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Supplementary Text:
Supplementary Text 1: Design and fabrication of the visuotactile system
(1) Design of the visuotactile system HydroPalm

The visuotactile system, named HydroPalm, is designed for dual-environment operation in
both terrestrial and underwater conditions. The exploded view of the HydroPalm assembly is
illustrated in Figure S1. Structurally, HydroPalm comprises four functional modules: a gel layer
module, an illumination module, an imaging module, and a waterproof module. The gel layer
module consists of a hemispherical acrylic dome coated with an optically transparent elastic gel
layer, within which retroreflective markers are embedded in a concentric lattice pattern. This
configuration enables high-resolution deformation tracking for tactile shape reconstruction. The
illumination module integrates a ring-shaped LED strip and an aperture to generate uniform and
diffused lighting across the dome surface, minimizing specular reflection and ensuring consistent
visual feedback in turbid water. The imaging module includes a binocular camera pair for
stereoscopic capture and an STM32 microcontroller responsible for tactile image acquisition and
neuromorphic spike-train encoding. This module translates contact-induced deformation into
spike-based tactile representations. The waterproof module comprises a sealed aluminum
enclosure with a quartz glass window, top and bottom covers, and O-ring interfaces, providing a
fully dry environment for the imaging and illumination components during submersion.
Assembly procedures for each component are detailed in Supplementary Text 1 (2-5), and
fabrication parameters are summarized in Supplementary Table 2.

(2) Fabrication of the gel layer module



The gel layer module consists of a hemispherical acrylic dome covered by a multilayer
optically transparent gel layer. The gel layer comprises three sublayers, a protective coating, a
marker pattern, and an elastomer base, which are functionally analogous to the epidermis, tactile
corpuscles, and dermis of human skin, respectively. The elastomer base is fabricated using a
5-degree addition-cure silicone gel, which is cast in a custom-designed 3D-printed mold and
cured at 65°C for 6 hours under ambient pressure to form a hemispherical substrate. The marker
pattern is applied using transparent water-transfer decals printed in a petal-like layout,
corresponding to a planar projection of the spherical surface. Each petal-shaped segment is
trimmed along its edges and carefully adhered onto the surface of the cured elastomer base,
resulting in a concentric and uniformly spaced distribution of retroreflective markers over the
hemispherical surface. The protective coating is then formed by pouring a 0-degree addition-cure
silicone gel over the marker layer. A centrifugation step is employed to ensure uniform coverage
across the hemisphere, followed by curing at 35 °C for 12 h under ambient pressure to form a
transparent protective layer approximately 0.2 mm thick. The acrylic dome is
precision-machined from transparent acrylic and mechanically joined to the top cover via a
threaded interface. The gel layer is subsequently bonded to the dome surface using a thin optical
adhesive, ensuring full encapsulation and optical continuity.

(3) Fabrication of illumination module

The illumination module consists of a ring-shaped LED strip and an aperture diaphragm for

light collimation and glare suppression. The LED strip incorporates six evenly spaced white-light

LEDs, each providing a luminous intensity of approximately 15-20 cd at a driving voltage of 4.5



V. The LEDs are arranged in a circular configuration to generate uniform illumination over the
gel surface. A black resin aperture with a width of 2.0 mm is mounted above the LED strip to
confine the illumination angle and prevent direct reflection toward the imaging module. The
aperture ring is fabricated using precision 3D printing and fixed onto the LED housing with
adhesive epoxy. This configuration ensures a homogeneous and diffused illumination field across
the hemispherical gel surface while minimizing specular artifacts under underwater conditions.
(4) Fabrication of imaging module

The imaging module comprises a binocular camera and an STM32 microcontroller. The
binocular camera provides synchronized stereo images at a resolution of 1280x720 pixels and a
frame rate of 60 fps, which is powered at 5 V. The camera is mounted at a height of 40.2 mm
above the apex of the gel layer, ensuring complete visibility of all embedded markers within its
field of view. Prior to deployment, the binocular camera is calibrated using a standard
checkerboard pattern to obtain intrinsic parameters under both air and underwater conditions.
The calibration process is performed following the pinhole camera model, and the resulting
intrinsic and distortion coefficients are summarized in Supplementary Table 3. The STM32
microcontroller is installed inside the waterproof housing and directly connected to the camera.
Both components operate on a 5 V DC supply and interface via a 5-pin waterproof connector,
which transmits power (+/—) and data (D+/D—) signals. Data transfer conforms to the USB
communication standard, enabling real-time acquisition of stereo image sequences for spiking
signal generation.

(5) Fabrication of waterproof module



The waterproof module consists of a top cover, quartz glass, waterproof housing, a bottom
cover, and a waterproof connector. The upper interface is sealed by compressing the quartz glass
against a fluoro-rubber (F-O-ring) gasket, ensuring watertight isolation. The top cover contains a
precision-machined groove that holds the quartz glass in position and is thread-fastened onto the
waterproof housing to provide mechanical rigidity and long-term sealing stability. At the lower
interface, the bottom cover is coupled to the waterproof connector through a locking nut and
fixed with hexagonal screws to prevent mechanical loosening during submersion. The
waterproof housing encloses an internal cylindrical cavity (¢ 40 mm, length 80 mm), which
provides a dry and pressure-resistant compartment for the electronic components, including the
imaging and illumination modules. All joints were further reinforced with silicone sealant to

prevent micro-leakage during prolonged underwater operation.



Supplementary Text 2: Force prediction network architecture

The objective of the force prediction task is to regress a three-axis force vector (Fx, Fy, Fz)
from a spatiotemporal sequence of features extracted from the sensor's deformation. To this end,
we design a deep neural network based on the Transformer encoder architecture. The principal
advantage of this network is its use of a multi-head self-attention mechanism, which enables it to
effectively learn the complex spatial dependencies between deformations at different regions of
the sensor surface, thereby allowing for a high-fidelity reconstruction of the contact forces. The
network consists of three primary components: a positional encoding layer, a multi-head
attention module, and a feed-forward network layer.

(1) Positional encoding

The self-attention mechanism is inherently permutation-invariant; it does not process the
order of elements in a sequence. In the context of force perception, however, the spatial location
of each feature vector—corresponding to a specific region on the sensor surface—is critically
important. To inject this spatial information into the model, positional encodings are added to the
input features before they are passed to the attention module. We employ the standard sinusoidal
positional encoding scheme using sine and cosine functions of different frequencies:

2i
PE(pos 2i) = Sin(pos/10000%modr)

PE(pos 2i+1) = €0S(p0s/10000%/ Hmocer),
where pos is the position of a feature in the sequence, i is the dimension index of the encoding,
and d,oqe 18 the dimensionality of the feature vectors. This encoding provides the model with

unique information regarding the relative or absolute position of each input feature.



(2) Multi-head self-attention module

This module is the computational core of the network, allowing it to weigh the importance
of different parts of the input sequence. Rather than performing a single attention calculation, it
projects the features into multiple "heads" in parallel, allowing attention to be performed
independently in different representation subspaces.

The computation for a single attention head follows the Scaled Dot-Product Attention
mechanism. The Query (Q), Key (K), and Value (V) matrices are derived from linear projections
of the input feature sequence. The attention output is computed as:

Attention(Q,K,V) = softmax(Q—KT)V,
ax
where dj is the dimension of the key vectors. The scaling factor \/d_k is used to counteract the
effect of large dot products, which can saturate the softmax function and lead to vanishing
gradients.

In Multi-Head Attention, we compute independent attention heads in parallel:

head; = Attention(XW, ¢, XWX, xw;")
where X is the input feature sequence and MQ, WX, WV are the learnable projection matrices
for the i -th head. This structure allows each head to attend to different feature subsets from
different positions in the input sequence. In the context of force perception, for example, one
head might specialize in identifying patterns of normal pressure in the central contact region,
while another might learn the relationship between shear forces at the periphery and pressure at
the center.

The outputs of all heads are then concatenated and passed through a final linear projection



to integrate the information learned from the different subspaces:
MultiHead(X)=Concat(head, ,...head, )W O,
where WO is the output projection matrix.

(3) Feed-forward network and output

Following the attention module, the output for each position is processed by an identical
Position-wise Feed-Forward Network (FFN). This network consists of two linear layers with a
ReLU activation:

FFN(x) = max(0,xW; + by )W, + b,.

The FFN applies a further non-linear transformation to the features aggregated by the
attention mechanism. Finally, the processed feature sequence is globally average-pooled and
mapped by a final linear layer (the regression head) to a 3-dimensional output, representing the
predicted force vector (F, Fy, Fz). Residual connections and layer normalization are employed

throughout the network to stabilize the training process.



Supplementary Text 3: Multi-modal texture recognition network architecture

The objective of the texture recognition task is to identify object surfaces by processing two
complementary streams of information. To this end, we design and implement a parallel,
multi-modal deep neural network. The architecture comprises two specialized feature extraction
pathways: one for processing Low-pass (LP) information and another for processing High-pass
(HP) information. The features extracted from both pathways are ultimately fused to produce a
highly robust classification decision regarding the surface texture. The network is composed of
three primary components: an LP information feature pathway, an HP information feature
pathway, and a multi-modal fusion and classification head.

(1) LP information feature pathway

This pathway is designed to extract complex dynamic patterns from sequential data. It
consists of a parallel Long Short-Term Memory (LSTM) network and a 1D Convolutional
Neural Network (CNN), which process the input sequence concurrently.

LSTM module: An LSTM is a type of Recurrent Neural Network (RNN) specialized in
learning long-range dependencies in sequential data. This is critical for texture recognition,
where surface characteristics often unfold over the course of a dynamic interaction. The core of
the LSTM is its cell state and three gating mechanisms: the forget gate, the input gate, and the
output gate. At a given time step t, their operations are defined as:

fo = o(We - [he—yq, %] + br)
iy = o(W; - [hieq, %] + by)

0 = 0(Wp * [he—1, Xc] + bo),



where x; is the current input, h;_; is the hidden state from the previous time step, o is the
sigmoid activation function, and W and b are learnable weights and biases. These gates
collectively determine what information is discarded from the cell state, what new information is
stored, and how the hidden state 4. is outputted.

ID CNN module: In parallel with the LSTM, a 1D CNN is employed to extract local,
translation-invariant motifs from the sequence. The convolutional kernels slide across the 1D
sequence to detect specific, recurring patterns within short temporal windows, which may
correspond to fundamental physical features of the texture. The 1D convolution operation is
defined as:

(x xk)[n] = ZRZ x[n —m]k[m] ,
where x is the input sequence and k is a kernel of length M. By stacking multiple
convolutional layers, the network can learn a hierarchical representation of features, from
low-level patterns (e.g., individual spikes) to higher-order combinations.

(2) HP information feature pathway

This pathway is responsible for extracting high-level representations from 2D data. We
employ a pre-trained EfficientNet-B5 model as the feature extractor. The EfficientNet family of
models is renowned for its exceptional balance between accuracy and computational efficiency,
which is achieved through a compound scaling method that uniformly scales network depth,
width, and resolution. Its core building block is the MBConv (Mobile Inverted Bottleneck
Convolution), which incorporates depthwise separable convolutions and Squeeze-and-Excitation

optimization to learn rich feature representations efficiently. The input data is processed through



the convolutional base of the EfficientNet-B5 to produce a high-dimensional feature map, which
is then globally average-pooled to form a compact feature vector.

(3) Modal fusion strategy for texture recognition task

To integrate the LP data and HP textural (vibration) data, we implement a conditional,
asymmetric fusion strategy. This strategy designates the HP modality as the primary source for
classification, while the LP modality provides supplementary information to resolve predictive
ambiguities during the inference phase.

The fusion mechanism is triggered if and only if two specific conditions are met: (1) a
discrepancy exists between the predicted classes from the two modalities, (2) the prediction
confidence of the force modality falls below an adaptive threshold, denoted as 7. This threshold
represents the minimum confidence required for the force-based prediction to be considered
reliable.

When these conditions are satisfied, a dynamic weighted harmonic mean is employed to
compute the final fused probability vector, Presq. For each class i, the fused probability is

calculated as:

WHp+WLp

P fuesd,i = WHP _WLP>

Pypi PLp,i
where Pyp; and Py p; are the predicted probabilities for class i from the HP and LP modalities,
respectively. The weights wyp and wyp represent the contribution of each modality to the
fusion, constrained by wyp + wpp = 1. The final classification is then determined by the class

with the maximum probability in the Ppyesq vector.

If the triggering conditions are not met, the prediction from the primary high-frequency



modality is directly used as the final output. The fusion weights (wyp and wyp, initialized at 0.7
and 0.3, respectively) and the confidence threshold 7 are treated as learnable parameters and are
optimized jointly with the network parameters throughout the training process to maximize

overall classification accuracy.



Supplementary table:

Supplementary Table 1: Comparison of various robotic tactile sensors' resolutions and
capabilities.

High spatiotemporal

1 [17] resolution texture NaN 15 No No
sensor

Vision-tactile fusion

2 [20] (RGB-D camera + NaN 50 No No
XELA tactile)

Stretchable pressure

3 [25] sensor array with low 5 NaN No No
crosstalk
4| 28] Vlswn'sl;iss‘(’)‘i tactile 0.4 NaN No No
5 [59] Sparsely dlstr}buted 0.73 NaN No No
tactile units

Polydimethylsiloxane
J [24] (PDMS) sensor array ! NaN No No
7 [49] GelStereo tactile 1 NaN No No

sensor array
8 [52] Capacitive sensor 2.2 NaN No No
9 [53]. Doped polysilicon 1 NaN No No
Barometer pressure

10 [57] sensor chip (BPSC) NaN 3000 No No
1| [60] Artificial neural NaN 520 No No

tactile sensing system
12 Ours. HydroPalm 0.8 0.258 Yes Yes




Supplemental Table 2: Fabrication parameters of the HydroPalm.

Protegtlve 54 mm x L 0.3 mm Psycho Paint Smooth On,
coating pouring
Water-transfer paper, water
Gel layer Marker pattern 050 mm transfer printing
module o d it i
Elastomer base 054 mm X L 2.0 mm ~degree addition-cure stlicone
gel, mold forming
Acrylic dome 050 mm Acrylic, CNC machining
INlumination LED strip 105 mm X 3 mm LEDs, product
module Aperture ¢28 mm X L 1.5 mm Black resin, 3D printing

Imaging module

Binocular camera

1I9mm X 12mm X 5
mm

Camera, product

42mm X 35mm X 5

STM32 Microcontroller, product
mm
Top cover ¢54mm x L16.5mm Aluminum gll_oy, CNC
machining
Quartz glass ¢4l mm X L2 mm Quartz glass, CNC machining
Waterproof Waterproof 54 mm x L 96 mm Aluminum alloy, CNC
housing machining
module .
Bottom cover ¢54mm x L5mm Aluminum gll‘oy, CNC
machining

Waterproof
connector

022 mm X L 40 mm

Connector, product




Supplemental Table 3: Parameters of the binocular camera in air and underwater
environments.

Camera ID Left Right Left Right
Focal length 644.49 642.60 1031.1 1031.8
(Fx fy) (%) 644.39 642.61 1033.4 1030.8
Principal point 59731 584.52 594.71 589.69
(€0 Cy) (p%) 380.10 365.09 383.97 379.96
Skew (px) 0.00 0.00 0.003 0.001
10.0013 -0.0035 0.5343 0.5916
Distortion 0.0537 0.0622 3.7701 2.9142
coefficients -0.0008 -0.0011 0.00 0.00
(ky, Ky, Py, P, Ks) -0.0016 0.0007 0.00 0.00
-0.0819 0.0915 -10.860 -7.4617
Rotation Matrix 09998  0.0004 00054 09995 —0.0012 0.0310
r ~0.0004 0.9999 —0.0003 00013 09999  0.0031
~0.0054 00003 0.9998 —0.0310  —0.0030 0.9995
Translation Vect
e YO 27,5003 —0.0857 —0.0566] [-7.8859 —0.1181 —0.0276]
T (mm)




Supplementary figure:

Fig. S1. Multiplexed tactile streams: from peripheral afferents to cortical representations.
Stimulus intensity at the finger is converted into spike rate, generating single- or double-spike
events in RA I, RA II, SA I, and SA II afferents. These multiplexed afferent streams are
segregated into high-frequency and low-frequency pathways in the somatosensory cortex, where
early decoding yields flutter, vibration, curvature, and stretch representations. These are

integrated into force and texture features that converge on slip prediction, which is dynamically
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Fig. S2. Exploded view of the visuotactile sensing system. The waterproof module provides a
hermetically sealed enclosure for amphibious operation and consists of a waterproof connector, a
bottom cover, nuts, and the main waterproof housing. The imaging module is responsible for
data acquisition and processing, containing an STM32 microcontroller and a binocular camera.
The illumination module, comprising LEDs and an aperture, ensures uniform internal lighting of
the contact interface. The gel layer module is the primary mechanotransduction component; it
includes a top cover, a protective quartz glass window, a transparent acrylic dome, and the soft
gel layer in which a marker array is embedded. The working principle is as follows: when the
sensor makes contact with an object, the gel layer deforms, resulting in the displacement of the
markers. The binocular camera captures these displacements, which are then processed by the

STM32 to generate the raw tactile data stream.
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Fig. S3. Transformer network architecture for force prediction. The architecture consists of
an input embedding layer, followed by 6 identical layers, and an output layer. Each of the 6
layers contains two main sub-layers: a multi-head self-attention mechanism and a position-wise
fully connected feed-forward network. Both sub-layers are followed by a residual connection and
layer normalization (Add & Norm). Positional encodings are added to the input embeddings to
incorporate the order of the low-frequency force information. The output layer processes the

final representation to predict force values.



Fig. S4. Human finger force data testing and collection device. The figure shows the
custom-built apparatus used to acquire ground-truth force data from a human finger for
comparative analysis. a, The testing platform in its neutral state, comprising a high-precision
multi-axis force/torque sensor mounted beneath a flat contact plate. b, A human participant
applies force to the contact plate. The underlying force/torque sensor records the complete
three-axis force vector (Fx, Fy, Fz) generated by the finger during dynamic interaction, providing

a quantitative benchmark for the biomimetic performance of the HydroPalm.
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Fig. S5. The prediction error of all test sequences. a-c, Histograms showing the distribution of
mean absolute error (MAE) for force predictions in x-direction a, y-direction b, and z-direction c.
The y-axis represents the frequency of errors occurring within each range in all test sequences.
Sky blue bars represent the error distribution across test sequences (including types of main text),
and red dashed lines indicate the mean MAE values (Fx: 0.0629 N, Fy: 0.0407 N, Fz: 0.2678 N).
d-f, Histograms showing the distribution of Root Mean Square Error (RMSE) for force
predictions in x-direction d, y-direction e, and z-direction f. Sky blue bars represent the error
distribution across 41 test sequences, and red dashed lines indicate the mean RMSE values (Fx:
0.0775 N, Fy: 0.0453 N, Fz: 0.2851 N). These performance indicators demonstrate the reliability

of our algorithm.
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Fig. S6. Comparison between actual and predicted Fx, Fy, and Fz force components of various materials. Panels show three stacked traces per condition (top: Fx, middle: Fy, bottom: Fz). blue lines denote

predicted forces and red lines denote actual forces after post-processing. The x-axis represents time (0-3.2 s) and the y-axis represents force (N). a. End milling; b, Plane; ¢, Leather; d, Flat grinding; e, Flat milling; f,

Plastic (rough); g, Artificial leather; h, Plastic (smooth); i, Boring; j, External grinding; k, Tin foil; 1, Grinding.
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Fig. S7. Network architecture for tactile roughness discrimination. The network employs a
dual-stream architecture for multi-modal information processing. The upper stream, composed of
a Convolutional Neural Network (CNN) followed by a Long Short-Term Memory (LSTM) layer
and an attention mechanism, processes low-frequency force information. This stream extracts
sequential features from force data, with the attention module dynamically weighing relevant
temporal segments. The lower stream, based on an EfficientNet-BS5 architecture, extracts the
features from high-frequency tactile (vibration) information, specifically designed for robust
texture representation. Outputs from both streams are then fused through a strategic multi-modal
fusion method (details provided in Supplementary Text 3), which is subsequently fed into a
softmax layer for roughness discrimination and output. Each convolutional block within both
streams typically includes a convolution layer, batch normalization, and a ReLU activation
function. Max pooling layers are utilized for downsampling in the low-frequency stream, while

the EfficientNet-B5 block comprises multiple MBConv layers.
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Fig. S8. Material identification accuracy. a, Experimental setup for texture recognition
testing in air environment. b, The sensor's recognition accuracy for six different materials,
including the following materials: artificial leather, plastic (rough), bandage, tin foil, leather,

and plastic (smooth)



Fig. S9. Temporal texture-based pulse representation for material surface
characterization. High-resolution pulse diagram showing temporal texture variations across
the surface of a bandage material during tactile interaction. The visualization is based on 961
sampling points extracted from the central region (31x31 grid) of the tactile sensor video

frame.
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Fig. S10. Temporal high-frequency pulse information derived from a 20-pixel texture
patch. Materials include: tin foil, plastic(rough), artificial leather, plastic(smooth), leather,
bandage, grinding, external grinding, boring, flat milling, flat grinding, leather(rough), plane

leather, end milling, turn.



Legends for Supplementary Videos:

Supplementary Video 1. Measurement of the 3D contact forces for a human finger and
HydroPalm.

Supplementary Video 2. Dynamic texture recognition on various material surfaces.
Supplementary Video 3. Slip prediction and compliant motion control experiments conducted
on HydroPalm.

Supplementary Video 4. Underwater pipe-assembly task conducted on HydroPalm.



