


Appendix A. Detailed methods
Data. 
We used the data from two large RCTs, the International Stroke Trial (IST) and the third International Stroke Trial (IST3). We reported the baselines characteristics used to train the generative models in the eTable 4 and eTable 5.

From the raw IST data, a new variable, was constructed to capture whether a patient was dead or dependent at 6 months using the variable FDEAD and FDENNIS. Countries were categorized into broad geographic areas (Europe, South America, North America, the Middle East, North Asia, South Asia, Africa, and Oceania). Missing data were addressed using multiple imputation chained equations. 
IST is an RCT of 19,435 patients with acute ischaemic stroke assessing the safety and efficacy of aspirin and subcutaneous heparin on death or dependency at 6 months. The design of IST is factorial with four arms (aspirin, heparin, aspirin and heparin, none), moreover no interaction was found between the two treatments. We consider the aspirin versus avoid aspirin analysis in this study, hence, we used an experimental arm (aspirin) composed of 9720 patients and a control arm (no aspirin) of 9715 patients.

IST3 is an RCT of 3,035 patients with acute ischemic stroke assessing the safety and efficacy of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 hours against standard of care (with the exception of 300 patients in the early phase that received a placebo) on death or dependency at 6 months. 

Architectures. 
In machine learning, the nature of data determines which type of algorithms can be used, in this case: randomized controlled trials data are tabular and contains categorical covariates.

In our study we used two state-of-the-art latent space based generative models for tabular data with categorical and continuous features.
CTGAN which is based on Generative Adversarial Networks (GAN); an architecture consisting of two interlinked neural networks - the generator and the discriminator. These are jointly trained in an adversarial manner: the generator aims to produce realistic synthetic data starting from random noise while the discriminator seeks to differentiate between real data and the generated synthetic samples. The training continues until the discriminator is no longer able to reliably distinguish real data from synthetic one
TVAE which is based on Variational Autoencoders (VAE); an architecture also composed of two interlinked neural networks - the encoder and the decoder. The encoder maps the input data to a latent space typically of smaller dimension while the decoder maps this latent space back to the input space. The training is performed by maximizing the Evidence Lower Bound (ELBO) which is a lower bound of the log-likelihood of the data. Our implementation used a prior sampling.
The specificity of CTGAN and TVAE is their pre-processing of the tabular data allowing the aforementioned neural networks to approximate the distribution of the data despite the categorical nature of some of the features. Both architectures are implemented in the Synthetic Data Vault (SDV) library and are two state of the art among the well-established recent architectures.
Evaluation of synthetic data. 
The evaluation of the quality of the generated data was performed using the SDMetrics general score. This score is the mean of all column score and all column pair score defined as follows. The column score is given by a Kolmogorov-Smirnov test for numerical columns and a total variation distance for categorical columns. The evaluation of the column pair trends is performed with a Pearson coefficient for numerical columns, a normalized contingency table for categorical columns, a normalized contingency table for mixed type columns (the numerical column is discretised into bins).
Sampling procedure. 
In each trial, we estimated the treatment effect obtained by a stop if patient recruitment had been stopped after n-patients with further patients being generated by artificial intelligence. We trained different models and distinguish two sampling procedures: the one-shot procedure where we simulated 1 augmented trial data where the missing patients' data from the original trial were replaced by generated patient data and analyse this data as if they would have been obtained from a randomised controlled trial; the averaged procedure where we simulated 999 augmented trial data where the missing patients' data from the original trial were replaced by generated patient data the arising 999 treatment effect and 999 standard error were averaged (Figure 1 panel A).
The use of the average procedure is justified as, once a model is trained, it is computationally costless to generate more augmented trial data. The averaging of estimates aims to limit the consequence of the sampling inherent to the GAN and VAE architectures and therefore reflect the learned treatment effect and standard error.

[bookmark: sec:stats]Statistical analysis
In a randomized controlled trial context, the difference of means is an unbiased and consistent estimator of the treatment effect. The object of our analysis is to point out the discrepancy between treatment effect estimated via the difference of means using the data of an RCT or using the data of a controlled-augmented trial.
We start by introducing notations to describe our statistical methodology. For any positive integer  we write  for the set . Consider a RCT of size  with covariate space , primary outcome space . The data of the RCT is denoted  where  and the  patient data is denoted  where  are covariates,  her binary primary outcome and  her treatment assignment. Let  and  be respectively the size of the control group and experimental group and denote similarly  the control group data.
The dataset  (resp. ) induces an empirical distribution  (resp. ) on . If  denote by  the conditional empirical expectation  for . The treatment effect  estimated in the RCT is given by  and denote by  its variance.

[bookmark: X591ba27fa8dc81a1ae6f9086fac7e650bcdd478]Control group data and generative process
In this subsection, we formalise the generative process of control patient data. 

A training set  of size  is given by  where  is an injection. Here, the training set  will be composed (1) in the case of stop in control recruitment of the data of the  first patients and (2) in the random removal case of the data of  patients drawn without replacement from .
A generative model with  trainable parameters, a latent space of dimension , is specified by the triple  where  corresponds to a training-to-parameters application and  maps a set of parameters to a generator function that satisfies

and . In particular,  is the decoder in a VAE or the generator in a GAN. The sampling prior  is a probability distribution on the latent space .
Note that we include the training process in our description of a generative model as this training process plays a key role in our subsequent analysis.

[bookmark: estimations]Estimations
Here, for the sake of illustration, we assume that the generative model learned the eligible joint population distribution and that generated patient data are equivalent to hypothetically recruited patient data, which is the rationale that underpins the use of augmentation methods trained solely trial's information. In particular, data are analysed as if they would be from a standard trial.
We will define the estimators  and  respectively used to measure the treatment effect in the one-shot and averaged procedures.
The randomized controlled trial estimates the treatment effect  with its associated confidence interval  where

and  is the  quantile from .
For the sake of brevity, we denote by  the vector of primary outcomes arising from the RCT data and write  for the primary outcomes data from  where  is such that  and , namely the generated patient data.
In the one-shot procedure we denote the mean and variance in the control-augmented trial respectively by

We studied the -estimator given by  and the confidence interval given by  where

In the averaged procedure, let  i.i.d and denote by  the vectors of primary outcome from  where  is such that  the generated primary outcomes of the . We denote the empirical mean and empirical variance of the  trial by

We studied the  and  estimators respectively given by

The associated confidence interval is given by  where 
As both IST and IST3 failed to provide evidence of a significative treatment effect, we say that the control augmented trial has significance disagreement with the original RCT if the interval   does not contain zero.
Moreover, we say that the control augmented trial admits an incompatible result with the original RCT if  and  are disjoint.

[bookmark: training-set-in-the-sensitivity-analysis]In the random removal control group patient data augmentation, we sampled several training sets. For  i.i.d, we looked at  as an estimator of . 


[bookmark: experiments]Experiments
The -first control group patients data augmentation aims to reproduce a stop after the recruitment of the -first control group patients and the completion of this group by generated patient data. The random removal control group data augmentation aims to estimate further the impact of a change in case-mix by simulating different recruitment scenarios.
We realised a total of eight different cases characterized by a triplet given by a reference RCT, a training set size  and a generative AI architecture. We ran both scenarios -first and random removal control group patients' data augmentations for each case. Here, we describe the exact protocol for each of these scenarios.
[bookmark: Xa5f59b49c91b2940b339768cb4d8b2022bff915][bookmark: _Hlk213431544]n-first control group patient's data augmentation
We created a training set  composed of the data from the first  patients included in the control arm of the reference trial. We implemented a hyperparameters tuning with a 5-fold cross-validation gridsearch to avoid overfitting. The grids are summarized in eTable 4. We selected the set of hyperparameters implemented in SDV that lead to the best SDMetrics general score to train one model. In the case of CTGAN the optimal epochs number hyperparameter was estimated from the generator loss stabilization point.
From the model  control-augmented trial data were created, each one of them composed of a control arm that is the concatenation of the training set and the patients' data generated by the model and an experimental arm that is the experimental arm from the reference RCT (see Figure 1 panel A). We computed the estimators  and  with their confidence interval and represented them in (Figure 1 panel B).
[bookmark: sensitivity-analysis]
Random removal control group patient's data augmentation
We aim to replicate different recruitment scenarios by sampling  groups of -first recruited patients' data among the RCT control group data.
A gridsearch hyperparameter tuning approach for the  patients similar to the one we did in the -first control group data augmentation scenario is not computationally tractable. Hence, to avoid overfitting, we drawn uniformly from the control group data three training sets of size  and used a gridsearch approach with a 5-fold cross-validation hyperparameters tuning of the different models on each of the three training sets. Then, we selected averaged SDMetrics general score of each hyperparameter combination over the training set and chose the hyperparameters leading to the best averaged score. The grids considered are summarized in eTable 6. In the case of CTGAN the optimal epochs number hyperparameter was estimated from the generator loss stabilization point.
We drew uniformly from the control group data  training sets of size  which lead to 1000 different models. Every model generated 999 augmented trial data that are composed of a control arm that is the concatenation of the training set and the patient data generated by the model and an experimental arm that is the experimental arm from the reference RCT (see Figure 1 panel A).
We computed the estimators   and   for every  with their confidence interval and represented  of them in the panel C from Figure 1. We also computed the number of these trial admitting statistical disagreement and the number admitting incompatible results and reported it in Table 1 and eTable 1. 
Hardware and software used for training
The experiments including, hyperparameter tuning and analyses were performed on an HP OMEN 45l GT22-3090 with an Intel® Core™ Ultra 9 285K, 3700 Mhz CPU and a NVIDIA GeForce RTX 4090 GPU. We used Python 3.12.2 with a pip installed sdv version 1.12.1 using a torch version adapted for cuda 12.4. 


	Architecture
	TVAE

	Trial
	IST
	IST3

	Training dataset size
	1000
	5000
	380
	760

	Compress dimension
	1024
	2048
	1024
	2048

	Decompress dimension
	1024
	2048
	2048
	512

	Embedding dimension
	8
	4
	8
	8

	Batch size
	300
	100
	100
	100

	Loss factor
	4
	2
	2
	4

	Epochs
	1000
	1000
	1000
	1000

	l2-scale
	1e-5
	1e-5
	1e-5
	1e-5

	Architecture
	CTGAN

	Trial
	IST
	IST3

	Training dataset size
	1000
	5000
	380
	760

	Generator dimension
	512
	256
	512
	128

	Discriminator dimension
	512
	1024
	256
	1024

	Embedding dimension
	16
	16
	16
	8

	Batch size
	100
	500
	500
	100

	Step
	5
	5
	5
	3

	Epochs
	400
	400
	700
	500

	Discriminator decay
	1e-6
	1e-6
	1e-6
	1e-6

	Discriminator learning rate
	2e-5
	2e-5
	2e-5
	2e-5

	Generator decay
	1e-6
	1e-6
	1e-6
	1e-6

	Generator learning rate
	2e-5
	2e-5
	2e-5
	2e-5

	Log-frequency
	False
	False
	False
	False


eTable 1. Hyperparameters of the n-first control group training.














	Architecture
	TVAE

	Trial
	IST
	IST3

	Training dataset size
	1000
	5000
	380
	760

	Compress dimension
	2048
	1024
	1024
	2048

	Decompress dimension
	1024
	1024
	1024
	2048

	Embedding dimension
	8
	8
	8
	8

	Batch size
	100
	100
	100
	100

	Loss factor
	4
	2
	4
	2

	Epochs
	500
	500
	500
	500

	l2-scale
	1e-5
	1e-5
	1e-5
	1e-5

	Architecture
	CTGAN

	Trial
	IST
	IST3

	Training dataset size
	1000
	5000
	380
	760

	Generator dimension
	512
	128
	128
	128

	Discriminator dimension
	1024
	256
	512
	256

	Embedding dimension
	8
	16
	8
	16

	Batch size
	100
	100
	100
	100

	Step
	5
	5
	5
	5

	Epochs
	400
	220
	700
	500

	Discriminator decay
	1e-6
	1e-6
	1e-6
	1e-6

	Discriminator learning rate
	2e-5
	2e-5
	2e-5
	2e-5

	Generator decay
	1e-6
	1e-6
	1e-6
	1e-6

	Generator learning rate
	2e-5
	2e-5
	2e-5
	2e-5

	Log-frequency
	False
	False
	False
	False


eTable 2. Hyperparameters of the random removal training.



	 Architecture
	CTGAN

	Compress dimension
	256
	512
	1024
	2048

	Decompress dimension
	256
	512
	1024
	2048

	Embedding dimension
	4
	8
	
	

	 Batch size
	100
	300
	
	

	Loss factor
	2
	4
	
	

	Epochs
	500
	
	
	

	l2-scale
	1e-5
	
	
	

	 Architecture
	TVAE

	Generator dimension
	128
	256
	512
	

	Discriminator dimension
	256
	512
	1024
	

	Embedding dimension
	4
	8
	16
	

	Batch size
	100
	500
	700
	

	Step
	1
	3
	5
	

	Epochs
	1000
	
	
	

	Discriminator decay
	1e-6
	
	
	

	Discriminator learning rate
	2e-5
	
	
	

	Generator decay
	1e-6
	
	
	

	Generator learning rate
	2e-5
	
	
	

	Log-frequency
	False
	
	
	


eTable 3. Hyperparameters tested in the gridsearches


	IST baseline characteristics include in training

	Delay between stroke and randomization (in hours)
	Country

	Sex (M/F)
	Leg/foot deficit (Y/N/C)

	Age (in years)
	Dysphasia (Y/N/C)

	CT before randomisation (Y/N)
	Hemianopia (Y/N/C)

	Infarct visible on CT (Y/N)
	Visuospatial disorder (Y/N/C)

	Systolic blood pressure at randomisation (mmHg)
	Brainstem/cerebellar signs (Y/N/C)

	Atrial fibrillation (Y/N)
	Other deficit (Y/N/C)

	Aspirin within 3 days prior to randomisation (Y/N)
	Stroke subtype (TACS/PACS/POCS/LACS/other)

	Face deficit (Y/N/C)
	Region

	Arm/hand deficit (Y/N/C)
	



eTable 4. Baseline characteristics used in the training procedure. The code C correspond to "can't access"

	IST3 baseline characteristics include in training

	Country
	Infarct size (from R scan)

	Age
	Infarcts in ACA / PCA territory

	Gender
	Acute small subcortical infarcts

	Lived alone before stroke
	Acute cortical borderzone infarcts

	Independent in ADL before stroke
	Acute cerebellar infarct

	Imaging excluded intracranial haemorrhage
	Acute brainstem infarct

	Recent ischaemic change likely causes of this stroke
	Anterior cerebral artery affected

	Received antiplatelet drugs in last 48 hours
	Posterior cerebral artery affected

	Patient in atrial fibrillation at randomisation
	Infarct territory (from R scan)

	Systolic BP at randomisation (mmHg)
	Degree of acute hypodensity (R scan)

	Diastolic BP at randomisation (mmHg)
	Degree of tissue swelling in acute infarct (R scan)

	Estimated weight (kg)
	Hyperdense arteries visible on R scan

	Blood glucose (mmol/L)
	Atrophy visible on R scan

	Best eye response (Glasgow Coma Scale) at randomisation
	White matter visible on R scan

	Best motor response (Glasgow Coma Scale) at randomisation
	Old vascular lesion visible on R scan

	Best verbal response (Glasgow Coma Scale) at randomisation
	Non-stroke lesion visible on R scan

	Total Glasgow Coma Scale score at randomisation
	Ischaemic change visible on R scan

	Total NIH Stroke Score at randomisation
	Aspects score for Middle cerebral artery (R scan)

	Able to lift both arms off bed at randomisation
	Total aspects score including ACA/PCA (R scan)

	Able to walk without help at randomisation
	Hyperdensity

	Unilateral weakness affecting face at randomisation
	Aspirin before admission

	Unilateral weakness affecting arm or hand at randomisation
	Dipyridamole before admission

	Unilateral weakness affecting leg or foot at randomisation
	Clopidogrel before admission

	Dysphasia at randomisation
	Low dose heparin before admission

	Homonymous hemianopia at randomisation
	Full dose heparin before admission

	Visuospatial disorder at randomisation
	Warfarin before admission

	Brainstem or cerebellar signs at randomisation
	Other antithrombotic agents before admission

	Other neurological deficit at randomisation
	Treatment for hypertension before admission

	Stroke subtype
	Treatment for diabetes before admission

	Probability of good outcome based on Konig model
	History of previous stroke or TIA

	R scan normal
	







eTable 5. Baseline characteristics used in the training procedure. The code C correspond to "can't access"
[bookmark: _GoBack]
[image: ]eFigure 1: Treatment effect from augmented trial data (IST3) relatively to treatment effect of their training
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