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Supplementary Text: 

Supplementary Text 1: Design and fabrication of the visuotactile system  

(1) Design of the visuotactile system HydroPalm 

The visuotactile system, named HydroPalm, is designed for dual-environment operation in 

both terrestrial and underwater conditions. The exploded view of the HydroPalm assembly is 

illustrated in Figure S1. Structurally, HydroPalm comprises four functional modules: a gel layer 

module, an illumination module, an imaging module, and a waterproof module. The gel layer 

module consists of a hemispherical acrylic dome coated with an optically transparent elastic gel 

layer, within which retroreflective markers are embedded in a concentric lattice pattern. This 

configuration enables high-resolution deformation tracking for tactile shape reconstruction. The 

illumination module integrates a ring-shaped LED strip and an aperture to generate uniform and 

diffused lighting across the dome surface, minimizing specular reflection and ensuring consistent 

visual feedback in turbid water. The imaging module includes a binocular camera pair for 

stereoscopic capture and an STM32 microcontroller responsible for tactile image acquisition and 

neuromorphic spike-train encoding. This module translates contact-induced deformation into 

spike-based tactile representations. The waterproof module comprises a sealed aluminum 

enclosure with a quartz glass window, top and bottom covers, and O-ring interfaces, providing a 

fully dry environment for the imaging and illumination components during submersion. 

Assembly procedures for each component are detailed in Supplementary Text 1 (2-5), and 

fabrication parameters are summarized in Supplementary Table 2. 

(2) Fabrication of the gel layer module  



The gel layer module consists of a hemispherical acrylic dome covered by a multilayer 

optically transparent gel layer. The gel layer comprises three sublayers, a protective coating, a 

marker pattern, and an elastomer base, which are functionally analogous to the epidermis, tactile 

corpuscles, and dermis of human skin, respectively. The elastomer base is fabricated using a 

5-degree addition-cure silicone gel, which is cast in a custom-designed 3D-printed mold and 

cured at 65℃ for 6 hours under ambient pressure to form a hemispherical substrate. The marker 

pattern is applied using transparent water-transfer decals printed in a petal-like layout, 

corresponding to a planar projection of the spherical surface. Each petal-shaped segment is 

trimmed along its edges and carefully adhered onto the surface of the cured elastomer base, 

resulting in a concentric and uniformly spaced distribution of retroreflective markers over the 

hemispherical surface. The protective coating is then formed by pouring a 0-degree addition-cure 

silicone gel over the marker layer. A centrifugation step is employed to ensure uniform coverage 

across the hemisphere, followed by curing at 35 ℃ for 12 h under ambient pressure to form a 

transparent protective layer approximately 0.2 mm thick. The acrylic dome is 

precision-machined from transparent acrylic and mechanically joined to the top cover via a 

threaded interface. The gel layer is subsequently bonded to the dome surface using a thin optical 

adhesive, ensuring full encapsulation and optical continuity. 

(3) Fabrication of illumination module 

The illumination module consists of a ring-shaped LED strip and an aperture diaphragm for 

light collimation and glare suppression. The LED strip incorporates six evenly spaced white-light 

LEDs, each providing a luminous intensity of approximately 15-20 cd at a driving voltage of 4.5 



V. The LEDs are arranged in a circular configuration to generate uniform illumination over the 

gel surface. A black resin aperture with a width of 2.0 mm is mounted above the LED strip to 

confine the illumination angle and prevent direct reflection toward the imaging module. The 

aperture ring is fabricated using precision 3D printing and fixed onto the LED housing with 

adhesive epoxy. This configuration ensures a homogeneous and diffused illumination field across 

the hemispherical gel surface while minimizing specular artifacts under underwater conditions. 

(4) Fabrication of imaging module 

The imaging module comprises a binocular camera and an STM32 microcontroller. The 

binocular camera provides synchronized stereo images at a resolution of 1280×720 pixels and a 

frame rate of 60 fps, which is powered at 5 V. The camera is mounted at a height of 40.2 mm 

above the apex of the gel layer, ensuring complete visibility of all embedded markers within its 

field of view. Prior to deployment, the binocular camera is calibrated using a standard 

checkerboard pattern to obtain intrinsic parameters under both air and underwater conditions. 

The calibration process is performed following the pinhole camera model, and the resulting 

intrinsic and distortion coefficients are summarized in Supplementary Table 3. The STM32 

microcontroller is installed inside the waterproof housing and directly connected to the camera. 

Both components operate on a 5 V DC supply and interface via a 5-pin waterproof connector, 

which transmits power (+/−) and data (D+/D−) signals. Data transfer conforms to the USB 

communication standard, enabling real-time acquisition of stereo image sequences for spiking 

signal generation. 

(5) Fabrication of waterproof module 



The waterproof module consists of a top cover, quartz glass, waterproof housing, a bottom 

cover, and a waterproof connector. The upper interface is sealed by compressing the quartz glass 

against a fluoro-rubber (F-O-ring) gasket, ensuring watertight isolation. The top cover contains a 

precision-machined groove that holds the quartz glass in position and is thread-fastened onto the 

waterproof housing to provide mechanical rigidity and long-term sealing stability. At the lower 

interface, the bottom cover is coupled to the waterproof connector through a locking nut and 

fixed with hexagonal screws to prevent mechanical loosening during submersion. The 

waterproof housing encloses an internal cylindrical cavity (ϕ 40 mm, length 80 mm), which 

provides a dry and pressure-resistant compartment for the electronic components, including the 

imaging and illumination modules. All joints were further reinforced with silicone sealant to 

prevent micro-leakage during prolonged underwater operation. 

  



Supplementary Text 2: Force prediction network architecture 

The objective of the force prediction task is to regress a three-axis force vector (𝐹X, 𝐹Y, 𝐹Z) 

from a spatiotemporal sequence of features extracted from the sensor's deformation. To this end, 

we design a deep neural network based on the Transformer encoder architecture. The principal 

advantage of this network is its use of a multi-head self-attention mechanism, which enables it to 

effectively learn the complex spatial dependencies between deformations at different regions of 

the sensor surface, thereby allowing for a high-fidelity reconstruction of the contact forces. The 

network consists of three primary components: a positional encoding layer, a multi-head 

attention module, and a feed-forward network layer. 

(1) Positional encoding 

The self-attention mechanism is inherently permutation-invariant; it does not process the 

order of elements in a sequence. In the context of force perception, however, the spatial location 

of each feature vector—corresponding to a specific region on the sensor surface—is critically 

important. To inject this spatial information into the model, positional encodings are added to the 

input features before they are passed to the attention module. We employ the standard sinusoidal 

positional encoding scheme using sine and cosine functions of different frequencies: 

𝑃𝐸(pos,2i) = 𝑠𝑖𝑛( 𝑝𝑜𝑠/10000
2𝑖

𝑑model) 

𝑃𝐸(pos,2i+1) = 𝑐𝑜𝑠( 𝑝𝑜𝑠/100002𝑖/𝑑model), 

where 𝑝𝑜𝑠 is the position of a feature in the sequence, 𝑖 is the dimension index of the encoding, 

and 𝑑model is the dimensionality of the feature vectors. This encoding provides the model with 

unique information regarding the relative or absolute position of each input feature. 



(2) Multi-head self-attention module 

This module is the computational core of the network, allowing it to weigh the importance 

of different parts of the input sequence. Rather than performing a single attention calculation, it 

projects the features into multiple "heads" in parallel, allowing attention to be performed 

independently in different representation subspaces. 

The computation for a single attention head follows the Scaled Dot-Product Attention 

mechanism. The Query (Q), Key (K), and Value (V) matrices are derived from linear projections 

of the input feature sequence. The attention output is computed as: 

Attention(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾T

√𝑑k
)𝑉, 

where 𝑑k is the dimension of the key vectors. The scaling factor √𝑑k 
is used to counteract the 

effect of large dot products, which can saturate the softmax function and lead to vanishing 

gradients. 

In Multi-Head Attention, we compute independent attention heads in parallel: 

headi = Attention(𝑋𝑊i
Q
, 𝑋𝑊i

K, 𝑋𝑊i
V) , 

where 𝑋 is the input feature sequence and 𝑊i
Q

, 𝑊i
K, 𝑊i

V are the learnable projection matrices 

for the 𝑖 -th head. This structure allows each head to attend to different feature subsets from 

different positions in the input sequence. In the context of force perception, for example, one 

head might specialize in identifying patterns of normal pressure in the central contact region, 

while another might learn the relationship between shear forces at the periphery and pressure at 

the center. 

The outputs of all heads are then concatenated and passed through a final linear projection 



to integrate the information learned from the different subspaces: 

MultiHead(𝑋)=Concat(head1,...headh)𝑊
O, 

where 𝑊O is the output projection matrix. 

(3) Feed-forward network and output 

Following the attention module, the output for each position is processed by an identical 

Position-wise Feed-Forward Network (FFN). This network consists of two linear layers with a 

ReLU activation: 

FFN(𝑥) = 𝑚𝑎𝑥( 0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2. 

The FFN applies a further non-linear transformation to the features aggregated by the 

attention mechanism. Finally, the processed feature sequence is globally average-pooled and 

mapped by a final linear layer (the regression head) to a 3-dimensional output, representing the 

predicted force vector (𝐹X, 𝐹Y, 𝐹Z). Residual connections and layer normalization are employed 

throughout the network to stabilize the training process. 

  



Supplementary Text 3: Multi-modal texture recognition network architecture 

The objective of the texture recognition task is to identify object surfaces by processing two 

complementary streams of information. To this end, we design and implement a parallel, 

multi-modal deep neural network. The architecture comprises two specialized feature extraction 

pathways: one for processing Low-pass (LP) information and another for processing High-pass 

(HP) information. The features extracted from both pathways are ultimately fused to produce a 

highly robust classification decision regarding the surface texture. The network is composed of 

three primary components: an LP information feature pathway, an HP information feature 

pathway, and a multi-modal fusion and classification head. 

(1) LP information feature pathway 

This pathway is designed to extract complex dynamic patterns from sequential data. It 

consists of a parallel Long Short-Term Memory (LSTM) network and a 1D Convolutional 

Neural Network (CNN), which process the input sequence concurrently. 

LSTM module: An LSTM is a type of Recurrent Neural Network (RNN) specialized in 

learning long-range dependencies in sequential data. This is critical for texture recognition, 

where surface characteristics often unfold over the course of a dynamic interaction. The core of 

the LSTM is its cell state and three gating mechanisms: the forget gate, the input gate, and the 

output gate. At a given time step t, their operations are defined as: 

𝑓t = 𝜎(𝑊f ⋅ [ℎt−1, 𝑥t] + 𝑏f) 

𝑖t = 𝜎(𝑊i ⋅ [ℎt−1, 𝑥t] + 𝑏i) 

𝑜t = 𝜎(𝑊o ⋅ [ℎt−1, 𝑥t] + 𝑏o), 



where 𝑥t is the current input, ℎt−1 
is the hidden state from the previous time step, 𝜎 is the 

sigmoid activation function, and 𝑊  and 𝑏  are learnable weights and biases. These gates 

collectively determine what information is discarded from the cell state, what new information is 

stored, and how the hidden state ℎt is outputted. 

1D CNN module: In parallel with the LSTM, a 1D CNN is employed to extract local, 

translation-invariant motifs from the sequence. The convolutional kernels slide across the 1D 

sequence to detect specific, recurring patterns within short temporal windows, which may 

correspond to fundamental physical features of the texture. The 1D convolution operation is 

defined as: 

(𝑥 ∗ 𝑘)[𝑛] = ∑ 𝑥[𝑛 −𝑚]𝑘[𝑚]M−1
m=0  , 

where 𝑥  is the input sequence and 𝑘  is a kernel of length 𝑀 . By stacking multiple 

convolutional layers, the network can learn a hierarchical representation of features, from 

low-level patterns (e.g., individual spikes) to higher-order combinations. 

(2) HP information feature pathway 

This pathway is responsible for extracting high-level representations from 2D data. We 

employ a pre-trained EfficientNet-B5 model as the feature extractor. The EfficientNet family of 

models is renowned for its exceptional balance between accuracy and computational efficiency, 

which is achieved through a compound scaling method that uniformly scales network depth, 

width, and resolution. Its core building block is the MBConv (Mobile Inverted Bottleneck 

Convolution), which incorporates depthwise separable convolutions and Squeeze-and-Excitation 

optimization to learn rich feature representations efficiently. The input data is processed through 



the convolutional base of the EfficientNet-B5 to produce a high-dimensional feature map, which 

is then globally average-pooled to form a compact feature vector. 

(3) Modal fusion strategy for texture recognition task 

To integrate the LP data and HP textural (vibration) data, we implement a conditional, 

asymmetric fusion strategy. This strategy designates the HP modality as the primary source for 

classification, while the LP modality provides supplementary information to resolve predictive 

ambiguities during the inference phase. 

The fusion mechanism is triggered if and only if two specific conditions are met: (1) a 

discrepancy exists between the predicted classes from the two modalities, (2) the prediction 

confidence of the force modality falls below an adaptive threshold, denoted as 𝜏. This threshold 

represents the minimum confidence required for the force-based prediction to be considered 

reliable. 

When these conditions are satisfied, a dynamic weighted harmonic mean is employed to 

compute the final fused probability vector, 𝑃fuesd. For each class 𝑖, the fused probability is 

calculated as: 

𝑃fuesd,i =
𝑤HP+𝑤LP
𝑤HP
𝑃HP,i

+
𝑤LP
𝑃LP,i

, 

where 𝑃HP,i and 𝑃LP,i 
are the predicted probabilities for class 𝑖 from the HP and LP modalities, 

respectively. The weights 𝑤HP and 𝑤LP represent the contribution of each modality to the 

fusion, constrained by 𝑤HP + 𝑤LP = 1. The final classification is then determined by the class 

with the maximum probability in the 𝑃fuesd vector. 

If the triggering conditions are not met, the prediction from the primary high-frequency 



modality is directly used as the final output. The fusion weights (𝑤HP and 𝑤LP, initialized at 0.7 

and 0.3, respectively) and the confidence threshold 𝜏 are treated as learnable parameters and are 

optimized jointly with the network parameters throughout the training process to maximize 

overall classification accuracy. 

  



 

Supplementary table: 

Supplementary Table 1: Comparison of various robotic tactile sensors' resolutions and 

capabilities. 

No. Reference Sensor Type 

Spatial 

resolution  

(mm) 

Texture 

roughness 

(μm) 

Slip 

prediction 
Underwater 

1 [17] 

High spatiotemporal 

resolution texture 

sensor 

NaN 15 No No 

2 [20] 

Vision-tactile fusion 

(RGB-D camera + 

XELA tactile) 

NaN 50 No No 

3 [25] 

Stretchable pressure 

sensor array with low 

crosstalk 

5 NaN No No 

4 [28] 
Vision-based tactile 

sensor 
0.4 NaN No No 

5 [59] 
Sparsely distributed 

tactile units 
0.73 NaN No No 

6 [24] 
Polydimethylsiloxane 

(PDMS) sensor array 
1 NaN No No 

7 [49] 
GelStereo tactile 

sensor array 
1 NaN No No 

8 [52] Capacitive sensor 2.2 NaN No No 

9 [53]. Doped polysilicon 1 NaN No No 

10 [57] 
Barometer pressure 

sensor chip (BPSC) 
NaN 3000 No No 

11 [60] 
Artificial neural 

tactile sensing system 
NaN 520 No No 

12 Ours. HydroPalm 0.8 0.258 Yes Yes 

  



Supplemental Table 2: Fabrication parameters of the HydroPalm. 

Module Components Dimensional parameters 
Materials and Manufacturing 

Methods 

Gel layer 

module 

Protective 

coating 
ϕ54 mm × L 0.3 mm 

Psycho Paint Smooth On, 

pouring 

Marker pattern ϕ50 mm 
Water-transfer paper, water 

transfer printing 

Elastomer base ϕ54 mm × L 2.0 mm 
5-degree addition-cure silicone 

gel, mold forming 

Acrylic dome ϕ50 mm Acrylic, CNC machining 

Illumination 

module 

LED strip 105 mm × 3 mm LEDs, product 

Aperture ϕ28 mm × L 1.5 mm Black resin, 3D printing 

Imaging module 

Binocular camera 
19 mm × 12 mm × 5 

mm 
Camera, product 

STM32 
42 mm × 35 mm × 5 

mm 
Microcontroller, product 

Waterproof 

module 

Top cover ϕ54 mm × L 16.5 mm 
Aluminum alloy, CNC 

machining 

Quartz glass ϕ41 mm × L 2 mm Quartz glass, CNC machining 

Waterproof 

housing 
ϕ54 mm × L 96 mm 

Aluminum alloy, CNC 

machining 

Bottom cover ϕ54 mm × L 5 mm 
Aluminum alloy, CNC 

machining 

Waterproof 

connector 
ϕ22 mm × L 40 mm Connector, product 

  



Supplemental Table 3: Parameters of the binocular camera in air and underwater 

environments. 

Medium Air Underwater 

Camera ID Left Right Left Right 

Focal length 

(𝒇x, 𝒇y) (px) 
644.49 

644.39 

642.60 

642.61 

1031.1 

1033.4 

1031.8 

1030.8 

Principal point 

(𝒄x, 𝒄y) (px) 
597.31 

380.10 

584.52 

365.09 

594.71 

383.97 

589.69 

379.96 

Skew (px) 0.00 0.00 0.003 0.001 

Distortion 

coefficients 

(𝒌1, 𝒌2, 𝒑1, 𝒑2, 𝒌3) 

-0.0013 

0.0537 

-0.0008 

-0.0016 

-0.0819 

-0.0035 

0.0622 

-0.0011 

0.0007 

-0.0915 

0.5343 

3.7701 

0.00 

0.00 

-10.860 

0.5916 

2.9142 

0.00 

0.00 

-7.4617 

Rotation Matrix 

𝑅 
[

0.9998 0.0004 0.0054

−0.0004 0.9999 −0.0003

−0.0054 0.0003 0.9998

] [
0.9995 −0.0012 0.0310

0.0013 0.9999 0.0031

−0.0310 −0.0030 0.9995

] 

Translation Vector 

𝑻 (mm) 
[−7.5093 −0.0857 −0.0566] [−7.8859 −0.1181 −0.0276] 

 

 

  



Supplementary figure: 

 

Fig. S1. Multiplexed tactile streams: from peripheral afferents to cortical representations. 

Stimulus intensity at the finger is converted into spike rate, generating single- or double-spike 

events in RA I, RA II, SA I, and SA II afferents. These multiplexed afferent streams are 

segregated into high-frequency and low-frequency pathways in the somatosensory cortex, where 

early decoding yields flutter, vibration, curvature, and stretch representations. These are 

integrated into force and texture features that converge on slip prediction, which is dynamically 

updated through direct and cross-feature influences.   



 

 

 

Fig. S2. Exploded view of the visuotactile sensing system. The waterproof module provides a 

hermetically sealed enclosure for amphibious operation and consists of a waterproof connector, a 

bottom cover, nuts, and the main waterproof housing. The imaging module is responsible for 

data acquisition and processing, containing an STM32 microcontroller and a binocular camera. 

The illumination module, comprising LEDs and an aperture, ensures uniform internal lighting of 

the contact interface. The gel layer module is the primary mechanotransduction component; it 

includes a top cover, a protective quartz glass window, a transparent acrylic dome, and the soft 

gel layer in which a marker array is embedded. The working principle is as follows: when the 

sensor makes contact with an object, the gel layer deforms, resulting in the displacement of the 

markers. The binocular camera captures these displacements, which are then processed by the 

STM32 to generate the raw tactile data stream. 

  



 

 

Fig. S3. Transformer network architecture for force prediction. The architecture consists of 

an input embedding layer, followed by 6 identical layers, and an output layer. Each of the 6 

layers contains two main sub-layers: a multi-head self-attention mechanism and a position-wise 

fully connected feed-forward network. Both sub-layers are followed by a residual connection and 

layer normalization (Add & Norm). Positional encodings are added to the input embeddings to 

incorporate the order of the low-frequency force information. The output layer processes the 

final representation to predict force values. 

  



 

Fig. S4. Human finger force data testing and collection device. The figure shows the 

custom-built apparatus used to acquire ground-truth force data from a human finger for 

comparative analysis. a, The testing platform in its neutral state, comprising a high-precision 

multi-axis force/torque sensor mounted beneath a flat contact plate. b, A human participant 

applies force to the contact plate. The underlying force/torque sensor records the complete 

three-axis force vector (Fx, Fy, Fz) generated by the finger during dynamic interaction, providing 

a quantitative benchmark for the biomimetic performance of the HydroPalm. 

  



 

Fig. S5. The prediction error of all test sequences. a-c, Histograms showing the distribution of 

mean absolute error (MAE) for force predictions in x-direction a, y-direction b, and z-direction c. 

The y-axis represents the frequency of errors occurring within each range in all test sequences. 

Sky blue bars represent the error distribution across test sequences (including types of main text), 

and red dashed lines indicate the mean MAE values (Fx: 0.0629 N, Fy: 0.0407 N, Fz: 0.2678 N). 

d-f, Histograms showing the distribution of Root Mean Square Error (RMSE) for force 

predictions in x-direction d, y-direction e, and z-direction f. Sky blue bars represent the error 

distribution across 41 test sequences, and red dashed lines indicate the mean RMSE values (Fx: 

0.0775 N, Fy: 0.0453 N, Fz: 0.2851 N). These performance indicators demonstrate the reliability 

of our algorithm.



 

 

Fig. S6. Comparison between actual and predicted Fx, Fy, and Fz force components of various materials. Panels show three stacked traces per condition (top: Fx, middle: Fy, bottom: Fz). blue lines denote 

predicted forces and red lines denote actual forces after post-processing. The x-axis represents time (0-3.2 s) and the y-axis represents force (N). a. End milling; b, Plane; c, Leather; d, Flat grinding; e, Flat milling; f, 

Plastic (rough); g, Artificial leather; h, Plastic (smooth); i, Boring; j, External grinding; k, Tin foil; l, Grinding.



 

Fig. S7. Network architecture for tactile roughness discrimination. The network employs a 

dual-stream architecture for multi-modal information processing. The upper stream, composed of 

a Convolutional Neural Network (CNN) followed by a Long Short-Term Memory (LSTM) layer 

and an attention mechanism, processes low-frequency force information. This stream extracts 

sequential features from force data, with the attention module dynamically weighing relevant 

temporal segments. The lower stream, based on an EfficientNet-B5 architecture, extracts the 

features from high-frequency tactile (vibration) information, specifically designed for robust 

texture representation. Outputs from both streams are then fused through a strategic multi-modal 

fusion method (details provided in Supplementary Text 3), which is subsequently fed into a 

softmax layer for roughness discrimination and output. Each convolutional block within both 

streams typically includes a convolution layer, batch normalization, and a ReLU activation 

function. Max pooling layers are utilized for downsampling in the low-frequency stream, while 

the EfficientNet-B5 block comprises multiple MBConv layers. 



 

Fig. S8. Material identification accuracy. a, Experimental setup for texture recognition 

testing in air environment. b, The sensor's recognition accuracy for six different materials, 

including the following materials: artificial leather, plastic (rough), bandage, tin foil, leather, 

and plastic (smooth) 

  



 

Fig. S9. Temporal texture-based pulse representation for material surface 

characterization. High-resolution pulse diagram showing temporal texture variations across 

the surface of a bandage material during tactile interaction. The visualization is based on 961 

sampling points extracted from the central region (31×31 grid) of the tactile sensor video 

frame.  

  



 



Fig. S10. Temporal high-frequency pulse information derived from a 20-pixel texture 

patch. Materials include: tin foil, plastic(rough), artificial leather, plastic(smooth), leather, 

bandage, grinding, external grinding, boring, flat milling, flat grinding, leather(rough), plane 

leather, end milling, turn. 

  



Legends for Supplementary Videos: 

Supplementary Video 1. Measurement of the 3D contact forces for a human finger and 

HydroPalm. 

Supplementary Video 2. Dynamic texture recognition on various material surfaces. 

Supplementary Video 3. Slip prediction and compliant motion control experiments conducted 

on HydroPalm. 

Supplementary Video 4. Underwater pipe-assembly task conducted on HydroPalm. 


