth in MAgPIE is represented using the approach of Humpenöder et al.⁵ with updated
311 parameters for the Chapman-Richards growth function for native vegetation and timber plantations
312 from Braakhekke et al.⁴⁶. For this analysis we used the growth curve for native vegetation to model
313 forest growth in areas of AR deployment (NDC and carbon-price induced AR, see below).
314 Consistently, we assumed that AR had the same carbon density, and thus consisted of the same
315 species, found in the succession of native ecosystems over time⁷⁷. The age class distribution of
316 existing forests was initialised using the Global Forest Age Dataset (GFAD V1.1) by Poulter et al.⁷⁸.
317 Future AR deployment was restricted to areas outside the boreal zone and to locations where climatic
318 conditions support forest growth, excluding forest disturbance factors such as grazing or fire. Eligible
319 areas for AR deployment were identified based on a minimum carbon density threshold of 20 t C ha⁻¹,
320 using carbon density estimates for native vegetation derived from LPJmL4 data.

321 In our integrated land- and energy-system modelling framework, REMIND and MAgPIE were run
322 iteratively in a soft-coupled mode, thereby allowing for a high level of detail in process representation
323 across both the land and energy systems⁷⁹. Information on GHG prices, second-generation
324 lignocellulosic bioenergy demand and land-use related emissions were iteratively balanced and
325 harmonised between the REMIND and MAgPIE models in order to generate consistent land-use and
326 energy transition scenarios based on a single combined optimisation problem³⁰⁻³². Cross-sectoral GHG
327 emissions from REMIND-MAgPIE were then used to estimate corresponding changes in GHG
328 concentrations in the atmosphere, radiative forcing levels and changes in the global mean surface air
329 temperature (GSAT) with the reduced-complexity climate model MAGICC^{70,71} based on a
330 probabilistic setup.

331 **SEALS.** The Spatial Economic Allocation Landscape Simulator (SEALS) was applied to allocate land-
332 use projections from MAgPIE provided at the 0.5-degree level to a spatial scale suitable for assessing
333 habitat change at a high level of detail^{34,51,77}. SEALS operates at a spatial resolution of 10 arc-seconds
334 (~300 m at the equator) and allocates projected land-cover changes by ranking grid cells using a
335 composite suitability score. This score includes information on spatial adjacency—capturing how

336 surrounding land cover influences the likelihood of conversion—as well as physical properties such as
337 soil quality, topography, climate, and accessibility, represented by travel time to the nearest market.
338 Additionally, SEALS accounts for conversion eligibility constraints that restrict agricultural land
339 expansion into urban land, current or future protected areas, and water bodies. The initial land-cover
340 distribution is based on the 2020 ESA-CCI map. The 37 ESA-CCI land-cover classes were reclassified
341 into seven functional land types: cropland, grassland, forest, non-forest vegetation (e.g., shrublands
342 and herbaceous cover), urban, barren land, and water. Adjacency relationships are quantified by
343 analysing both the proximity and the spatial agglomeration of neighbouring land-cover types.

344 Suitability maps based on spatial adjacency, physical suitability and conversion eligibility are used to
345 guide an iterative allocation process, by which projected land-use changes from MAgPIE between
346 2020 and 2050 are assigned to the most suitable available locations until all coarse land-cover changes
347 are spatially distributed at 10 arc-seconds. Model parameters for spatial adjacency and suitability are
348 empirically calibrated using observed land-cover transitions from ESA-CCI data between 2000 and
349 2010. The final set of coefficients was selected based on their ability to reproduce observed land-cover
350 changes in withheld validation data from 2011 to 2015^{77,80}.

351 **Area of habitat.** Area of habitat (AOH) refers to the area of a species' geographic range that meets its
352 habitat requirements⁴⁰. We generated AOH maps for 6,374 amphibian, 9,124 bird, 5,351 mammal, and
353 6,877 reptile species for the year 2020, and used land-cover projections based on REMIND-MAgPIE
354 scenarios and SEALS to assess changes in AOH under different scales of AR deployment⁵¹. Species
355 range polygons were obtained from the IUCN Red List database⁸¹ and BirdLife International⁸². In our
356 analysis, we retained seasonal range information and assessed AOH changes separately for resident,
357 breeding, non-breeding, and uncertain seasonality ranges. Ranges with unknown presence or no
358 habitat preference information were excluded. Species' habitat preferences were derived from the
359 IUCN Red List database. The twelve major habitat types defined in the IUCN Habitats Classification
360 Scheme⁸³ were linked to spatial land cover information using the habitat–land cover translation model
361 developed by Lumbierres et al.³⁸. The model maps IUCN habitat classes to ESA CCI land cover
362 classes based on varying strengths of association. We used the strongest habitat–land cover association
363 threshold, which in prior studies has been shown to reduce commission errors without affecting
364 validation performance of estimated AOH^{39,41}. For artificial degraded forests and plantations, for
365 which no associations exceeded the strongest threshold, we used the second-highest threshold, linking
366 them to ESA CCI classes 12 (cropland, rainfed, tree or shrub cover), 20 (cropland, irrigated or post-
367 flooding), and 190 (urban areas) (see Supplementary Tab. 2). Habitat types classified as marginal or of
368 no major importance in the IUCN Red List Database were excluded. For abandoned agricultural areas
369 and locations of AR deployment we employed the same approach as in the MAgPIE simulations (see
370 above). Consistent with this approach, land that maintained a carbon density ≤ 20 t C ha⁻¹ in the
371 assessed time step was classified as non-forest vegetation (i.e., native grassland or shrubland), while
372 land exceeding this threshold was considered forest vegetation.

373 AOH changes were estimated using two-step process approach with a pre-processing and a scenario
374 analysis step⁵¹. In the pre-processing step, habitat preferences of each species were translated to ESA
375 CCI land cover classes and unsuitable elevation zones were removed based on species-specific
376 elevation limits from the IUCN database using WorldClim 1 km elevation data⁸⁴. Species polygons
377 with no area remaining within the elevation range were omitted from the set of assessed species.
378 During scenario analysis, land-cover projections from REMIND-MAgPIE and SEALS were used to
379 subtract unsuitable habitat from the pre-processed ranges to derive final AOH estimates for each
380 scenario. For the baseline year 2020, AOH was derived directly from ESA CCI land-cover data. All
381 spatial analyses were performed in R using the terra⁸⁵ package, while data processing was parallelised
382 and executed on a high-performance computing cluster using the foreach⁸⁶ and doParallel⁸⁷ packages
383 because of the high computational demand.

384 **Scenario set-up**

385 The primary goal of our scenario set was to assess the emerging biodiversity and energy system
386 responses of different levels of AR deployment under a stringent Paris-aligned climate change
387 mitigation pathway. Regarding socioeconomic trends of population and income growth over time, we
388 based our scenarios on the moderate ‘middle-of-the-road’ socioeconomic pathway (SSP2), which also
389 assumes compliance with currently implemented land and energy policies (e.g. no cropland expansion
390 in current protected areas⁵¹). Food demand projections were derived from population and income
391 trajectories based on anthropometric and econometric approaches that consider body-height, age-
392 cohort, sex and body mass index distributions using elasticities obtained from historical data. Energy
393 demand is modelled using EDGE (‘Energy Demand GEnerator’) models for the transport⁸⁸, industry³¹,
394 and buildings⁸⁹ sectors that account for sector-specific energy-demand drivers and trends following the
395 SSP2 pathway, such as infrastructure inertia, consumer lifestyles, or floor space demand. Energy
396 demand in each sector is also sensitive to GHG pricing under climate policy³¹.

397 **Climate policy.** To limit the global mean temperature increase to ‘well-below’ 2° C throughout the
398 21st century and to meet the 1.5° C target by the end of the century in line with the Paris Agreement,
399 we constrained cumulative CO₂ emissions to a total carbon budget of 750 GtCO₂ from 2020 until 2100
400 across all scenarios except of the ‘business-as-usual’ (BAU) case. To meet this constraint, we
401 modelled linearly increasing GHG prices for all types of emissions across the land and energy
402 systems. Modelled GHG prices remained sensitive to available CDR options such as AR deployment.
403 In the energy sector, GHG prices incentivised a decarbonisation, a partial substitution of fossil fuels by
404 bioenergy, and the deployment of carbon capture, especially through bioenergy with carbon capture
405 and storage (BECCS). In the land sector, GHG prices strongly discouraged emissions from land-use
406 change, especially from carbon-rich forest and non-forest ecosystems such as peatlands⁹⁰. At the same
407 time, AR deployment was incentivised through GHG pricing by calculating the expected CO₂ uptake
408 over a 50-year planning horizon, multiplying it by the projected GHG price, discounting the result to

409 present value, and applying an annuity factor to convert it into an average annual reward. We here
410 assumed that rewards for AR deployment were equivalent to the modelled GHG prices to maximise
411 the incentive for AR deployment. However, to explore the implications of different levels of AR
412 deployment, we imposed area-based constraints on AR after 2020 of 150 Mha, 250 Mha and 350 Mha
413 in the AR150, AR250 and AR350 scenarios, respectively. In the AR0 scenario, no AR deployment
414 was allowed after 2020, while in the NDC scenario AR followed country-specific targets submitted
415 under nationally determined contributions (NDCs), which amounted to an area of 63 Mha of AR until
416 2030. These NDC-based targets for AR were also included in the upper boundary for AR across the
417 AR150, AR250 and AR350 scenarios, so that carbon-priced induced AR accounted for only 87 Mha,
418 187 Mha and 287 Mha of AR, respectively, across these scenarios. All AR deployment was
419 constrained to areas where climatic conditions support forest growth. These areas were identified
420 using estimated carbon densities of the potential natural vegetation derived from LPJmL. Areas with a
421 potential carbon density $>20 \text{ tC ha}^{-1}$ were classified as suitable for forest growth, yet without natural
422 disturbances, e.g. through grazing or fire (Supplementary Fig. 2).

423 For each the stylised AR0, NDC, AR150, AR250 and AR350 climate mitigation scenarios, we also
424 modelled scenario variants that included stringent land conservation in biodiversity hotspots
425 (BHs)^{37,91}, in order to quantify interactions between conservation planning and AR deployment.
426 Biodiversity hotspots host nearly 43% of global vertebrate species and over half of all endemic plant
427 species. Yet, they are also characterised by a loss of native habitat of $>70\%$. Prominent examples
428 include the Atlantic Forest, the Cerrado, Mesoamerica, the Andes, and Chilean Forests in Latin
429 America, and Madagascar, the Horn of Africa, and the Guinean Forests of West Africa. Land
430 conservation in BHs included the protection of all remaining native vegetation and land restoration of
431 land covers based on pre-industrial (1750) levels⁵¹ as reported in the LUH2v2 dataset⁹², instead of
432 strict AR deployment.

433 **Data availability**

434 The model results presented in this analysis are available via Zenodo at
435 <https://doi.org/10.5281/zenodo.17611595> (ref⁹³).

436 **Code Availability**

437 The model code of the MAgPIE model is openly available under GNU Afferro General Public License,
438 version 3 (AGPLv3), and is accessible via GitHub at <https://github.com/magpiemodel/magpie>. The
439 release version (MAgPIE 4.11.0) on which this work is based is available via Zenodo at
440 <https://doi.org/10.5281/zenodo.15862748> (ref⁹⁴). MAgPIE 4.11.0 is accompanied by a technical model
441 documentation (<https://rse.pik-potsdam.de/doc/magpie/4.11.0/>), which was compiled using the GAMS
442 code documentation toolkit goxygen (ref⁹⁵). REMIND is also openly available under GNU Afferro
443 General Public License, version 3 (AGPLv3) and available on GitHub. The model version used in this

444 study is 3.5.1, which can be downloaded at
445 <https://github.com/remindmodel/remind/releases/tag/v3.5.1>. SEALS is also accessible via GitHub at
446 https://github.com/jandrewjohnson/seals_dev/releases/tag/v1.0.0 and documented under
447 https://justinandrewjohnson.com/earth_economy_devstack/seals_overview.html.

448 **Competing interests**

449 The authors declare no competing interests.

450 **Literature**

- 451 1. Rogelj, J. *et al.* Mitigation pathways compatible with 1.5°C in the context of sustainable
452 development. in *Global Warming of 1.5°C: An IPCC Special Report on the impacts of global
453 warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission
454 pathways, in the context of strengthening the global response to the threat of climate change,
455 sustainable development, and efforts to eradicate poverty* (eds Masson-Delmotte, V. *et al.*)
456 (Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 2018).
- 457 2. Riahi, K. *et al.* Mitigation pathways compatible with long-term goals. *Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change* (2022) doi:10.1017/9781009157926.005.
- 460 3. Roe, S. *et al.* Contribution of the land sector to a 1.5 °C world. *Nat. Clim. Chang.* **9**, 817–828
461 (2019).
- 462 4. Griscom, B. W. *et al.* Natural climate solutions. *Proceedings of the National Academy of Sciences*
463 **114**, 11645–11650 (2017).
- 464 5. Humpenöder, F. *et al.* Investigating afforestation and bioenergy CCS as climate change mitigation
465 strategies. *Environ. Res. Lett.* **9**, 064029 (2014).
- 466 6. Busch, J. *et al.* Potential for low-cost carbon dioxide removal through tropical reforestation. *Nat. Clim. Chang.* **9**, 463–466 (2019).
- 468 7. Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best
469 way to remove atmospheric carbon. *Nature* **568**, 25–28 (2019).
- 470 8. Stanturf, J. A. & Mansourian, S. Forest landscape restoration: state of play. *Royal Society Open
471 Science* **7**, 201218 (2020).

472 9. Honegger, M., Axel Michaelowa, & Roy Joyashree. Potential implications of carbon dioxide
473 removal for the sustainable development goals. *Climate Policy* **21**, 678–698 (2021).

474 10. Jung, M. *et al.* Areas of global importance for conserving terrestrial biodiversity, carbon and
475 water. *Nat Ecol Evol* 1–11 (2021) doi:10.1038/s41559-021-01528-7.

476 11. Strassburg, B. B. N. *et al.* Global priority areas for ecosystem restoration. *Nature* **586**, 724–729
477 (2020).

478 12. Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The Trouble with Trees:
479 Afforestation Plans for Africa. *Trends in Ecology & Evolution* **34**, 963–965 (2019).

480 13. Parr, C. L., te Beest, M. & Stevens, N. Conflation of reforestation with restoration is widespread.
481 *Science* **383**, 698–701 (2024).

482 14. Veldman, J. W. *et al.* Where Tree Planting and Forest Expansion are Bad for Biodiversity and
483 Ecosystem Services. *BioScience* **65**, 1011–1018 (2015).

484 15. Staude, I. R. *et al.* Prioritize grassland restoration to bend the curve of biodiversity loss.
485 *Restoration Ecology* **n/a**, e13931 (2023).

486 16. Williams, B. A. *et al.* Global drivers of change across tropical savannah ecosystems and insights
487 into their management and conservation. *Biological Conservation* **276**, 109786 (2022).

488 17. Overbeck, G. E. *et al.* Conservation in Brazil needs to include non-forest ecosystems. *Diversity*
489 and *Distributions* **21**, 1455–1460 (2015).

490 18. Rosenberg, K. V. *et al.* Decline of the North American avifauna. *Science* **366**, 120–124 (2019).

491 19. Burns, F. *et al.* Abundance decline in the avifauna of the European Union reveals cross-
492 continental similarities in biodiversity change. *Ecology and Evolution* **11**, 16647–16660 (2021).

493 20. Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a
494 synthesis. *Agriculture, Ecosystems & Environment* **182**, 1–14 (2014).

495 21. Stevens, N., Bond, W., Feurdean, A. & Lehmann, C. E. R. Grassy Ecosystems in the
496 Anthropocene. *Annual Review of Environment and Resources* **47**, 261–289 (2022).

497 22. Stanton Jr, R. A. *et al.* Shrub encroachment and vertebrate diversity: A global meta-analysis.
498 *Global Ecology and Biogeography* **27**, 368–379 (2018).

499 23. Jahn, A. E., Bejarano, V., Cueto, V. R., Di Giacomo, A. S. & Fontana, C. S. Movement ecology
500 research to advance conservation of South America's grassland migratory birds. *Perspectives in*
501 *Ecology and Conservation* **15**, 209–215 (2017).

502 24. Bhagwat, T., Rufin, P., Kuemmerle, T. & Kamp, J. Landscape composition drives winter bird
503 assemblages in agriculture–savanna mosaics of western India. *Ecological Applications* **35**, e70016
504 (2025).

505 25. Deprez, A. *et al.* Sustainability limits needed for CO₂ removal. *Science* **383**, 484–486 (2024).

506 26. Fesenmyer, K. A. *et al.* Addressing critiques refines global estimates of reforestation potential for
507 climate change mitigation. *Nat Commun* **16**, 4572 (2025).

508 27. Hirata, A. *et al.* The choice of land-based climate change mitigation measures influences future
509 global biodiversity loss. *Commun Earth Environ* **5**, 1–10 (2024).

510 28. Ohashi, H. *et al.* Biodiversity can benefit from climate stabilization despite adverse side effects of
511 land-based mitigation. *Nat Commun* **10**, 5240 (2019).

512 29. Dietrich, J. P. *et al.* MAgPIE 4 – a modular open-source framework for modeling global land
513 systems. *Geoscientific Model Development* **12**, 1299–1317 (2019).

514 30. Soergel, B. *et al.* A sustainable development pathway for climate action within the UN 2030
515 Agenda. *Nat. Clim. Chang.* **11**, 656–664 (2021).

516 31. Baumstark, L. *et al.* REMIND2.1: transformation and innovation dynamics of the energy-
517 economic system within climate and sustainability limits. *Geoscientific Model Development* **14**,
518 6571–6603 (2021).

519 32. Weindl, I. *et al.* Food and land system transformations under different societal perspectives on
520 sustainable development. *Environ. Res. Lett.* **19**, 124085 (2024).

521 33. Bodirsky, B. L. *et al.* *Mrvalidation: Madrat Data Preparation for Validation Purposes*.
522 <https://github.com/pik-piam/mrvalidation> (2025).

523 34. Johnson, J. A. & Thakrar, S. Projecting Global Changes in Land Use and Ecosystem Services
524 Using SEALS (Spatial Economic Allocation Landscape Simulator). *Earth ArXiv*
525 <https://doi.org/10.31223/X5GX36> (2024) doi:<https://doi.org/10.31223/X5GX36>.

526 35. Popp, A. *et al.* Land-use futures in the shared socio-economic pathways. *Global Environmental*
527 *Change* **42**, 331–345 (2017).

528 36. Creutzig, F. *et al.* Bioenergy and climate change mitigation: an assessment. *GCB Bioenergy* **7**,
529 916–944 (2015).

530 37. Mittermeier, R. *et al.* *Hotspots Revisited. Earth's Biologically Richest and Most Endangered*
531 *Terrestrial Ecoregions*. vol. 392 (2004).

532 38. Lumbierres, M. *et al.* Translating habitat class to land cover to map area of habitat of terrestrial
533 vertebrates. *Conservation Biology* **36**, e13851 (2022).

534 39. Dahal, P. R., Lumbierres, M., Butchart, S. H. M., Donald, P. F. & Rondinini, C. A validation
535 standard for area of habitat maps for terrestrial birds and mammals. *Geoscientific Model*
536 *Development* **15**, 5093–5105 (2022).

537 40. Brooks, T. M. *et al.* Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN
538 Red List. *Trends in Ecology & Evolution* **34**, 977–986 (2019).

539 41. Lumbierres, M. *et al.* Area of Habitat maps for the world's terrestrial birds and mammals. *Sci*
540 *Data* **9**, 749 (2022).

541 42. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How Many Species Are There
542 on Earth and in the Ocean? *PLOS Biology* **9**, e1001127 (2011).

543 43. Kim, H. *et al.* Towards a better future for biodiversity and people: Modelling Nature Futures.
544 *Global Environmental Change* **82**, 102681 (2023).

545 44. Dunn, R. R. Recovery of Faunal Communities During Tropical Forest Regeneration.
546 *Conservation Biology* **18**, 302–309 (2004).

547 45. Watson, J. E. M. *et al.* Priorities for protected area expansion so nations can meet their Kunming-
548 Montreal Global Biodiversity Framework commitments. *Integrative Conservation* **2**, 140–155
549 (2023).

550 46. Braakhekke, M. C. *et al.* Modeling forest plantations for carbon uptake with the LPJmL dynamic
551 global vegetation model. *Earth System Dynamics* **10**, 617–630 (2019).

552 47. Hua, F. *et al.* The biodiversity and ecosystem service contributions and trade-offs of forest
553 restoration approaches. *Science* **376**, 839–844 (2022).

554 48. Brancalion, P. H. S., Hua, F., Joyce, F. H., Antonelli, A. & Holl, K. D. Moving biodiversity from
555 an afterthought to a key outcome of forest restoration. *Nat. Rev. Biodivers.* **1**, 248–261 (2025).

556 49. Cook-Patton, S. C. *et al.* Protect, manage and then restore lands for climate mitigation. *Nat. Clim.*
557 *Chang.* **11**, 1027–1034 (2021).

558 50. Smith, P. *et al.* How do we best synergize climate mitigation actions to co-benefit biodiversity?
559 *Global Change Biology* **28**, 2555–2577 (2022).

560 51. von Jeetze, P. *et al.* Conservation outcomes of dietary transitions across different values of nature.
561 *Nat Sustain* 1–13 (2025) doi:10.1038/s41893-025-01595-9.

562 52. Durán, A. P. *et al.* Bringing the Nature Futures Framework to life: creating a set of illustrative
563 narratives of nature futures. *Sustain Sci* <https://doi.org/10.1007/s11625-023-01316-1> (2023)
564 doi:10.1007/s11625-023-01316-1.

565 53. Fleischman, F. *et al.* Pitfalls of Tree Planting Show Why We Need People-Centered Natural
566 Climate Solutions. *BioScience* **70**, 947–950 (2020).

567 54. Löfqvist, S. *et al.* How Social Considerations Improve the Equity and Effectiveness of Ecosystem
568 Restoration. *BioScience* **73**, 134–148 (2023).

569 55. Robinson, N. *et al.* Protect young secondary forests for optimum carbon removal. *Nat. Clim.*
570 *Chang.* 1–8 (2025) doi:10.1038/s41558-025-02355-5.

571 56. Windisch, M. G. *et al.* Hedging our bet on forest permanence for the economic viability of climate
572 targets. *Nat Commun* **16**, 2460 (2025).

573 57. Molina Bacca, E. J. *et al.* Uncertainty in land-use adaptation persists despite crop model
574 projections showing lower impacts under high warming. *Commun Earth Environ* **4**, 284 (2023).

575 58. Lenoir, J. *et al.* Species better track climate warming in the oceans than on land. *Nat Ecol Evol* **4**,
576 1044–1059 (2020).

577 59. Loarie, S. R. *et al.* The velocity of climate change. *Nature* **462**, 1052–1055 (2009).

578 60. IPBES & IPCC. *Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity*
579 *and Climate Change.* (2021).

580 61. Hannah, L. *et al.* 30% land conservation and climate action reduces tropical extinction risk by
581 more than 50%. *Ecography* **43**, 943–953 (2020).

582 62. Zhang, Q., Han, R. & Zou, F. Effects of artificial afforestation and successional stage on a
583 lowland forest bird community in southern China. *Forest Ecology and Management* **261**, 1738–
584 1749 (2011).

585 63. Acevedo-Charry, O. & Aide, T. M. Recovery of amphibian, reptile, bird and mammal diversity
586 during secondary forest succession in the tropics. *Oikos* **128**, 1065–1078 (2019).

587 64. Carello, C. A. & Yanco, S. W. Early successional habitat supports unique avian communities
588 dominated by wintering migrants in a premontane tropical forest. *Journal of Tropical Ecology* **39**,
589 e22 (2023).

590 65. Merfort, L. *et al.* Bioenergy-induced land-use-change emissions with sectorally fragmented
591 policies. *Nat. Clim. Chang.* **13**, 685–692 (2023).

592 66. Beier, F. D. *et al.* Planetary boundaries under a land-based climate change mitigation scenario
593 with a food demand transformation: a modelling study. *The Lancet Planetary Health* **0**, (2025).

594 67. Donnison, C., Holland, R. A., Harris, Z. M., Eigenbrod, F. & Taylor, G. Land-use change from
595 food to energy: meta-analysis unravels effects of bioenergy on biodiversity and cultural ecosystem
596 services. *Environ. Res. Lett.* **16**, 113005 (2021).

597 68. Schaphoff, S. *et al.* LPJmL4 – a dynamic global vegetation model with managed land – Part 1:
598 Model description. *Geosci. Model Dev.* **11**, 1343–1375 (2018).

599 69. Schaphoff, S. *et al.* LPJmL4 – a dynamic global vegetation model with managed land – Part 2:
600 Model evaluation. *Geosci. Model Dev.* **11**, 1377–1403 (2018).

601 70. Meinshausen, M. *et al.* The shared socio-economic pathway (SSP) greenhouse gas concentrations
602 and their extensions to 2500. *Geoscientific Model Development* **13**, 3571–3605 (2020).

603 71. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and
604 carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and
605 calibration. *Atmospheric Chemistry and Physics* **11**, 1417–1456 (2011).

606 72. Schmitz, C. *et al.* Trading more food: Implications for land use, greenhouse gas emissions, and
607 the food system. *Global Environmental Change* **22**, 189–209 (2012).

608 73. Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1 – counterfactual climate for impact
609 attribution. *Geoscientific Model Development* **14**, 5269–5284 (2021).

610 74. von Bloh, W. *et al.* Implementing the nitrogen cycle into the dynamic global vegetation,
611 hydrology, and crop growth model LPJmL (version 5.0). *Geoscientific Model Development* **11**,
612 2789–2812 (2018).

613 75. Dietrich, J. P., Popp, A. & Lotze-Campen, H. Reducing the loss of information and gaining
614 accuracy with clustering methods in a global land-use model. *Ecological Modelling* **263**, 233–243
615 (2013).

616 76. Humpenöder, F. *et al.* Projected environmental benefits of replacing beef with microbial protein.
617 *Nature* **605**, 90–96 (2022).

618 77. von Jeetze, P. J. *et al.* Projected landscape-scale repercussions of global action for climate and
619 biodiversity protection. *Nat Commun* **14**, 2515 (2023).

620 78. Poulter, B. *et al.* The global forest age dataset and its uncertainties (GFADv1.1). (2019)
621 doi:10.1594/PANGAEA.897392.

622 79. Klein, D. *et al.* The value of bioenergy in low stabilization scenarios: an assessment using
623 REMIND-MAgPIE. *Climatic Change* **123**, 705–718 (2014).

624 80. Johnson, J. A. *et al.* Investing in nature can improve equity and economic returns. *Proceedings of
625 the National Academy of Sciences* **120**, e2220401120 (2023).

626 81. IUCN. The IUCN Red List of Threatened Species. Version 2020-2. <https://www.iucnredlist.org>
627 (2020).

628 82. BirdLife International & Handbook of the Birds of the World. Bird species distribution maps of
629 the world. Version 2020.1. <http://datazone.birdlife.org/species/requestdis> (2021).

630 83. IUCN. Habitats Classification Scheme (Version 3.1). (2012).

631 84. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global
632 land areas. *International Journal of Climatology* **37**, 4302–4315 (2017).

633 85. Hijmans, R. J. *Terra: Spatial Data Analysis Version 1.7.55*. <https://r-spatial.org/terra/> (2023).

634 86. Microsoft & Weston, S. *Foreach: Provides Foreach Looping Construct Version 1.5.2*.
635 <https://CRAN.R-project.org/package=foreach> (2023).

636 87. Microsoft Corporation & Weston, S. *doParallel: Foreach Parallel Adaptor for the 'parallel'*
637 *Package*. <https://CRAN.R-project.org/package=doParallel> (2020).

638 88. Rottoli, M. *et al.* Coupling a Detailed Transport Model to the Integrated Assessment Model
639 REMIND. *Environ Model Assess* **26**, 891–909 (2021).

640 89. Levesque, A. *et al.* How much energy will buildings consume in 2100? A global perspective
641 within a scenario framework. *Energy* **148**, 514–527 (2018).

642 90. Humpenöder, F. *et al.* Peatland protection and restoration are key for climate change mitigation.
643 *Environ. Res. Lett.* **15**, 104093 (2020).

644 91. Brooks, T. M. *et al.* Global Biodiversity Conservation Priorities. *Science* **313**, 58–61 (2006).

645 92. Hurt, G. C. *et al.* Harmonization of global land use change and management for the period 850–
646 2100 (LUH2) for CMIP6. *Geoscientific Model Development* **13**, 5425–5464 (2020).

647 93. von Jeetze, P. Biodiversity side effects of carbon-focused reforestation under Paris-aligned
648 transformation pathways - model outputs. Zenodo <https://doi.org/10.5281/zenodo.17611595>
649 (2025).

650 94. Dietrich, J. P. *et al.* MAgPIE - An Open Source land-use modeling framework. Zenodo
651 <https://doi.org/10.5281/zenodo.15862748> (2025).

652 95. Dietrich, J. P., Kristine, K., David, K. & Lavinia, B. goxygen: In-Code documentation for GAMS.
653 Zenodo <https://doi.org/10.5281/ZENODO.3909376> (2020).

654

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [subSI.pdf](#)