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S1. Sample Fabrication and Characterisation

MoS2 and WS2 monolayer samples were prepared by mechanical exfoliation from a
commercial bulk synthetic crystal (HQGraphene) using an adhesive tape (Bluetape
Minitron) and subsequently transferred to sapphire substrates by the PDMS (Gel-Pak)
dry transfer method [1]. The samples were identified by optical contrast, and their
monolayer nature was confirmed by micro-photoluminescence (PL) spectroscopy in
reflection geometry from a SiO2/Si substrate. PL measurements were performed with
CW excitation (Cobolt 08-DPL 532nm) using a 50x objective with a numerical aperture
of 0.42 (Mitutoyo Plan Apo) resulting in a focal spot size of ~1um. We observed PL
maxima at ~ 616nm (~2.01 eV) / 629nm (~1.97 eV) corresponding to the A-
exciton/trion of WS2 (Supplementary Figure 2a), and at ~ 652nm (~1.9 eV) / 602nm
(~2.05 eV) / 665nm (~1.86 eV) corresponding respectively to the A-exciton, B- exciton

and trion of MoS2 (Fig. S1), in agreement with literature [2,3].
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Fig. S1. Photoluminescence characterisation of monolayer (a) WS, and (b) MoS: on SiO./Si
substrates.

S2. Experimental setup and methods

S$1.1. Experimental setup

The experimental layout is shown schematically in Fig.S2. A commercial femtosecond
Ti:Sapphire laser system, operating at 0.8 um wavelength at 1 kHz repetition rate and
delivering 35 fs laser pulses with the energy up to 4.6 mJ (Coherent Astrella), was used
to pump an optical parametric amplifier (OPA) tuneable in the range 1150-1600 nm
and 1600-2600 nm for the signal and idler waves correspondingly (TOPAS, Light
Conversion). The difference frequency generation module (NDFG, Light Conversion)
delivers the mid-IR laser pulses, tuneable in the spectral range 3-12 uym with pulse
duration 60-100 fs. The polarization of the mid-IR pulses and the pulse energy were
controlled by a pair of wire-grid polarizers. A removable mirror was used to intercept
the mid-IR beam for focal spot and pulse characterization.

To characterise the focal intensity, we used a long-focusing CaF2 lens (200 mm)
on a translation stage and measured with a MID-IR CCD camera (Data Ray) the spot
size as a function of the lens position. The spatial integration of the recorded focal spot
image was used then to determine the peak intensity in the beam. Assuming negligible
chromatic aberrations, the retrieved focal intensity was recalculated for the 50 mm
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Fig. S2. Schematic presentation of the experimental setup.

CaF2 lens used to focus the beam on the sample.

The temporal characterization of the pulses was carried out using the second
harmonic generation frequency-resolved optical gating technique (SHG FROG). A
CaF2 optical window of the corresponding thickness was placed at the FROG entrance
to mimic the focusing lens dispersion. In general, the pulse dispersion management
was carried out by inserting optical windows of different thickness and materials (Si,
CaF2, YAG) in the beam and minimizing the retrieved pulse duration. Additionally, the
dispersion was optimized based on the high-order harmonic spectral shape and
intensities. Removable beamsplitters together with a white light source and removable
50x objective were used for on-site microscopy of the sample. The harmonic spectra
were measured by a Kymera-328i spectrometer equipped with a cooled UV-enhanced
CCD camera.

S$1.2. Fixing the Laser Intensity for all Wavelengths

To analyse the wavelength dependence, it is essential to keep the peak intensity of the
laser pulse fixed. To achieve this, we first performed harmonic-yield measurements as
a function of an average power together with FROG traces and focal intensity
distributions (Fig.S3 a and c) for every wavelength in the experiment. When the pulse
is characterised in space and time domain, we can retrieve the harmonic yield as a
function of the peak intensity. This dependence is a smooth function and can be fitted
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Fig. S3. Calibration of laser intensity. a Harmonic yield as a function of a laser average power, measured
in the experiment, inset figures represent a 2D focal intensity distribution and FROG trace at 3200 nm
central wavelength. b Harmonic yield as a function of peak laser intensity, retrieved according to FROG
traces and focal distribution. The solid line shows a polynomial fit, and the dashed grey line represents
the choice of a fixed intensity. ¢ and d Same but for 5000 nm central wavelength.

by a polynomic function (Fig. S3 b and d). Thus, choosing the intensity for one of the
laser wavelengths, we interpolated the harmonic yield for all other wavelengths, using

the retrieved polynomial fits, as it is shown in Fig. S3.

S3. A comparison of rt-TDDFT and SBE calculations without the
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Fig. S4. Wavelength dependence in the harmonic yield within the same spectral range as for the
experiments, retrieved from a rt-TDDTF and b 2D SBE numerical simulations. The red line shows a fit
with a power index given in the figure. Note the double log scale of the axes.
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S4. Electron-Phonon Scattering Rates

The optimised lattice constant was found to be a =3.188 A in agreement with
previously reported results [4, 5]. The calculated bandgap is E;, = 1.86 eV and therefore

smaller than the experimentally observed value (= 2eV). Fig. S5a shows the

calculated electronic band-structure sn(l_c)) for a selection of bands around the Fermi
energy. The phonon dispersion w;(q) in Fig. S5b displays the quadratic dispersion of
the flexural mode which is characteristic for 2D materials [6].

To verify the quality of the Wannierisation procedure which is needed for the
computation of the electron-phonon self-energy, we compare the band structure and
the phonon dispersions obtained with electron-phonon Wannier functions (EPW) to the
respective results from Quantum Espresso (QE) [Ref.49] simulations. As follows from
Fig. S5, there is a very good agreement between the original (QE) and the interpolated
data (EPW).

The electron-phonon scattering rate 1 (E)is obtained from the first order
TTL

electron-phonon self-energy as follows [43]:
= 20N L (3@ + £ (6 + D150 + ) — R (@ — ()
(k) &
+[n3(@) + 1 - £2(k + §)]6(en(k + §) + hawz(@) — em(K))}.

Here, g} (k,Q)is the electron-phonon scattering matrix element, £.2(k) and n3(§)
denote the Fermi and Bose distributions for electrons and phonons, respectively. Thus,
the total scattering rate is a sum over the scattering rates for each phonon mode,
populated according to the Boltzmann distribution at a a given temperature, and
including both, phonon absorption and phonon emission processes. The electron-
phonon scattering time Tn(l_c)) for the first conduction and the highest valence bands is
shown in Fig. S6 for the ambient temperature of 300 °K and cryogenic temperature of
20 °K. To demonstrate the ultrafast nature of the electron-phonon scattering in solids,
Fig. S7 shows the scattering rate along main symmetry directions in a wurtzite CdSe
crystal.
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Fig. $5. Comparison of a) the electronic band-structure and b) the phonon dispersions calculated with
Quantum espresso (QE, blue solid lines) and EPW (red dashed lines).
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Fig. S6. Temperature dependence of the electron-phonon scattering. a WS: band structure along main
symmetry directions. The red line is the valence band, the blue line is the first conduction band. b k-
dependent electron-phonon scattering time for the upper valence band (red line) and the first conduction
band (blue line) calculated at the 300 °K. ¢ k-dependent electron-phonon scattering time for the upper
valence band (red line) and the first conduction band (blue line) calculated at the 20 °K. Note the
logarithmic scale for the plots.
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Fig. S7.k-dependent electron-phonon scattering time for the upper valence band (red line) and the
lowest conduction band (blue line) in wurtzite CdSe crystal at 293 K temperature.

S5. HHG Simulations with Semiconductor Bloch Equations

A concise overview of different approaches using SBE can be found in [Ref.3]. Here
we only refer to changes and modifications introduced to the standard approach. In
our simulations of HHG with the SBE approach, we consider the upper valence and
the two lowest conduction bands. The choice of these three bands is justified by the
spectral range of harmonics measured in the experiments. When including the k-
dependent electron-phonon scattering processes in the SBE equations, we consider
the effect of the scattering only on the polarisation, and not on the occupation number.
The full treatment of carrier scattering o would require a kinetic approach based on
two-dimensional the Boltzmann equations, which is computationally extremely
demanding [7]. However, the redistribution of occupation numbers plays a minor role
in the HHG yield compared to the polarisation coherence, and thus, such a treatment
is not needed. Therefore, we treat scattering in the context of the Lindblad formalism
where each scattering event with a rate y = t~1 is known to create a dephasing of the
associated polarisation proportional to y/2 (see e.g. [8]). The inverse of the dephasing
time for the polarisation Tz’fmn between two bands m and n is calculated as the average



of the inverse scattering times 1%, i.e. scattering rates, retrieved from the electron-
phonon scattering calculations:
1 1/1 N 1
Tk 2\¢k " k)

2,mn

Fig. S8 shows the corresponding dephasing times affecting the polarisation between
different bands.

The system of the SBEs is obtained by plugging the Bloch ansatz
Y miepz Ak, (£) ¥ (r) into the minimal coupling Hamiltonian 7 in length gauge and
solving the equations for the time-dependent coefficients ak, (t), where ¢k, is the Bloch
function for band index m, with the associated energy band H,ek, = & ok,. If we
denote the products of two coefficients as pk,,, = ak (t)a¥*(t), the equations read

, 1-6
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2,mn
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l

HE(L) - Vipmn(t),
where E(t) is the electrical field and Dk,, are the transition dipole elements for m = n
and the Berry connections for m = n. They are calculated by D, = i(@k |V, |@k) with
the scalar product taken with respect to the unit cell. The last term in the equations,
which couples the different k-points, can be omitted by transforming into a comoving
frame and introducing a time-dependent k = K(t) + A(t). In that case, the quantity

) L D,'fl;“'(t) becomes time-dependent and is shifted, where the magnitude of the
shift is given by the vector potential A(t). The first line contains the dephasing time
Tz’fmn which depends on the band index m and momentum k.

The band structures and dipole elements were calculated using a tight binding
model developed in [Ref.53]. In these calculations, we included spin-orbit coupling
resulting in fully non-degenerate bands. The simulations were converged with a
maximal time step of At = 0.2 a.u. and a Brillouin zone sampling of 300 x 300 points.
The maximal field amplitude was set to E, = 1.67 - 1072 a.u.
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Fig. S8. k-dependent dephasing times used in the SBE simulations for the dephasing between a) the
valence and the first conduction band b) the valence and the second conduction band c) the two
conduction bands.
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S6. Comparison Between Calculations with k-dependent and k-
independent Dephasing Time

Despite the strong k-dependence of the electron-phonon scattering rates (see Fig. S6),
electron/hole motion in the bands covering a large range of the lattice momentum
results in an effective averaging of the dephasing over the Brillouin zone, explaining
the different empirical values suggested in the literature. To demonstrate that our newly
introduced k-dependent dephasing time T2(k) incorporates naturally the previously
suggested constant values of T2, we compare our numerical results including the ab-
initio k-dependent electron-phonon scattering time to the commonly used approach for
HHG in solids with a constant, k-independent ultrashort dephasing time. The summary
of such simulations is shown in Fig. S9, together with the slope values retrieved from
the experimental data. The results of calculations with k-independent dephasing time
suggest that the dependence of the slope upon the value of the dephasing time can
be very well approximated (R-square is 0.9987) by the exponential function e ~*/A% with
the decrement At = 2.76 + 0.29 (the dashed line in Fig. S9). These results are in a
good agreement with the results previously reported in [Ref.33]. Thus, the controversy
of various suggested empirical values in the literature can be solved by our k-
dependent scattering time, which can be ab initio calculated from the k-dependent,
material-specific electron-phonon scattering rates.
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Fig. 89. Summary of the numerical simulations. The dashed line shows the dependence of the power
index (slope value) on the dephasing time in calculations when the latter is a k-independent constant.

The slope values retrieved from the experimental measurements and k-dependent simulations are
superimposed with constant dephasing time calculations for comparison.
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