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S1. Sample Fabrication and Characterisation 

MoS2 and WS2 monolayer samples were prepared by mechanical exfoliation from a 
commercial bulk synthetic crystal (HQGraphene) using an adhesive tape (Bluetape 
Minitron) and subsequently transferred to sapphire substrates by the PDMS (Gel-Pak) 
dry transfer method [1]. The samples were identified by optical contrast, and their 
monolayer nature was confirmed by micro-photoluminescence (PL) spectroscopy in 
reflection geometry from a SiO2/Si substrate. PL measurements were performed with 
CW excitation (Cobolt 08-DPL 532nm) using a 50x objective with a numerical aperture 
of 0.42 (Mitutoyo Plan Apo) resulting in a focal spot size of ~1µm. We observed PL 
maxima at ~ 616nm (~2.01 eV) / 629nm (~1.97 eV) corresponding to the A-
exciton/trion of WS2 (Supplementary Figure 2a), and at ~ 652nm (~1.9 eV) / 602nm 
(~2.05 eV) / 665nm (~1.86 eV) corresponding respectively to the A-exciton, B- exciton 
and trion of MoS2 (Fig. S1), in agreement with literature [2,3]. 

 

Fig. S1. Photoluminescence characterisation of monolayer (a) WS2 and (b) MoS2 on SiO2/Si 
substrates. 

S2. Experimental setup and methods 
 
S1.1. Experimental setup 
The experimental layout is shown schematically in Fig.S2. A commercial femtosecond 
Ti:Sapphire laser system, operating at 0.8 µm wavelength at 1 kHz repetition rate and 
delivering 35 fs laser pulses with the energy up to 4.6 mJ (Coherent Astrella), was used 
to pump an optical parametric amplifier (OPA) tuneable in the range 1150-1600 nm 
and 1600-2600 nm for the signal and idler waves correspondingly (TOPAS, Light 
Conversion). The difference frequency generation module (NDFG, Light Conversion) 
delivers the mid-IR laser pulses, tuneable in the spectral range 3-12 µm with pulse 
duration 60-100 fs. The polarization of the mid-IR pulses and the pulse energy were 
controlled by a pair of wire-grid polarizers. A removable mirror was used to intercept 
the mid-IR beam for focal spot and pulse characterization.  

To characterise the focal intensity, we used a long-focusing CaF2 lens (200 mm) 
on a translation stage and measured with a MID-IR CCD camera (Data Ray) the spot 
size as a function of the lens position. The spatial integration of the recorded focal spot 
image was used then to determine the peak intensity in the beam. Assuming negligible 
chromatic aberrations, the retrieved focal intensity was recalculated for the 50 mm 



 

Fig. S2. Schematic presentation of the experimental setup. 
 
CaF2 lens used to focus the beam on the sample.  

The temporal characterization of the pulses was carried out using the second 
harmonic generation frequency-resolved optical gating technique (SHG FROG). A 
CaF2 optical window of the corresponding thickness was placed at the FROG entrance 
to mimic the focusing lens dispersion. In general, the pulse dispersion management 
was carried out by inserting optical windows of different thickness and materials (Si, 
CaF2, YAG) in the beam and minimizing the retrieved pulse duration. Additionally, the 
dispersion was optimized based on the high-order harmonic spectral shape and 
intensities. Removable beamsplitters together with a white light source and removable 
50x objective were used for on-site microscopy of the sample. The harmonic spectra 
were measured by a Kymera-328i spectrometer equipped with a cooled UV-enhanced 
CCD camera. 
 
S1.2. Fixing the Laser Intensity for all Wavelengths 
To analyse the wavelength dependence, it is essential to keep the peak intensity of the 
laser pulse fixed. To achieve this, we first performed harmonic-yield measurements as 
a function of an average power together with FROG traces and focal intensity 
distributions (Fig.S3 a and c) for every wavelength in the experiment. When the pulse 
is characterised in space and time domain, we can retrieve the harmonic yield as a 
function of the peak intensity. This dependence is a smooth function and can be fitted 



 
Fig. S3. Calibration of laser intensity. a Harmonic yield as a function of a laser average power, measured 
in the experiment, inset figures represent a 2D focal intensity distribution and FROG trace at 3200 nm 
central wavelength. b Harmonic yield as a function of peak laser intensity, retrieved according to FROG 
traces and focal distribution. The solid line shows a polynomial fit, and the dashed grey line represents 
the choice of a fixed intensity. c and d Same but for 5000 nm central wavelength.  
 
by a polynomic function (Fig. S3 b and d). Thus, choosing the intensity for one of the 
laser wavelengths, we interpolated the harmonic yield for all other wavelengths, using 
the retrieved polynomial fits, as it is shown in Fig. S3. 

S3. A comparison of rt-TDDFT and SBE calculations without the 
dephasing 

 
Fig. S4. Wavelength dependence in the harmonic yield within the same spectral range as for the 
experiments, retrieved from a rt-TDDTF and b 2D SBE numerical simulations. The red line shows a fit 
with a power index given in the figure. Note the double log scale of the axes.  



S4. Electron-Phonon Scattering Rates 

The optimised lattice constant was found to be 𝑎𝑎 = 3.188 Å in agreement with 
previously reported results [4, 5]. The calculated bandgap is 𝐸𝐸𝑔𝑔 = 1.86 eV and therefore 
smaller than the experimentally observed value (≈ 2 eV). Fig. S5a shows the 
calculated electronic band-structure 𝜀𝜀𝑛𝑛(𝑘𝑘�⃗ ) for a selection of bands around the Fermi 
energy. The phonon dispersion 𝜔𝜔𝜆𝜆(𝑞⃗𝑞) in Fig. S5b displays the quadratic dispersion of 
the flexural mode which is characteristic for 2D materials [6]. 

To verify the quality of the Wannierisation procedure which is needed for the 
computation of the electron-phonon self-energy, we compare the band structure and 
the phonon dispersions obtained with electron-phonon Wannier functions (EPW) to the 
respective results from Quantum Espresso (QE) [Ref.49] simulations. As follows from 
Fig. S5, there is a very good agreement between the original (QE) and the interpolated 
data (EPW). 

The electron-phonon scattering rate 1
𝜏𝜏𝑛𝑛(𝑘𝑘�⃗ )� is obtained from the first order 

electron-phonon self-energy as follows [43]: 
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Here, 𝑔𝑔𝑛𝑛𝑛𝑛𝜆𝜆 (𝑘𝑘�⃗ , q�⃗ ) is the electron-phonon scattering matrix element, 𝑓𝑓𝑛𝑛0�𝑘𝑘�⃗ � and 𝑛𝑛𝜆𝜆0(𝑞⃗𝑞) 
denote the Fermi and Bose distributions for electrons and phonons, respectively. Thus, 
the total scattering rate is a sum over the scattering rates for each phonon mode, 
populated according to the Boltzmann distribution at a a given temperature, and 
including both, phonon absorption and phonon emission processes. The electron-
phonon scattering time 𝜏𝜏𝑛𝑛(𝑘𝑘�⃗ ) for the first conduction and the highest valence bands is 
shown in Fig. S6 for the ambient temperature of 300 °K and cryogenic temperature of 
20 °K. To demonstrate the ultrafast nature of the electron-phonon scattering in solids, 
Fig. S7 shows the scattering rate along main symmetry directions in a wurtzite CdSe 
crystal. 

 
Fig. S5. Comparison of a) the electronic band-structure and b) the phonon dispersions calculated with 
Quantum espresso (QE, blue solid lines) and EPW (red dashed lines). 



 
Fig. S6. Temperature dependence of the electron-phonon scattering. a WS2 band structure along main 
symmetry directions. The red line is the valence band, the blue line is the first conduction band. b k-
dependent electron-phonon scattering time for the upper valence band (red line) and the first conduction 
band (blue line) calculated at the 300 °K. c k-dependent electron-phonon scattering time for the upper 
valence band (red line) and the first conduction band (blue line) calculated at the 20 °K.  Note the 
logarithmic scale for the plots. 

 

 
Fig. S7.k-dependent electron-phonon scattering time for the upper valence band (red line) and the 
lowest conduction band (blue line) in wurtzite CdSe crystal at 293 K temperature. 

S5. HHG Simulations with Semiconductor Bloch Equations 
 
A concise overview of different approaches using SBE can be found in [Ref.3]. Here 
we only refer to changes and modifications introduced to the standard approach. In 
our simulations of HHG with the SBE approach, we consider the upper valence and 
the two lowest conduction bands. The choice of these three bands is justified by the 
spectral range of harmonics measured in the experiments. When including the k-
dependent electron-phonon scattering processes in the SBE equations, we consider 
the effect of the scattering only on the polarisation, and not on the occupation number. 
The full treatment of carrier scattering o would require a kinetic approach based on 
two-dimensional the Boltzmann equations, which is computationally extremely 
demanding [7]. However, the redistribution of occupation numbers plays a minor role 
in the HHG yield compared to the polarisation coherence, and thus, such a treatment 
is not needed. Therefore, we treat scattering in the context of the Lindblad formalism 
where each scattering event with a rate 𝛾𝛾 =  𝜏𝜏−1 is known to create a dephasing of the 
associated polarisation proportional to γ/2 (see e.g. [8]). The inverse of the dephasing 
time for the polarisation 𝑇𝑇2,𝑚𝑚𝑚𝑚

𝒌𝒌  between two bands 𝑚𝑚 and 𝑛𝑛 is calculated as the average 



of the inverse scattering times τ𝑚𝑚𝒌𝒌 , i.e. scattering rates, retrieved from the electron-
phonon scattering calculations: 
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Fig. S8 shows the corresponding dephasing times affecting the polarisation between 
different bands.  

The system of the SBEs is obtained by plugging the Bloch ansatz 
∑ 𝑎𝑎𝑚𝑚𝒌𝒌 (𝑡𝑡)𝑚𝑚,𝒌𝒌∈BZ φ𝑚𝑚

𝒌𝒌 (𝑟𝑟) into the minimal coupling Hamiltonian ℋ in length gauge and 
solving the equations for the time-dependent coefficients 𝑎𝑎𝑚𝑚𝒌𝒌 (𝑡𝑡), where φ𝑚𝑚

𝒌𝒌  is the Bloch 
function for band index 𝑚𝑚, with the associated energy band ℋ0φ𝑚𝑚

𝒌𝒌 = ε𝑚𝑚𝒌𝒌 φ𝑚𝑚
𝒌𝒌 . If we 

denote the products of two coefficients as ρ𝑚𝑚𝑚𝑚𝒌𝒌 = 𝑎𝑎𝑚𝑚𝒌𝒌 (𝑡𝑡)𝑎𝑎𝑛𝑛𝒌𝒌∗(𝑡𝑡), the equations read  

i𝜌̇𝜌𝑚𝑚𝑚𝑚𝒌𝒌 (t) = �εm𝒌𝒌 − εn𝒌𝒌 −
1 − δmn
𝑇𝑇2,𝑚𝑚𝑚𝑚
𝒌𝒌 �ρmn𝒌𝒌 (t) 

+𝐸𝐸(𝑡𝑡) ⋅��𝐷𝐷𝑚𝑚𝑚𝑚𝒌𝒌 ρ𝑙𝑙𝑙𝑙𝒌𝒌 (𝑡𝑡) − 𝐷𝐷𝑙𝑙𝑙𝑙𝒌𝒌 ρ𝑚𝑚𝑚𝑚𝒌𝒌 (𝑡𝑡)�
𝑙𝑙

 

+𝑖𝑖𝑖𝑖(𝑡𝑡) ⋅ ∇𝒌𝒌ρ𝑚𝑚𝑚𝑚𝒌𝒌 (𝑡𝑡), 
where 𝐸𝐸(𝑡𝑡) is the electrical field and 𝐷𝐷𝑚𝑚𝑚𝑚𝒌𝒌  are the transition dipole elements for 𝑚𝑚 ≠ 𝑛𝑛 
and the Berry connections for 𝑚𝑚 = 𝑛𝑛. They are calculated by 𝐷𝐷𝑚𝑚𝑚𝑚𝒌𝒌 = 𝑖𝑖⟨φ𝑚𝑚
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the scalar product taken with respect to the unit cell. The last term in the equations, 
which couples the different k-points, can be omitted by transforming into a comoving 
frame and introducing a time-dependent 𝒌𝒌 = 𝐾𝐾(𝑡𝑡) + 𝐴𝐴(𝑡𝑡). In that case, the quantity 
𝑫𝑫𝑚𝑚𝑚𝑚
𝒌𝒌   → 𝑫𝑫𝑚𝑚𝑚𝑚

𝑲𝑲+𝑨𝑨(𝒕𝒕) becomes time-dependent and is shifted, where the magnitude of the 
shift is given by the vector potential A(𝑡𝑡). The first line contains the dephasing time 
𝑇𝑇2,𝑚𝑚𝑚𝑚
𝒌𝒌  which depends on the band index 𝑚𝑚 and momentum 𝑘𝑘.  

The band structures and dipole elements were calculated using a tight binding 
model developed in [Ref.53]. In these calculations, we included spin-orbit coupling 
resulting in fully non-degenerate bands. The simulations were converged with a 
maximal time step of Δ𝑡𝑡 =  0.2 a.u. and a Brillouin zone sampling of 300 × 300 points. 
The maximal field amplitude was set to 𝐸𝐸0 = 1.67 ⋅ 10−3 a.u. 

 
Fig. S8. k-dependent dephasing times used in the SBE simulations for the dephasing between a) the 
valence and the first conduction band b) the valence and the second conduction band c) the two 
conduction bands. 



 

S6. Comparison Between Calculations with k-dependent and k-
independent Dephasing Time 

Despite the strong k-dependence of the electron-phonon scattering rates (see Fig. S6), 
electron/hole motion in the bands covering a large range of the lattice momentum 
results in an effective averaging of the dephasing over the Brillouin zone, explaining 
the different empirical values suggested in the literature. To demonstrate that our newly 
introduced k-dependent dephasing time T2(k) incorporates naturally the previously 
suggested constant values of T2, we compare our numerical results including the ab-
initio k-dependent electron-phonon scattering time to the commonly used approach for 
HHG in solids with a constant, k-independent ultrashort dephasing time. The summary 
of such simulations is shown in Fig. S9, together with the slope values retrieved from 
the experimental data. The results of calculations with k-independent dephasing time 
suggest that the dependence of the slope upon the value of the dephasing time can 
be very well approximated (R-square is 0.9987) by the exponential function 𝑒𝑒−𝜏𝜏 ∆𝜏𝜏⁄  with 
the decrement ∆𝜏𝜏 ≈ 2.76 ± 0.29 (the dashed line in Fig. S9). These results are in a 
good agreement with the results previously reported in [Ref.33]. Thus, the controversy 
of various suggested empirical values in the literature can be solved by our k-
dependent scattering time, which can be ab initio calculated from the k-dependent, 
material-specific electron-phonon scattering rates. 

 
Fig. S9. Summary of the numerical simulations. The dashed line shows the dependence of the power 
index (slope value) on the dephasing time in calculations when the latter is a k-independent constant. 
The slope values retrieved from the experimental measurements and k-dependent simulations are 
superimposed with constant dephasing time calculations for comparison. 
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