

1 **Supplementary Information for:**
2 **Hierarchical mode of evolution in freshwater SAR11 driven by species dispersal and**
3 **lake history**

4

5 Clafy Fernandes, Yusuke Okazaki, Michaela M. Salcher

6

7 This PDF file includes:

8 **Supplementary text**

9 Statistical analysis details.

10 Supplementary references.

11

12 **Supplementary Figures S1 to S9:**

13 **Supplementary Fig. 1:** Phylogeny of the SAR11 order.

14 **Supplementary Fig. 2:** Locations of lake metagenomes used for analyses (n metagenomes =
15 117, n lakes = 21).

16 **Supplementary Fig. 3:** Scatter plots showing correlations between nucleotide diversity (π)
17 and SNV density (counts per Mbp) for each species.

18 **Supplementary Fig. 4:** Population genetic structure and differentiation of *Fontibacterium*
19 species.

20 **Supplementary Fig. 5:** Scale-dependent patterns of Isolation-by-Distance (IBD) for the
21 temperate specialist, *F. temperatum*.

22 **Supplementary Fig. 6:** Isolation-by-Distance (IBD) patterns for the ubiquitous species, *F.*
23 *commune*, reveal global connectivity.

24 **Supplementary Fig. 7:** Allele Frequency Spectra (AFS) for (a) *F. temperatum*, (b) *F.*
25 *commune* and (c) *F. africanum* populations across freshwater lakes.

26 **Supplementary Fig. 8:** Relationship between ecosystem age and minor allele frequency
27 (MAF) thresholds.

28 **Supplementary Figure 9:** Dynamics of purifying selection across the wide range of allele
29 frequencies for (a) the temperate specialist (*F. temperatum*), (b) the ubiquitous species (*F.*
30 *commune*), and (c) the endemic species (*F. africanum*).

31

32 **Captions for Supplementary Data 1 to 10.**

33 **Supplementary Data 1:** Details for newly sequenced genomes.

34 **Supplementary Data 2:** List of publicly available and new genomes used for phylogenomic
35 tree reconstruction.

36 **Supplementary Data 3:** Details on freshwater metagenomes used in this study.

37 **Supplementary Data 4:** InStrain genome-wide metric output for each of the three
38 *Fontibacterium* species.

39 **Supplementary Data 5:** Statistical tests for nucleotide diversity among the three
40 *Fontibacterium* species.

41 **Supplementary Data 6:** Fixation index (F_{ST}) matrix scores calculated for *F. temperatum* and
42 *F. commune* and *F. africanum*.

43 **Supplementary Data 7:** Metadata for isolation by distance analysis (IBD) and related
44 statistics based on F_{ST} scores.

45 **Supplementary Data 8:** Relationship between ecosystem age and minor allele frequency
46 (MAF) threshold.

47 **Supplementary Data 9:** pN/pS ratios and underlying polymorphism counts for all species
48 and lake populations.

49

50 **Supplementary text:**

51 **Statistical analysis details**

52 **Nucleotide diversity across the three species**

53 All statistical analyses of nucleotide diversity (π) were performed in R (v4.3.1)¹. Data were
54 grouped by species (*F. commune*, *F. temperatum*, *F. africanum*). To compare π across species,
55 data were first assessed for normality (Shapiro-Wilk test²) and homogeneity of variances
56 (Levene's test³, `car::levene`). Due to normality violations, Kruskal-Wallis test⁴ was used
57 followed by a Dunn's post-hoc test with Bonferroni correction⁵. A sub-analysis comparing π
58 between Lake Malawi and Lake Tanganyika populations of *F. africanum* was conducted
59 using a Mann-Whitney U test⁶.

60 **Hierarchical clustering of pairwise fixation index (FST)**

61 Clustering analyses based on pairwise FST data for the two species were conducted in R
62 (v4.3.1)¹ using the subsequent packages; tidyverse was used for data processing.
63 Hierarchical clustering was performed on the FST distance matrix using the `hclust` function
64 with the "ward.D2" method. Bootstrap support (1,000 replicates) was used to assess node
65 reliability. The resulting clusters were confirmed by calculating the average silhouette width
66 using the silhouette function (cluster package) and visualized with `fviz_silhouette` (factoextra
67 package). Results were visualized as a dendrogram (`fviz_dend`) and heatmap (`pheatmap`),
68 with colour palettes managed by the R ColorBrewer package.

69 **Population Genetic Structure and Differentiation Analysis**

70 **SNV Data Pre-processing and Aggregation**

71 To prepare data for population-level analyses, we first aggregated single nucleotide variant
72 (SNV) information from per-sample output files generated by inStrain⁷. For each of the three
73 representative species, an initial processing script was used to load all *_SNVs.tsv files.
74 These files were filtered to retain only high-confidence SNVs (inStrain class of "SNV" or
75 "con_SNV") at sites with minimum per-sample coverage of $\geq 30\times$. Metadata was parsed from
76 filenames to map each sample to its corresponding lake population. This process yielded a
77 unified table containing the raw allele counts (A, C, G, T) for every qualifying SNV site in
78 every sample.

79 **Site Filtering**

80 A step-wise filtering was applied to the aggregated allele count table to ensure that only
81 informative and high-quality polymorphic sites were used for FST and PCA, minimizing
82 biases from sequencing errors or low-coverage data. Per-sample allele counts were first
83 pooled to create a single set of counts for each lake population. This step averages out intra-
84 lake sample variation to estimate population-level allele frequencies. Further, we applied a set
85 of filters to this lake-pooled dataset to select for polymorphic sites suitable for comparing
86 populations; sites were required to be covered (depth $\geq 30\times$) in at least two distinct lake

87 populations to be considered for pairwise comparisons. To ensure sites represented genuine,
88 established polymorphisms, we required a minor allele count of at least 6 reads when pooled
89 across all lakes. This removed sites where polymorphism is driven by very rare alleles or
90 potential singleton errors.

91 To focus on sites representing established intra-population diversity, we defined a site as
92 polymorphic if its Nei's gene diversity (H_e) was ≥ 0.01 . This filter was used to exclude sites
93 that are effectively monomorphic or contain only rare, uninformative alleles (singletons or
94 sequencing errors), to ensure that downstream analyses of population structure are based on
95 robustly polymorphic loci⁸. To regularize allele frequency estimates and prevent issues with
96 zero-count alleles, especially at sites with low coverage, a pseudocount of 0.5 was added to
97 each of the four allele counts (A, C, G, T) for every site in every lake.

98 **Calculation of Pairwise Fixation Index (Fst)**

99 To quantify genetic differentiation between all pairs of lake populations, we calculated the
100 pairwise fixation index (FST). The calculations were performed on the full multiallelic data
101 from the filtered set of SNV sites to retain all available genetic information. We used the
102 Hudson's estimator, formulated as a ratio of sums over all qualifying loci⁹:

$$103 \quad FST = 1 - \left(\frac{\sum \pi_{\text{within}}}{\sum \pi_{\text{between}}} \right)$$

104 where $\sum \pi_{\text{within}}$ is the sum of the average within-population diversity across two populations
105 and $\sum \pi_{\text{between}}$ is the sum of the between-population diversity, both calculated over all shared
106 loci between the pair of populations. The final FST values represent the proportion of total
107 genetic variance at filtered sites that is explained by differences between populations.

108 **Principal Component Analysis (PCA)**

109 To visualize the genetic variation and population structure, principal component analysis
110 (PCA) was performed on the exact same set of filtered SNV sites used for the FST
111 calculations. A matrix of samples (columns) by alleles (rows) was constructed from the per-
112 sample allele counts. Each feature represented a specific non-reference allele at a given site
113 ("scaffold position: C"), and its value was the frequency of that allele in a given sample.
114 Alleles absent in more than 50% of the samples were removed. To ensure that the remaining
115 features contribute meaningfully to variance, they were further filtered to retain only those
116 with a minimum across-sample MAF (minor allele frequency; see below) of 0.02. Missing
117 values in the final matrix were imputed with the allele's mean frequency across all samples in
118 which it was present. The resulting matrix was centered and scaled before principal
119 component analysis using the prcomp function in R.

120 **Isolation-by-Distance (IBD) Analysis**

121 To investigate geographic patterns of genetic differentiation, we performed an Isolation-by-
122 Distance (IBD) analysis. All statistical analyses were conducted in R (v4.3.1)¹. Geographic
123 distances between lakes were calculated using the Haversine great-circle formula (R package

124 geosphere). To linearize the relationship between distance and differentiation, geographic
125 distances were log10-transformed, and pairwise F_{ST} values were transformed using Slatkin's
126 linearization ($F_{ST} / (1 - F_{ST})$). F_{ST} values were capped at 0.9999 to prevent division by zero.
127 To assess scale-dependent patterns, we classified each lake pair into one of three geographic
128 categories: (1) Local (<100 km), (2) within-continent (≥ 100 km, same continent), and (3)
129 between-continents.

130 **Statistical Testing and Slope Estimation**

131 We used two approaches to analyse the IBD relationship. The primary statistical test for a
132 significant correlation between the genetic and geographic distance matrices was a
133 permutation-based Mantel test (R package *vegan*), which accounted for the non-
134 independence of pairwise data. Significance was determined based on 1,000 permutations.
135 For these tests, any lakes with fewer than three pairwise connections were excluded to ensure
136 stable correlation estimates.

137 To estimate the slope of the IBD relationship and visualize trends, we fitted linear regression
138 models (R function *lm*). However, since the standard Ordinary Least Squares (OLS)
139 regression is sensitive to outliers and assumes data independence, we conducted a
140 comprehensive robustness analysis to validate our slope estimates. First, we identified
141 influential outliers in the OLS model using Cook's distance with a threshold of $4/n$ (R
142 package *car*). Second, we compared the standard OLS slope to estimates from four alternative
143 models, i.e., OLS with influential outliers removed, Weighted Least Squares (WLS), with
144 weights set as the inverse of Cook's distance, and two robust regression models less sensitive
145 to outliers: Huber's M-estimation (*rlm* in *MASS*) and MM-estimation (*lmrob* in *robustbase*).
146 Finally, non-parametric 95% confidence intervals for the OLS slopes were generated using
147 1,000 bootstrap replicates (R package *boot*). The consistency of a slope's sign and
148 significance across this suite of methods was used to confirm the robustness of our
149 conclusions (see Supplementary Table 7 and Supplementary Figs. 5 and 6).

150 **Allele Frequency Spectrum, Strain Diversity, and Selection Analysis**

151 **Extraction of Minor Allele Frequencies (MAF)**

152 To construct allele frequency spectra (AFS) and assess within-population diversity, we first
153 extracted per-sample minor allele frequencies (MAFs) from *inStrain*⁷ SNV output files
154 (*.SNVs.tsv). A custom bash and awk pipeline was used to process all samples. This applied
155 a stringent filtering to each SNV site; sites were required to have a minimum total read depth
156 of $\geq 30\times$. For an allele to be considered valid, a base (A, C, G, or T) required support from a
157 minimum of 3 reads. This step helped minimize the impact of sequencing errors on low-
158 frequency variant calls (allele support filter; b-gate). Only sites with exactly two alleles
159 passing the b-gate filter were retained (biallelic constraint). This ensures that the MAF is
160 clearly defined to simplify downstream analyses by excluding complex multiallelic sites. For
161 each site passing these filters, the MAF was calculated as the count of the second-most
162 abundant allele divided by the total coverage. This process produced a comprehensive table
163 of all high-confidence biallelic SNVs and their corresponding MAFs for every sample.

164 **Selection of minor allele frequency (MAF) threshold to infer population structure**

165 MAF filtering substantially affects population genetic inferences, with different windows
166 capturing distinct evolutionary timescales¹⁰, we tested which frequency range best captured
167 ecosystem-age dynamics. We excluded rare variants (MAF < 0.2) to minimize sequencing
168 errors and focus on stable variation. We calculated the fraction of SNPs within three
169 overlapping MAF windows: (1) MAF 0.2-0.4 (intermediate frequencies), (2) MAF 0.2-0.5
170 (intermediate to common), and (3) MAF 0.4-0.5 (near-balanced polymorphisms). The primary
171 metric included the fraction of SNPs at each MAF window, defined as the proportion of all
172 polymorphic sites within a population that fall in the respective range. We defined the SNP
173 fraction (denoted $\text{frac}_{\text{MAF_window}}$) as:

174
$$\text{frac}_{\text{MAF_window}} = \frac{\text{number of SNPs within the MAF window}}{\text{total number of SNPs with } \text{MAF} > 0}$$

175 This metric was computed separately for each sample and then averaged across biological
176 replicates within each lake to obtain lake-level estimates.

177 To test the hypothesis that ecosystem age influences within-population genetic structure, we
178 analysed the relationship between lake age and fraction of SNPs at each MAF window. Lake
179 age data (in years) was compiled from literature and categorized as ancient, post-glacial,
180 post-mining, or reservoir. Lake age was \log_{10} transformed prior to all statistical analyses to
181 normalize the distribution and linearize the potential relationship. A non-parametric
182 Spearman's rank correlation (cor.test function in R), was used to assess the relationship
183 between variables without assuming linearity. This analysis was conducted on the full dataset
184 combining all species at each MAF threshold window. Statistical significance was set at $p <$
185 0.05. This was visualized using a scatter plot created with the ggplot2 package in R. To
186 illustrate the overall trend, an Ordinary Least Squares (OLS) linear regression line (95%
187 confidence interval) was overlaid on the data.

188 **pN/pS Data Calculation and Selection Analysis**

189 The raw SNV files were prefiltered to retain the mutation-type annotation information with
190 the same filtering criteria as above (depth $\geq 30\times$, b-gate count ≥ 3 , biallelic-only). For each
191 qualifying SNV, the mutation type field from the inStrain⁷ output was parsed to classify the
192 polymorphism as either "synonymous" or "non-synonymous." SNVs with ambiguous or
193 missing annotations were classified as "unknown" and excluded from pN/pS calculations.
194 This process generated a table containing the MAF and mutation type for every filtered SNV
195 in every sample. We used the annotated MAF table to infer selective pressures on protein-
196 coding genes via the ratio of non-synonymous to synonymous polymorphisms (pN/pS). The
197 analysis was conducted using a custom R script.

198 For each lake population, we calculated a single genome-wide pN/pS ratio. This was
199 computed as the total count of non-synonymous SNPs divided by the total count of
200 synonymous SNPs across all filtered polymorphic sites in that population. Further, to resolve
201 the selection dynamics in more detail, we also calculated pN/pS within distinct MAF bins. All

202 filtered SNPs were partitioned into five bins: (0–0.05), (0.05–0.10), (0.10–0.20), (0.20–0.40),
203 and (0.40–0.50). The pN/pS for each bin were calculated as the ratio of the number of non-
204 synonymous SNPs to synonymous SNPs falling within that frequency range.

205

206 **Supplementary references:**

207 1 Giorgi, F. M., Ceraolo, C. & Mercatelli, D. The R language: an engine for bioinformatics and
208 data science. *Life* **12**, 648 (2022).

209 2 Razali, N. M. & Wah, Y. B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors
210 and anderson-darling tests. *Journal of statistical modeling and analytics* **2**, 21-33 (2011).

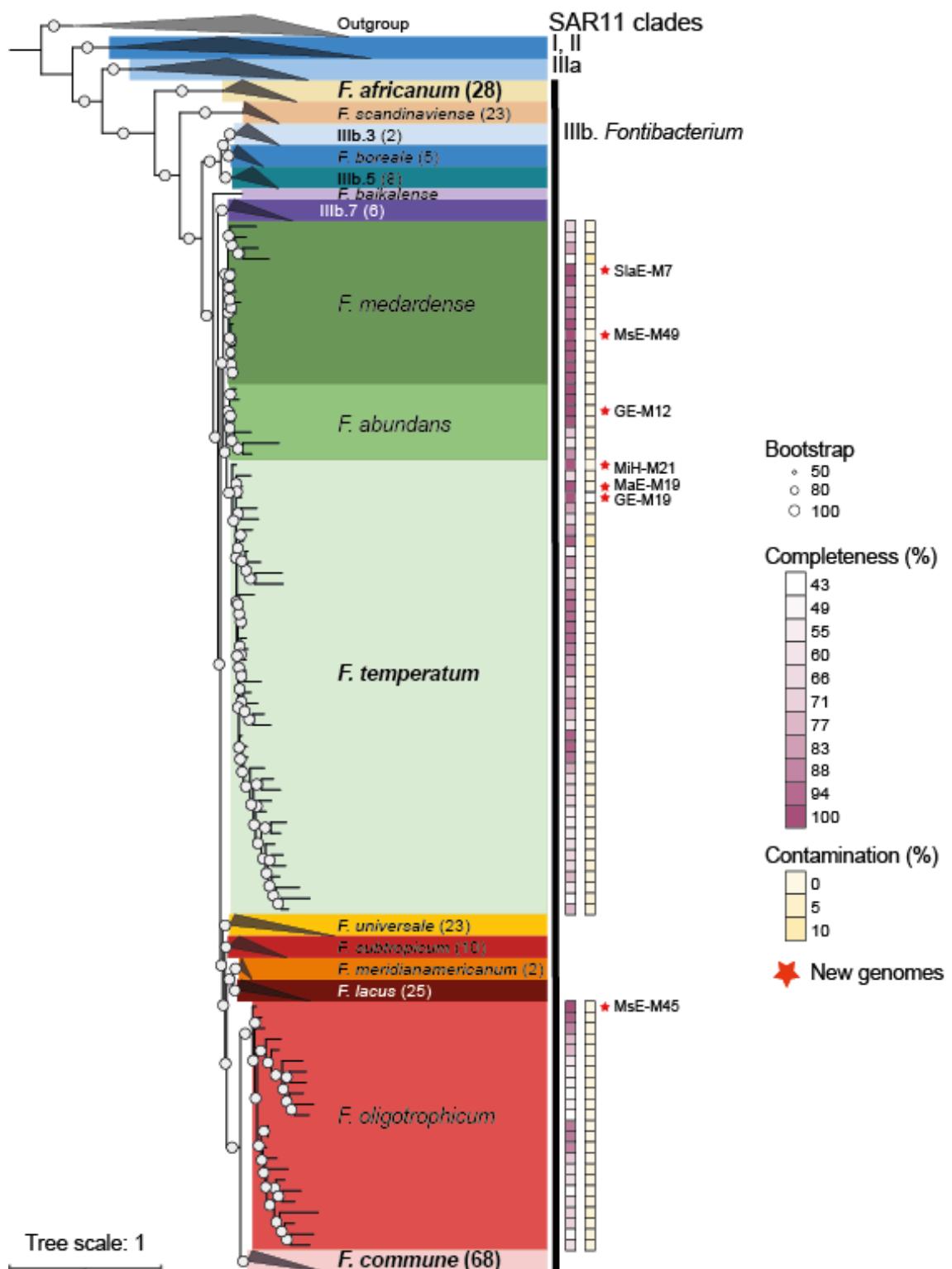
211 3 Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. *Journal of the
212 American statistical association* **69**, 364-367 (1974).

213 4 McKnight, P. E. & Najab, J. Kruskal - wallis test. *The corsini encyclopedia of psychology*, 1-1
214 (2010).

215 5 Elliott, A. C. & Hynan, L. S. A SAS® macro implementation of a multiple comparison post hoc
216 test for a Kruskal–Wallis analysis. *Computer methods and programs in biomedicine* **102**, 75-
217 80 (2011).

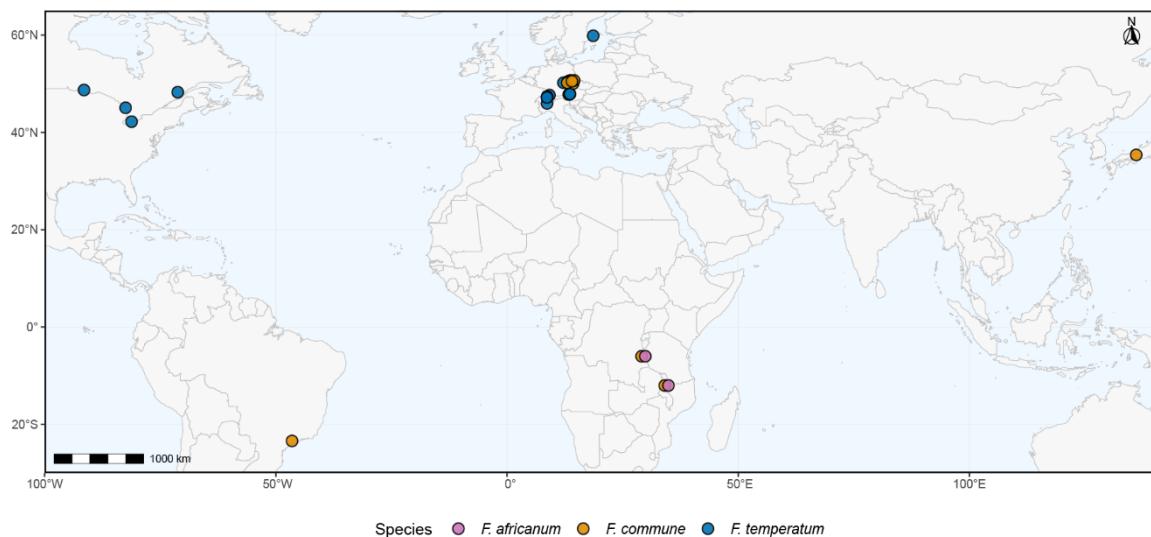
218 6 McKnight, P. E. & Najab, J. Mann - whitney U test. *The Corsini encyclopedia of psychology*, 1-
219 1 (2010).

220 7 Olm, M. R. *et al.* inStrain profiles population microdiversity from metagenomic data and
221 sensitively detects shared microbial strains. *Nature Biotechnology* **39**, 727-736 (2021).

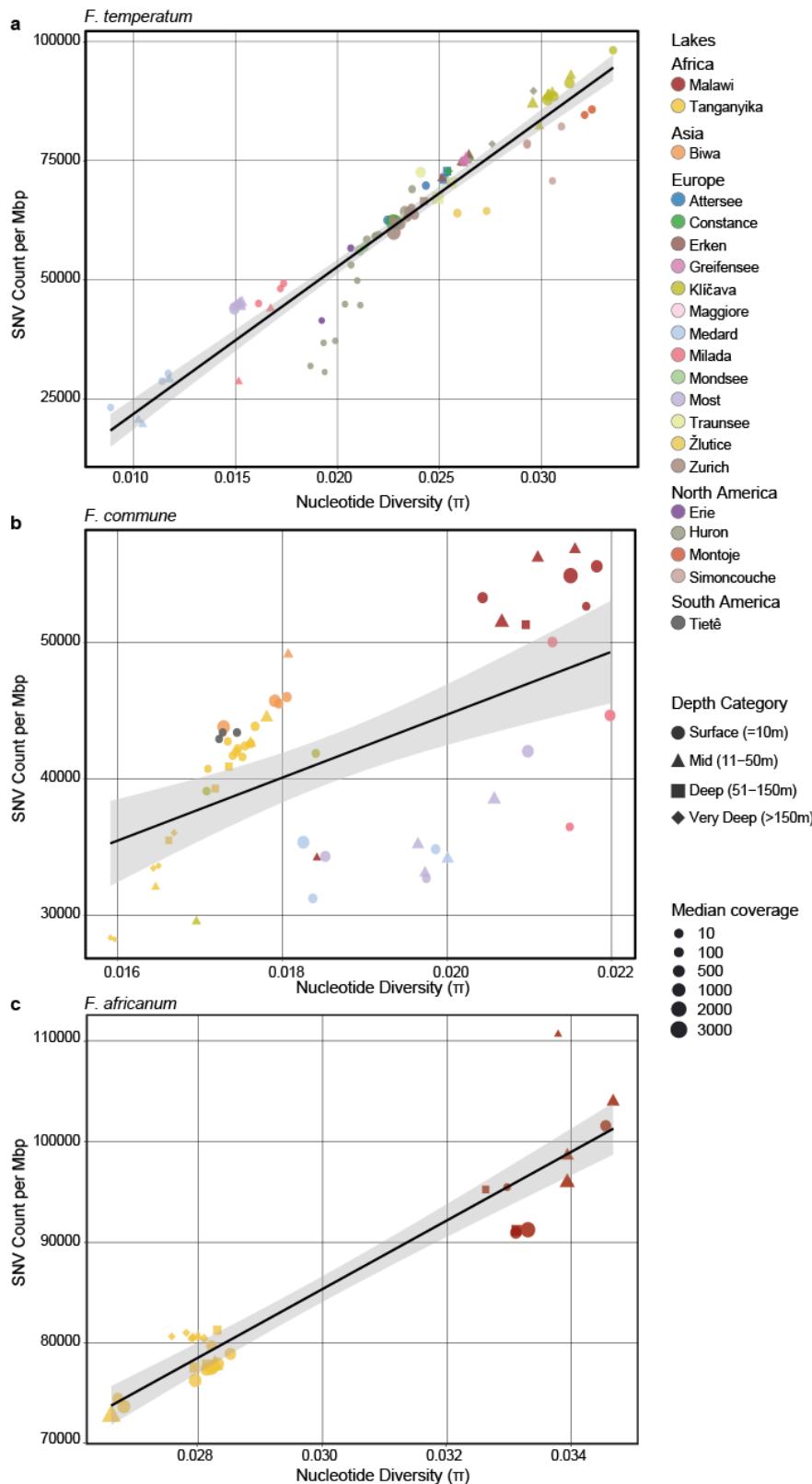

222 8 Nei, M. (Columbia University Press, 1987).

223 9 Bhatia, G., Patterson, N., Sankararaman, S. & Price, A. L. Estimating and interpreting FST: the
224 impact of rare variants. *Genome research* **23**, 1514-1521 (2013).

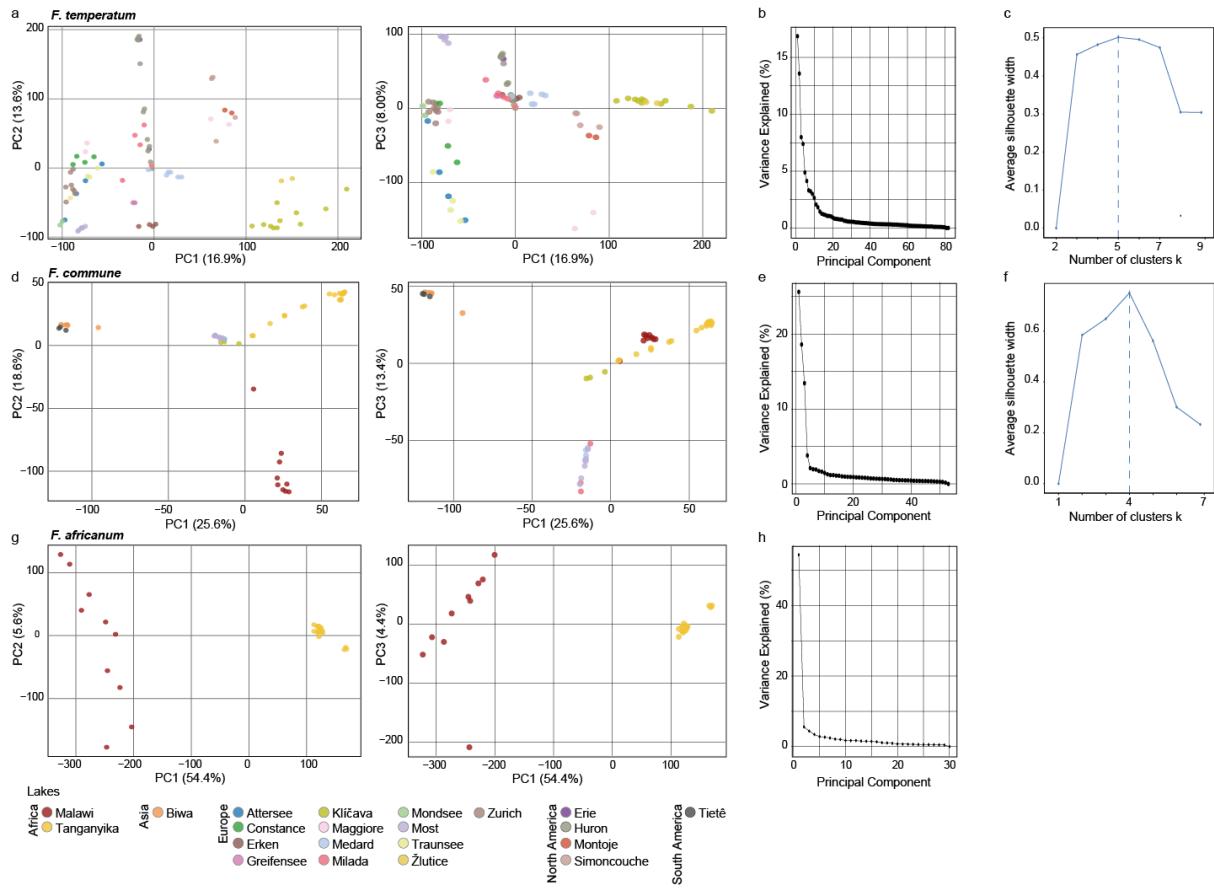
225 10 Linck, E. & Battey, C. Minor allele frequency thresholds strongly affect population structure
226 inference with genomic data sets. *Molecular Ecology Resources* **19**, 639-647 (2019).


227

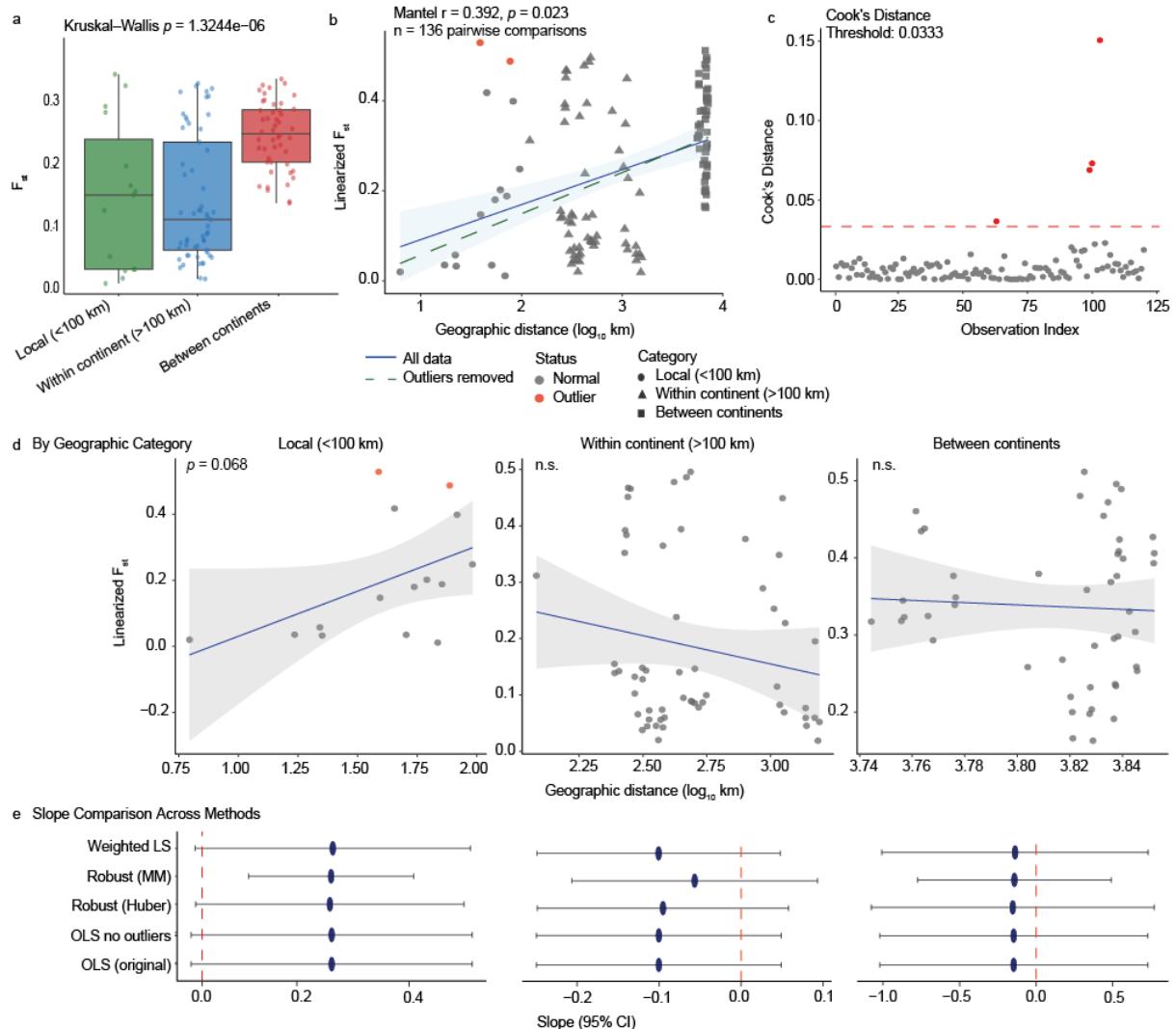
228


229

230 **Supplementary Fig. 1: Phylogeny of the SAR11 order.** Phylogenomic tree with ultrafast
 231 bootstrapping using 751 single-copy marker protein sequences and representatives of SAR11-
 232 IV and V as outgroup. Different clades of SAR11-I, II, IIIa and species of SAR11-IIIb
 233 (*Fontibacterium*) are displayed in different colours, numbers of genomes in each collapsed
 234 branch is given in brackets. New genomes sequenced in this study are highlighted by red stars
 235 followed by strain names ($n = 7$), the three species used for SNV analyses are highlighted in
 236 bold.

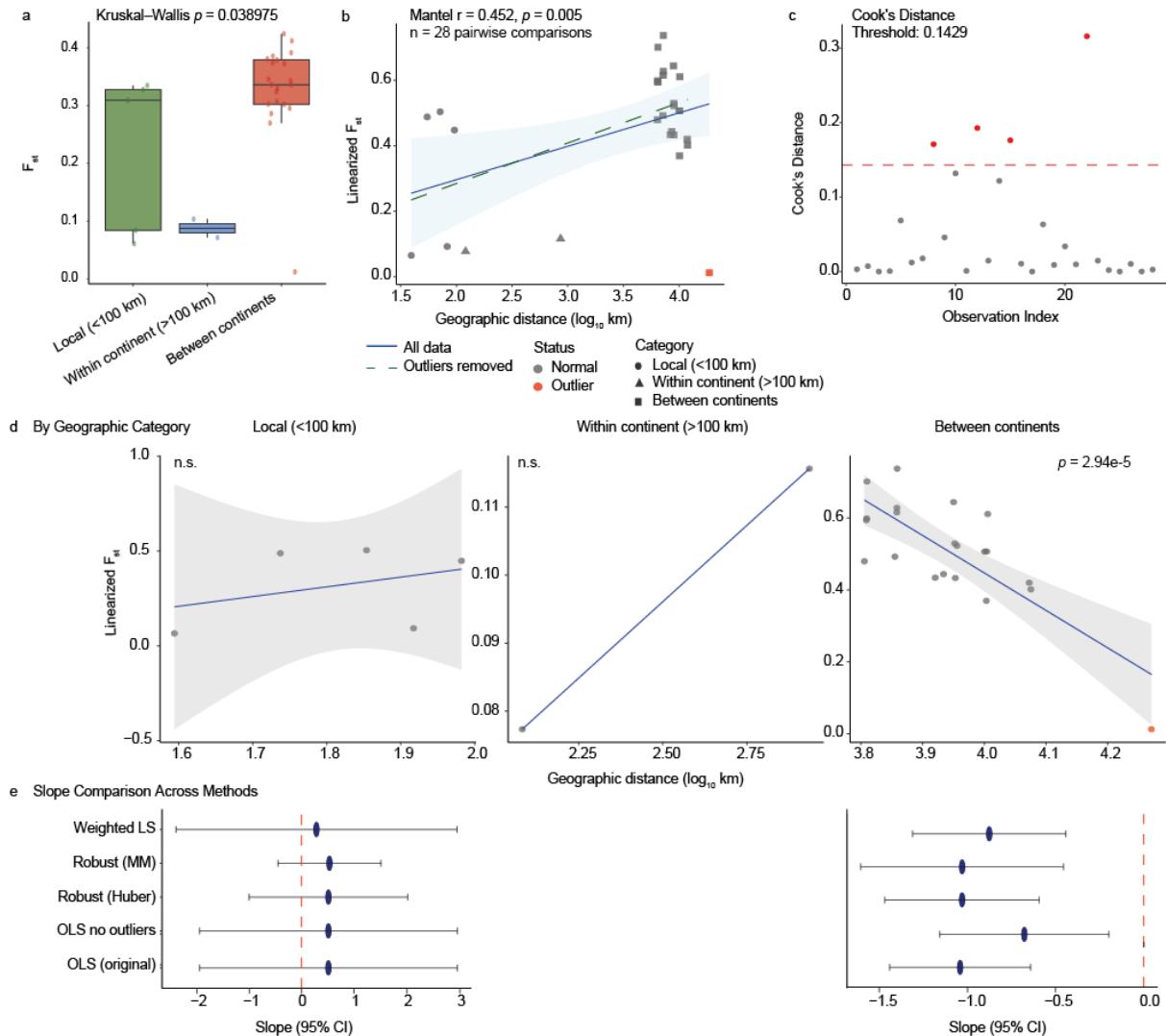

237

238 **Supplementary Fig. 2: Locations of lake metagenomes used for analyses (n**
 239 **metagenomes = 117, n lakes = 21).** Points are colored by *Fontibacterium* species occurring
 240 in a specific system.


241

242 **Supplementary Fig. 3: Scatter plots showing correlations between nucleotide diversity**
 243 **(π) and SNV density (counts per Mbp) for each species.** Points are colored by lake
 244 systems, sized by median coverage and shaped by depth category. Grey bands indicate 95%
 245 confidence intervals.

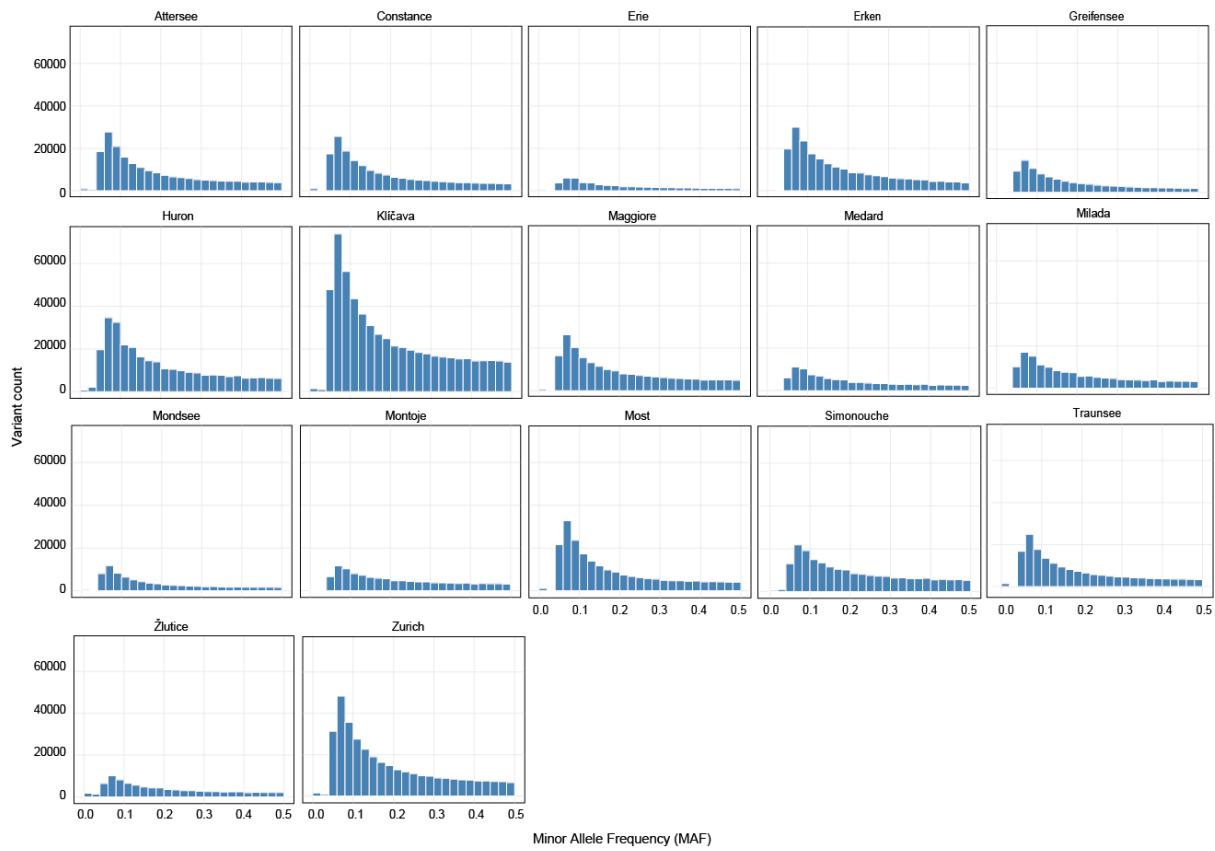
246


247 **Supplementary Fig. 4: Population genetic structure and differentiation of**
 248 ***Fontibacterium* species.** **a, b, e, f, i, j:** Principal component analysis (PCA) showing
 249 genetic differentiation among *Fontibacterium* populations from lakes across five
 250 continents, shown are variances explained by PC1, PC2 and PC3; **c, g, k:** explained
 251 variance of PCs; **d, h:** Silhouette analysis for optimal clusters observed in Fig. 2. **a-d:** *F.*
 252 *temperatum* populations (n=80) from 17 European and North American lakes. **e-h:** *F.*
 253 *commune* populations (n=53) from nine lakes in Africa, Asia, Europe, and South
 254 America. **i-k:** *F. africanum* populations (n=30) from African Great Lakes.

255

256 **Supplementary Fig. 5: Scale-dependent patterns of Isolation-by-Distance (IBD) for the**
 257 **temperate specialist, *F. temperatum*.** Genetic differentiation (F_{ST}) among 17 lake
 258 populations and its relationship with geographic distance. (a) F_{ST} distribution by
 259 geographic category. Boxplots showing the distribution of pairwise F_{ST} values into three
 260 geographic scales: local (<100 km), within continent (>100 km), and between continents.
 261 The overall variation among categories was statistically significant (Kruskal-Wallis $p =$
 262 1.32×10^{-6}), with inter-continental pairs showing the highest differentiation. (b)
 263 Scatterplot of linearized F_{ST} against \log_{10} transformed geographic distance for all 136
 264 pairwise comparisons. The analysis revealed a significant, weak positive overall
 265 correlation (Mantel $r = 0.392$, $p = 0.023$). The OLS regression on all data indicated by
 266 a solid blue line and the regression after removing influential outliers by green line. (c)
 267 Outlier diagnosis with Cook's distance for the OLS regression in (b). Points exceeding
 268 the dashed red threshold ($4/n = 0.0333$) are identified as influential outliers. (d) IBD
 269 analysis by geographic scale. The IBD relationship was modelled separately for each
 270 category. A marginally significant positive trend observed only at the local scale ($p =$

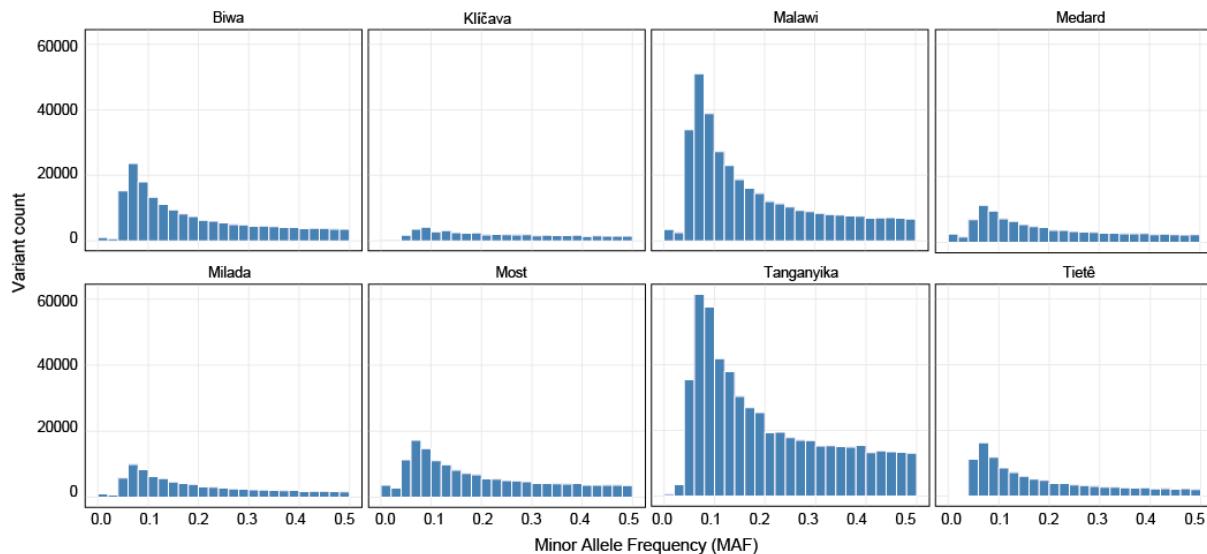
271 0.068, bootstrap significant), indicating dispersal limitation over short distances. No
272 significant relationship between genetic and geographic distance was found at within or
273 between continents scales. **(e)** Comparison of the estimated IBD slopes and their 95%
274 confidence intervals across five different statistical methods for each geographic
275 category. The vertical dashed red line at zero indicates the null hypothesis of no
276 relationship. This confirmed the robustness of the findings in (d); the positive slope at the
277 local scale is consistent across methods, while the slopes for the broader geographic
278 scales consistently overlap zero, indicating a lack of significant IBD.

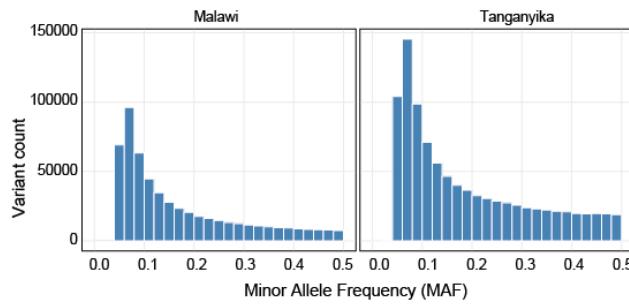


279

280 **Supplementary Fig. 6: Isolation-by-Distance (IBD) patterns for the ubiquitous species,**
 281 ***F. commune*, reveal global connectivity.** Genetic differentiation (F_{ST}) among eight
 282 globally distributed lake populations and its relationship with geographic distance. (a)
 283 F_{ST} distribution by geographic category. Boxplots showing the distribution of pairwise
 284 F_{ST} values by geographic scale. The overall variation among categories was statistically
 285 significant (Kruskal-Wallis $p = 0.038975$). (b) Scatterplot of linearized F_{ST} against \log_{10}
 286 transformed geographic distance for all 28 pairwise comparisons. The overall trend is
 287 weakly positive but is heavily influenced by the distinct patterns at different scales
 288 (Mantel $r = 0.452$, $p = 0.005$). The solid blue line shows the OLS regression on all data;
 289 the dashed green line shows the regression after removing influential outliers. (c) Outlier
 290 diagnosis with Cook's distance for the OLS regression in (b). Several points exceeded the
 291 dashed red threshold ($4/n = 0.1429$), identifying them as highly influential outliers. This
 292 included the genetically similar but geographically distant Lake Biwa (Japan) and Tietê
 293 Reservoir (Brazil) populations. (d) IBD analysis by geographic scale. The relationship
 294 between genetic and geographic distance is modelled separately for each category. At the
 295 local and within continent scales, no significant IBD pattern is detected. In contrast, at
 296 the between continents scale, there is a strong and highly significant negative IBD
 297 relationship ($p = 2.94 \times 10^{-5}$). This indicates that the most geographically distant

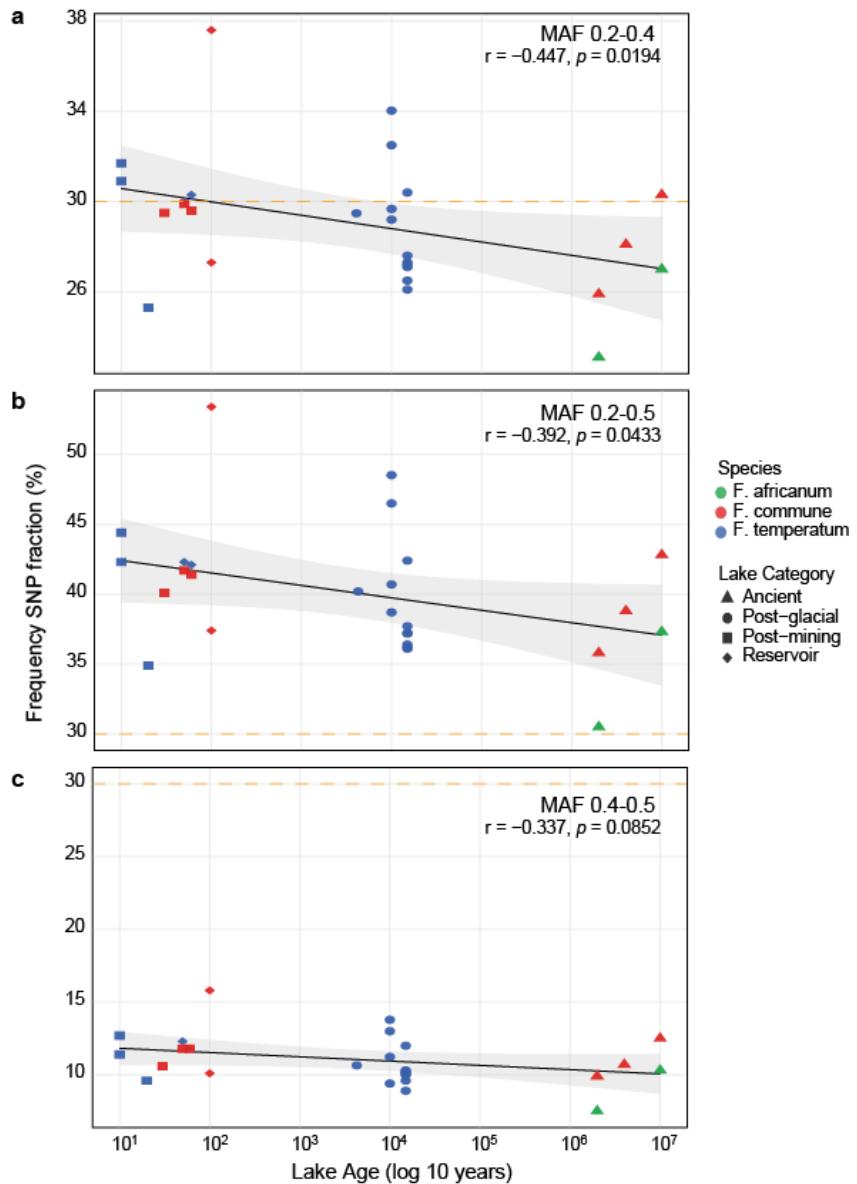
298 populations are the most genetically similar. (e) Comparison of the IBD slope estimates
299 and their 95% confidence intervals across five different statistical methods. This
300 confirmed that the negative slope at the intercontinental scale is a robust finding, with the
301 confidence interval remaining well below zero regardless of the statistical model used.

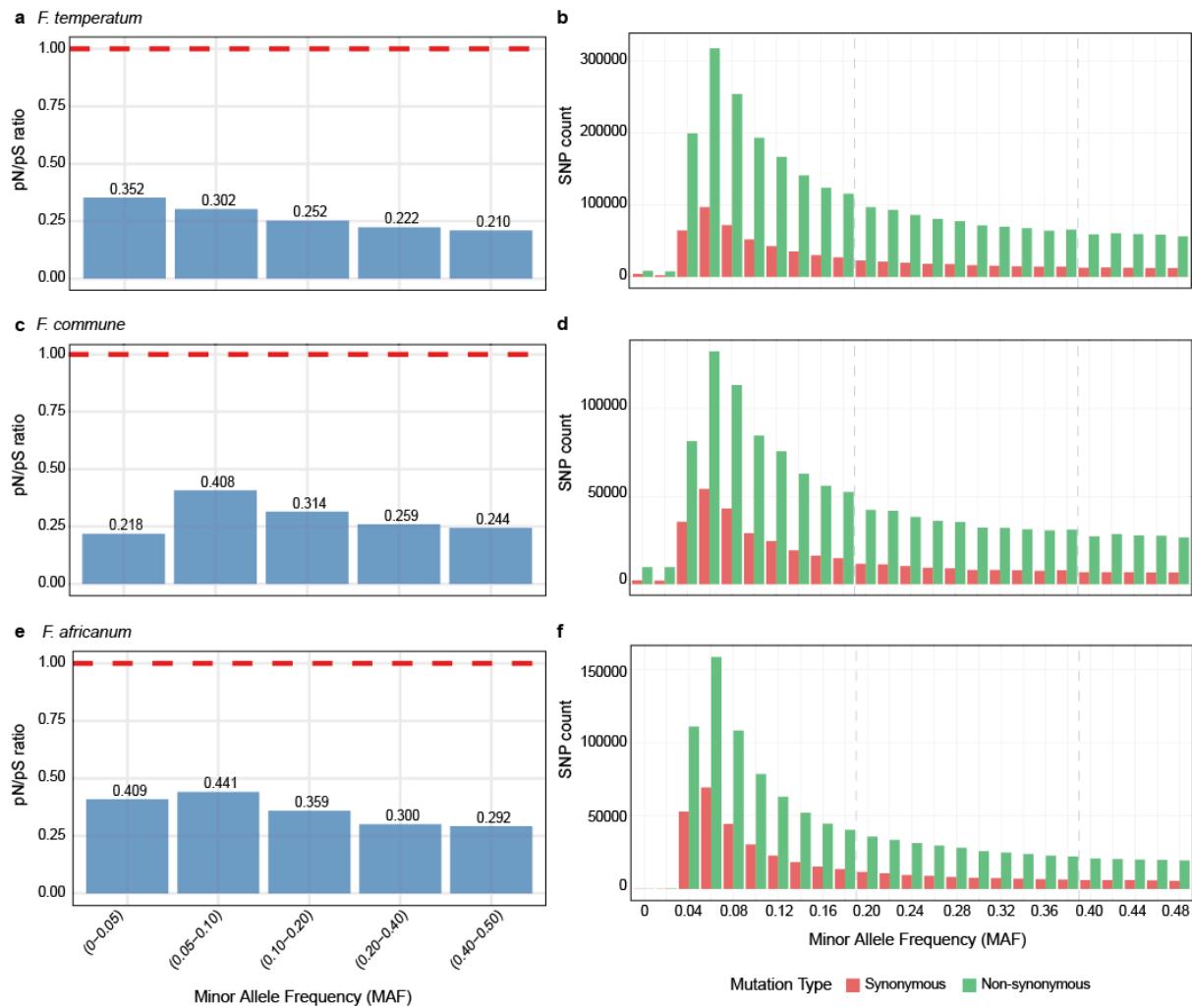

a *F. temperatum*


302

303 **Supplementary Fig. 7a: Allele Frequency Spectra (AFS) for *F. temperatum* populations**
304 **across freshwater lakes.** Each histogram displays the distribution of single nucleotide
305 polymorphisms (SNPs) binned by minor allele frequency (MAF, 0.0 to 0.5) for each lake
306 population. These spectra were constructed by pooling all per-sample SNP data for a
307 given species within each lake. The displayed variants were subjected to a stringent
308 filtering pipeline to ensure high quality. Each SNV site was required to have a minimum
309 read depth of $\geq 30\times$ in the sample from which it was called and be biallelic, with the
310 minor allele supported by a minimum of 3 reads.

b *F. commune*




c *F. africanum*

311

312 **Supplementary Fig. 7 continued: Allele Frequency Spectra (AFS) for (b) *F. commune***
313 **and (c) *F. africanum* populations across freshwater lakes.** Each histogram displays the
314 distribution of single nucleotide polymorphisms (SNPs) binned by minor allele
315 frequency (MAF, 0.0 to 0.5) for each lake population. These spectra were constructed by
316 pooling all per-sample SNP data for a given species within each lake. The displayed
317 variants were subjected to a stringent filtering pipeline to ensure high quality. Each SNV
318 site was required to have a minimum read depth of $\geq 30\times$ in the sample from which it was
319 called and be biallelic, with the minor allele supported by a minimum of 3 reads.

337

338 **Supplementary Figure 9: Dynamics of purifying selection across the wide range of allele**
 339 **frequencies for (a) the temperate specialist (*F. temperatum*), (b) the ubiquitous**
 340 **species (*F. commune*), and (c) the endemic species (*F. africanum*).** All single
 341 nucleotide polymorphisms (SNPs) were pooled across all lake populations for each
 342 species to generate these patterns. **(a-c)** The ratio of non-synonymous to synonymous
 343 polymorphisms (pN/pS) calculated within distinct minor allele frequency (MAF) bins.
 344 The red dashed line indicates the neutral expectation (pN/pS = 1.0). **(d-f)** The right
 345 panels show the absolute counts of non-synonymous (green) and synonymous (red)
 346 SNPs across the allele frequency spectra. Dashed blue lines indicate the intermediated
 347 frequency threshold (MAF; 0.2-0.4).