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Supplementary Methods 26 

 27 

Global arable land mapping data. We constructed 1-km Global Arable Land Fraction (GALF) 28 
by integrating multiple global satellite-derived land cover products with long-term temporal 29 
coverage (≥20 years) and high spatial resolution (≤500 m), selecting only those with consistent 30 
temporal characteristics and spatial continuity. The FROM-GLC product46 was excluded due to 31 
variability in input scene timing that affected spatial coherence, while certain regional land cover 32 
products were also omitted to maintain consistency across regions. The included global products 33 
are the International Geosphere-Biosphere Programme (IGBP) from the Moderate Resolution 34 
Imaging Spectroradiometer (MODIS, MCD12Q1 v061)47, European Space Agency’s Climate 35 
Change Initiative (CCI)48, GlobeLand3049, Global Land Analysis and Discovery (GLAD) 36 
dataset50, and GLC_FCS30D51. Detailed specifications on cropland definitions, spatial 37 
resolutions, and temporal coverages for each dataset are provided in Table S1. Note that for 38 
datasets that do not explicitly distinguish arable land from woody croplands, we hereinafter refer 39 
to all such areas collectively as cropland. 40 

As shown in Table S1 and discussed previously5, cropland definitions vary across 41 
products and deviate from the FAO cropland definition, which includes both arable land and 42 
permanent woody crops. This introduces possible bias in our and similar analyses. For instance, 43 
three products (CCI, GlobeLand30, and GLC_FCS30D) include permanent crops, mostly woody 44 
tree crops (e.g., oil palm, cocoa, coffee, rubber, fruit orchards). Conversely, MODIS and GLAD 45 
cropland maps exclude them. Furthermore, it is likely that the annual crops component of all 46 
products is in fact aligned more with the FAO definition of temporary crops rather than arable 47 
land5. This is because satellite-derived products, by their nature, primarily reflect land cover, 48 
whereas cropland represents a combination of land cover and land use shaped by human 49 
activities for food production52, which are more difficult to distinguish from space. Relying 50 
solely on individual land cover datasets could therefore lead to systematic over- or 51 
underestimation of cropland extent, particularly in regions dominated by woody crops, such as 52 
Southeast Asia.  53 

 54 

New method to harmonize across global arable land datasets. To harmonize different 55 
products and enhance consistency with the FAO definition of arable land, we developed a 56 
synergy approach53-58 for generating GALF, the workflow of which is illustrated in Fig. S1. 57 
Unlike previous studies53-58, we focused exclusively on arable land rather than including 58 
permanent crops for the following reasons: (1) arable land is consistently represented across land 59 
cover products and FAO statistics (Table S1), and (2) the harmonization and validation of GALF 60 
rely on ground reference samples46,59-62 that are typically interpreted from satellite or aerial 61 
imagery, which could mix woody crops with forests due to their tree-like canopy structure and 62 
phenological characteristics. In other words, even if synergized cropland maps were generated 63 



following the FAO cropland definition (i.e., including both arable land and permanent crops), it 64 
would be difficult to reliably validate the permanent crop component.  65 

In constructing GALF, the synergy approach integrates five land cover products with 66 
FAO country-level arable land statistics (FAOSTAT)63, considering only the arable land 67 
components for products that explicitly distinguish them from woody crops. Woody vegetation 68 
was further excluded using the GLAD tree cover mask50. The approach assumes that strong 69 
agreement among input layers increases confidence in arable land presence (Fig. S2), which 70 
generally leads to improved mapping accuracy54-58. Given that most agreement scores can result 71 
from multiple combinations of land cover products (Fig. S3), this method first requires ranking 72 
the performance of each individual product. Unlike previous studies that rely solely on expert 73 
judgment, ground reference samples, or FAOSTAT for ranking54-58, our approach ranks the 74 
products based on both their accuracy against ground reference samples and their consistency 75 
with FAOSTAT. This is based on the assumption that the product with the highest accuracy 76 
against ground reference samples should also show the closest agreement with FAOSTAT 77 
country-level arable land area, provided that sufficient validation samples are available and the 78 
FAO statistics are reliable. Specifically, for each country, land cover products were first 79 
evaluated and ranked by their overall accuracy when at least 20 validation samples were 80 
available, considering some countries with small land areas. To avoid overinterpreting marginal 81 
differences, only two decimal places of overall accuracy were considered56. In cases where 82 
products had identical accuracy or fewer than 20 validation samples were available, the product 83 
whose arable land area was closest to the FAOSTAT was assigned a higher rank. In some regions 84 
lacking FAOSTAT, rankings were based on continental-scale validation results across nine 85 
continental regions (Fig. S4), which were delineated according to administrative boundaries64 86 
and the spatial clustering patterns of global arable land (Fig. 1a). More information on ground 87 
samples and the performance evaluation of land cover products are provided in the section 88 
below.  89 

Once country-level performance rankings of input land cover products were available, an 90 
agreement-ranking score lookup table was established based on binary permutations to prioritize 91 
high-ranked regions that best matched reference data (Table S2). Different from previous 92 
research that converted binary permutations to either agreement scores54-57 or binary scores58, 93 
this study combined both scoring approaches to enhance the likelihood of identifying the optimal 94 
configuration that best aligns with ground validation samples and FAO statistics. This is because 95 
we found that each scoring method has inherent limitations, but they offer complementary 96 
strengths when used together. The agreement-score approach54-57 prioritizes regions where 97 
multiple products consistently indicate the presence of arable land (Fig. S3). This method is 98 
particularly effective in regions where the input land cover products have comparable accuracy; 99 
however, it may underperform in cases where one product significantly outperforms the others. 100 
For example, if a single product accurately captures the full extent of arable land, it may 101 
mistakenly prioritize regions where multiple lower-performing products indicate arable land over 102 
areas correctly identified by the high-performing product alone. Conversely, the binary-score 103 



approach58 gives priority to regions identified by the best-performing product but may be less 104 
effective when multiple products exhibit similar accuracy (Fig. S3). Thus, combining both 105 
approaches increases the diversity of scoring combinations and enhances the ability to identify 106 
the configuration that best matches ground validation samples and FAO statistics. In this study, 107 
applying the combined method to five input products resulted in a total of 58 unique scoring 108 
combinations, whereas using either approach alone yielded only 32 combinations (i.e., 25; see 109 
Table S2).  110 

Then, the ground samples and FAOSTAT were used again as benchmarks to identify the 111 
best-performing scoring combinations. We found that the combination yielding the highest 112 
overall accuracy did not always align with the one most closely matching the FAOSTAT-reported 113 
arable land area, particularly in African countries. This discrepancy is likely attributable to 114 
relatively low agreement among five land cover products over Africa (Fig. S2) and the inherent 115 
uncertainties in both the ground reference and FAOSTAT data65. To balance both criteria, for 116 
countries with more than 20 validation samples, we retained only those combinations that either 117 
exceeded the overall accuracy of the best individual product or ranked within the top 10% of all 118 
combinations based on overall accuracy. Among these, the combination with the closest arable 119 
land area to the FAOSTAT was selected. For countries lacking sufficient validation samples, the 120 
FAOSTAT alone was used to select the best combination. In cases where FAOSTAT data were 121 
unavailable, but more than 20 validation samples were present, ground samples were directly 122 
used to identify the optimal combination. For regions lacking both adequate validation samples 123 
and FAOSTAT data, the best combination was selected based on the corresponding continental 124 
validation results.  125 

Finally, the 1-km GALF was computed by averaging arable land weights at 100-m 126 
subpixels within areas defined by the optimal scoring combination. Considering that the spatial 127 
resolution varies across input land cover datasets, all products were first reprojected into a 128 
common coordinate system (WGS84; EPSG:4326) and resampled to a 100-m resolution to 129 
facilitate the calculation of arable land fractions at the 1-km scale. In this calculation, 100-m 130 
pixels classified as pure arable land by all overlapping products were assigned a weight of 1, 131 
while pixels identified as mosaics (i.e., a mix of cropland and other land cover types) by any 132 
product were assigned lower weights to reflect their partial arable land composition. Specifically, 133 
for CCI, mosaic cropland classes were weighed as 0.75 when cropland fraction exceeded 50%, 134 
and 0.25 when it was below 50%. For MODIS, mosaic cropland comprising 40–60% cultivated 135 
land was assigned a value of 0.5. In cases where a 100-m pixel was simultaneously labeled as 136 
pure arable land and mosaic arable land by different products, the assigned weight was averaged 137 
accordingly. Notably, a few small islands were not represented in the continental mask64, for 138 
which the arable land fraction was directly calculated based on the GLAD dataset50 due to its 139 
similarity to the FAO arable land definition, high spatial resolution, and reliable accuracy, as 140 
discussed below. We implemented the procedure using data from 2010 to identify the optimal 141 
scoring combination, which was then applied to generate GALF for the years 2000, 2010, and 142 



2020. These three years represent the intersection of temporal coverage across all products, with 143 
MODIS land cover from 2001 used as a proxy for 2000.  144 

It should be noted that, although the proposed method is expected to produce high-quality 145 
arable land maps beyond the capabilities of individual land cover products, its performance 146 
strongly depends on the quality of the input datasets and may fail to capture arable land in 147 
regions where most products perform poorly. One notable example is greenhouse agriculture, 148 
which should ideally be detected by all land cover products but exhibits distinct spectral 149 
reflectance compared with other arable land66. We found that the ability of the products to detect 150 
greenhouse infrastructures varies considerably. As examined, while small- to medium-sized 151 
greenhouse facilities, such as those in Michoacán, Mexico (19.9°N, 102.2°W), are generally 152 
captured by all products, only GlobeLand30 and CCI successfully detect the large-scale 153 
greenhouse infrastructures (> 500 km2) in Almería, Spain (36.7°N, 2.7°W)67,68. In contrast, other 154 
products misclassify these areas as impervious surfaces (GLC_FCS30D), wetlands (GLAD), or 155 
non-vegetated land (MODIS). Consequently, the proposed method cannot reliably capture these 156 
large-scale greenhouse areas in Spain. To address this issue, we explicitly identified these 157 
greenhouse areas across Spain by combining GlobeLand30 and CCI arable land layers with 158 
GLC_FCS30D impervious surfaces and GLAD wetlands across Spain, before calculating the 1-159 
km arable land fraction. Fig. S5 demonstrates that this combined approach effectively captures 160 
the greenhouse areas in southern Spain. On the other hand, in Africa and the Arabian Peninsula, 161 
the quality and agreement among the five input cropland products were sometimes very low 162 
(Fig. S2). For example, GLC_FCS30D missed an entire scene in Sudan, while CCI misclassified 163 
several roads within the Congolian rainforests as cropland. Therefore, we carefully compared 164 
GALF with GLAD by evaluating their overall accuracy, area consistency with FAOSTAT 165 
statistics, and spatial patterns of arable land distribution. Based on the assessment, we replaced 166 
GALF with GLAD in the Republic of the Congo, Democratic Republic of the Congo, South 167 
Sudan, Sudan, Somalia, and Saudi Arabia, where GLAD demonstrated comparable accuracy to 168 
GALF but provided more realistic spatial patterns. 169 

To the best of our knowledge, GALF is the first global long-term arable land fraction 170 
product, providing a novel framework for assessing arable land dynamics in the 21st century. 171 

 172 

Performance evaluation of input land cover products. To support the performance ranking of 173 
land cover products in 2010 and identify the best scoring combination, we compiled multiple 174 
sources of reference samples (Fig. S6). The year 2010 was selected because it represents the 175 
midpoint of the study period and offers the most consistent availability of ground validation data. 176 
The reference samples included two datasets from Tsinghua University46,59 and additional 177 
samples from the Geo-wiki crowdsourcing platform60 and the U.S. Geological Survey’s Land 178 
Change Monitoring, Assessment and Projection (LCMAP)61. The Tsinghua University 179 
datasets46,59 were originally developed to support the creation and validation of their 30-m global 180 
land cover product (i.e., FROM-GLC), where cropland is defined as arable and tillage land with 181 



herbaceous and/or shrub crops—thus more than arable land. The first dataset46 involves 36,352 182 
globally distributed random samples, manually labeled by hundreds of students, researchers, and 183 
experts using Google Earth imagery in or around 2010. The second dataset59 contains 38,664 184 
global random sample units spanning the years 1986 to 2010, derived through interpretation of 185 
Landsat imagery69, MODIS enhanced vegetation index (EVI)70, and other high-resolution images 186 
via Google Earth. For this study, a total of 11,672 samples in 2010 were considered. The Geo-187 
wiki dataset60,71 records the dominant, secondary, and tertiary land cover types, with cropland 188 
defined as “cultivated and managed” or “mosaic of cultivated and managed/natural vegetation”. 189 
In this study, locations falling into any of the three cropland-related categories were considered 190 
as reference. It comprises 151,942 globally distributed random samples derived from the visual 191 
interpretation of Google Earth imagery before 2012. A subset of 12,555 samples from 2010 was 192 
selected for analysis. The LCMAP reference dataset61 defines cropland as areas used for the 193 
production of crops, including cultivated and uncultivated croplands, hay fields, orchards, 194 
vineyards, and pasturelands actively managed for crop production. It offers annual land cover 195 
labels for approximately 25000 random locations across the contiguous United States (CONUS) 196 
from 1984 to 2021 based on systematic interpretation of Landsat imagery and aerial photographs. 197 
A subset of 24,995 samples from 2010 was used in this study. To integrate the four sample sets 198 
and avoid conflicting validation results, samples located within the same 1-km pixel were 199 
merged, and those indicating different land cover types were excluded. A 1-km resolution was 200 
adopted to ensure consistency in comparisons among the various land cover products and the 201 
GALF. This resulted in a final dataset of 61,294 samples.  202 

To validate the performance of different land cover products in mapping arable land, 1-203 
km arable land fraction maps were generated by averaging values from the 100-m resolution 204 
layers, where any pixel with an arable land fraction greater than zero was designated as arable 205 
land57. Following previous studies54-57, accuracy was quantified using overall accuracy (OA), 206 
defined as the probability that a sample is correctly classified—i.e., the sum of true positives and 207 
true negatives divided by the total number of samples. Continental and global validation results 208 
for the five land cover products were summarized in Table S3, indicating that MODIS achieved 209 
the highest overall accuracy globally and across most continents, followed by GLAD, 210 
GlobeLand30, CCI, and GLC_FCS30D. However, despite its strong performance, MODIS 211 
cannot be used independently to derive 1-km arable land fractions due to its relatively coarse 212 
native resolution of 500 m. These performance rankings, along with country-level validation 213 
results and FAOSTAT, form the basis for ranking individual land cover products and identifying 214 
the optimal scoring combinations. 215 

 216 

Validation of GALF. To independently assess the accuracy of the GALF maps, we conducted a 217 
multi-scale validation in 2020 and compared it against other land cover products. Specifically, 218 
we first assessed its spatial accuracy using an independent reference sample set62 (Fig. S6), 219 
which defines cropland as rainfed and irrigated croplands following the United Nations’ Land 220 



Cover Classification rule72. This dataset integrates multiple data sources, including high-221 
resolution imagery from Google Earth, vegetation cover, plant phenology, tree height, and terrain 222 
characteristics, and comprises 79,112 random samples. To avoid duplicate and conflicting 223 
assessment results, samples located within the same 1-km pixel were merged, while those 224 
indicating different land cover types were removed, leading to a final dataset of 79,001 samples. 225 
Additionally, country-level arable land areas derived from GALF were compared with FAO 226 
statistics to evaluate area consistency. 227 

Before presenting the validation results, Fig. S7 provides an overview of global arable 228 
land fraction patterns depicted by the GALF maps for the years 2000, 2010, and 2020. As shown, 229 
arable land is predominantly concentrated in the Northern Hemisphere, particularly in North 230 
America, Europe, South Asia, and East Asia. By contrast, arable land is more sparsely distributed 231 
in low-latitude and Southern Hemisphere regions, including South America, Africa, Southeast 232 
Asia, and Oceania. When compared with other land cover products, Table S4 shows that GALF 233 
exhibits strong performance comparable to MODIS on the global scale and across all continents, 234 
followed by GLAD, GlobeLand30, CCI, and GLC_FCS30D. At the continental level, GALF 235 
outperforms all other products in four out of nine regions, ranking second in four and third in 236 
one. Similar results are also observed across different Köppen–Geiger climate zones: GALF 237 
achieves the highest accuracy in 12 out of 26 zones, ranks second in 10 zones, and third in four 238 
(Table S5). 239 

On the other hand, Fig. S8 compares country-level arable land area estimates from 240 
various land cover products against FAO-reported statistics. GALF achieves the highest 241 
correlation (R = 0.993) and the lowest root mean square error (RMSE = 2.35 × 104 km2), 242 
demonstrating superior accuracy in capturing national-scale arable land area. Compared to 243 
GLAD and MODIS, GALF improves the correlation by more than 0.6% and reduces RMSE by 244 
over 29%. For global total arable land, GLAD (1.32 × 107 km2), GALF (1.31 × 107 km2), and 245 
MODIS (1.46 × 107 km2) are closest to the FAO-reported total (1.38 × 107 km2), while other 246 
products (i.e., CCI, GlobeLand30, and GLC_FCS30D) significantly overestimate the global 247 
arable land area by more than 0.75 × 107 km2.  248 

 249 

Built-up fraction. The 1-km built-up fraction was calculated using built-up surface data73,74 250 
from the Global Human Settlement Layer (GHSL) project, developed by the European 251 
Commission’s Joint Research Centre as part of the Copernicus Emergency Management Service. 252 
Built-up surface is defined as the gross building footprint area (including wall thickness) 253 
enclosed by the outer building walls. The dataset was generated using a symbolic machine 254 
learning–based supervised classification approach75 applied to Sentinel-2 imagery76, achieving a 255 
high Intersection-over-Union (IoU)77 score of 0.92, placing it among the most accurate publicly 256 
available built-up datasets. The data are temporally interpolated or extrapolated in five-year 257 
intervals, covering the period from 1975 to 2030. In this study, 1-km built-up surface data for the 258 



years 2000, 2010, and 2020 were extracted and converted into built-up fractions by dividing the 259 
built-up area within each grid cell by the cell’s total area.  260 

Considering the uncertainties associated with GHSL, we also used the 30-m built-up land 261 
data from GLAD50. This product defines built-up land as areas containing man-made surfaces—262 
including infrastructure, commercial, and residential land uses—even if such surfaces do not 263 
dominate within the pixel. It was produced using a deep learning convolution neural network 264 
(CNN) algorithm78 applied to Landsat imagery, with training data collected from Open Street 265 
Map (https://planet.osm.org; https://www.openstreetmap.org). While the overall accuracy was 266 
not reported, the user’s accuracy ranged from 63.7% to 74.1% and the producer’s accuracy from 267 
39.1% to 59.6%. In this study, we computed 1-km built-up fractions by averaging the 30-m 268 
GLAD classifications within each 1-km grid cell. Given its relatively low classification accuracy, 269 
this dataset was used solely to validate the results presented in the main text (see Supplementary 270 
Discussion). 271 

 272 

Climate classification. To understand the climatic constraints on arable land and built-up 273 
systems, we used the 1-km constant Köppen–Geiger climate classification map79,80 for the period 274 
1991-2020. The Köppen–Geiger system delineates five major climate zones—tropical (A), arid 275 
(B), temperate (C), cold (D), and polar (E)—based on seasonal patterns of monthly temperature 276 
and precipitation. Precipitation regimes are further classified as desert (W), steppe (S), fully 277 
humid (f), summer dry (s), winter dry (w), and monsoon (m), while temperature regimes include 278 
hot (h), cold (k), hot summer (a), warm summer (b), cold summer (c), cold winter (d), tundra (T), 279 
and frost (F). This classification scheme has been widely adopted in previously developed 280 
Köppen-Geiger climate classification maps81,82. Compared with earlier versions that have 281 
relatively coarse resolutions (≥0.1°), the product used in this study offers a higher spatial 282 
resolution (1 km) and includes corrections for topographic effects. It should be noted that 283 
although climate zones shift with rising global temperatures79,83, they are expected to remain 284 
relatively stable over a few decades, as also evidenced by the relatively constant map for the 285 
period 1991–202079,80.  286 

 287 

Historical land cover dynamics. To investigate the historical co-evolution of arable land and 288 
built-up areas, we used two long-term land cover reconstructions: the History Database of the 289 
Global Environment (HYDE v3.4)84 and the Land-use Harmonization 2 (LUH2)85. HYDE3.4 290 
provides spatially explicit reconstructions of cropland and built-up areas at a resolution of 5 arc 291 
minutes. It integrates historical census data, archaeological records, and satellite observations to 292 
generate long-term time series from 10,000 BCE to 2024. Its most recent spatial allocation of 293 
land use is primarily informed by FAO agricultural land use data and the CCI land cover, 294 
supplemented with MODIS imagery and MapBiomas statistics (https://mapbiomas.org/) for 295 
Brazil, Indonesia, and China. The historical spatial allocation of built-up areas is estimated by 296 
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dividing each country’s total urban population by its average urban population density, while the 297 
allocation of cropland is determined as the residual area after accounting for water bodies, snow 298 
and ice, built-up areas, protected lands, and unused regions, which are calibrated using recent 299 
land cover products. In this study, we used data from 0 CE onwards. LUH2 offers global annual 300 
land-use states from 850 to 2100 at 0.25° resolution, combining historical reconstructions with 301 
future projections from integrated assessment models. Designed for Earth system modelling, 302 
LUH2 supports CMIP6 by providing consistent trajectories of land-use change, including 303 
cropland, pasture, forestry, and urban areas. Its historical land use is based on HYDE v3.2. In this 304 
work, we used historical LUH2 data from 850 to 2015. Note that although the definitions of 305 
cropland and built-up areas in these datasets differ from those in GALF and GHSL, we expect 306 
their historical evolution patterns to be largely consistent at climatic scales. 307 

   308 



Supplementary Discussions 309 

 310 

Although GALF shows notable improvements over the five other land cover datasets 311 
used, and GHSL remains the most accurate publicly available built-up dataset, we further assess 312 
the robustness of our findings by replicating all figures using cropland and built-up data from 313 
GLAD and historical land-use change from HYDE3.4. Note that GLAD cropland most closely 314 
aligns with the FAO definition of arable land among the five land cover products used, although 315 
it omits certain categories such as fallow land and temporary meadows and pastures5.  316 

 317 

Replication of Fig. 1 using GLAD data. Fig. S9 shows that arable land and built-up surface 318 
cover about 13.3 and 5.0 million km2 in 2020. While the total arable land area closely matches 319 
that of GALF, the built-up area is over seven times larger than the estimate from GHSL (Fig. 1). 320 
Consistent with Fig. 1, 89% of the cropland and 81% of built-up areas are located in the same ten 321 
of the thirty Köppen-Geiger climate classes, including mildly cold (Dfb, Dfa, Dwa), temperate 322 
(Cfa, Cwa, Cfb), arid steppe (BSk, BSh), tropical savannah (Aw), and arid desert (BWh). Finer-323 
scale analyses in northwestern Canada, Argentina-Chile, North Africa, northeastern China, and 324 
southeastern Australia (Figs. S9a1-S9c1) similarly demonstrate strong climate constraints on the 325 
cropland and built-up extent. When aggregated across all thirty Köppen–Geiger climate zones, 326 
cropland and built-up areas exhibit a strong positive correlation (R = 0.82, p < 0.01; Fig. S9d).  327 

 328 

Replication of Fig. 2 using GLAD and LUH2 data. Fig. S10a demonstrates the changes in 329 
GLAD cropland between 2020 and 2000, with and without concurrent built-up expansion at 330 
0.05° resolution. Largely consistent with Fig. 2a, the results show approximately 67% of built-up 331 
expansion occurred within 1 km of existing cropland, and that substantial cropland loss across 332 
North America, Europe, East Asia, South Asia, and Southeast Asia. Despite notable regional 333 
differences from GALF, similar spatial gradients of cropland change were observed across North 334 
America (southeast to northwest), the Eurasian Agricultural Belt (west to east), across China 335 
(southeast to northwest), and within India (from northern and coastal regions toward central 336 
forested areas). In North America, the concurrent decline in cropland alongside built-up area 337 
expansion is slightly less pronounced in the southeast, whereas cropland expansion in the 338 
northwest is more extensive compared with GALF. In Sub-Saharan Africa, Fig. S10a reveals a 339 
more pronounced cropland increase without substantial accompanying expansion of built-up 340 
areas. In India, Fig. S10a shows widespread cropland expansion across central regions, whereas 341 
Fig. 2a highlights cropland increases primarily concentrated in central forested zones. Despite 342 
these differences, both figures consistently demonstrate the strong influence of built-up 343 
expansion on cropland dynamics.  344 



Consistent with Fig. 2b, Fig. 10b shows that 49% of global cropland loss occurred within 345 
1 km of built-up area loss, increasing to 99% within 5 km, where total cropland loss declined 346 
sharply with distance from urban contraction. In line with Fig. 2c, Fig. 10c illustrates that much 347 
of the Northern Hemisphere is experiencing land competition between cropland and built-up 348 
areas, particularly across North America, Europe, and East Asia. By contrast, low-latitude 349 
regions continue to support the concurrent expansion of cropland and urban areas. Fig. 10d 350 
further confirms that the relationship between cropland and built-up areas can be characterized 351 
by three distinct land-use regimes: co-development, stability, and competition. 352 

 353 

Replication of Fig. 3 using GLAD data. Consistent with Fig. 3a, Fig. S11a demonstrates that 354 
global cropland increased by 9%—from 12.2 to 13.3 million km2—between 2000 and 2020, with 355 
11.0 million km2 remaining stable, 2.3 million km2 newly cultivated, and 1.2 million km2 lost. 356 
Among them, 89% of net gains occurred in tropical and arid climates, while losses were 357 
concentrated in temperate and cold climates, followed by arid and tropical climates (Fig. S11b). 358 
More specifically, in regions experiencing large-scale cropland displacement, net cropland losses 359 
chiefly occurred in the temperate climate while 92% of net gains were concentrated in arid 360 
zones. By contrast, in regions undergoing cropland expansion, gains occurred across tropical, 361 
arid, and temperate climates, with the tropical zone accounting for the largest share (56%) of the 362 
net increase. Overall, these results reaffirm the robustness of the analyses in the main text. 363 

  364 



Supplementary Figures 365 

 366 

 367 

Fig. S1. Flowchart showing the proposed method in calculating the 1-km Global Arable Land 368 
Fraction (GALF).  369 

 370 

 371 



Fig. S2. Agreement scores among five used cropland products (i.e., MODIS, CCI, GlobeLand30, 372 
GLAD, and GLC_FCS30D) at 1-km resolution in 2020. A score of 5 indicates that all products 373 
consistently identify the presence of cropland.  374 

 375 

 376 

Fig. S3. Schematic diagram illustrating possible permutations among three land cover products, 377 
along with the ranking sequences derived from the agreement-score and binary-score methods. 378 
Product A represents the highest accuracy product, followed by B and C. In this example, scores 379 
“2” and “1” result from three different combinations. The primary difference between the two 380 
methods is that the agreement-score method prioritizes region 2-3, whereas the binary-score 381 
method prioritizes region 1-1 after accounting for regions 3, 2-1, and 2-2. Notably, the 382 
divergence between the two methods increases with the number of input land cover products. 383 
Combining both methods expands the set of possible permutations, thereby improving the 384 
likelihood of identifying the optimal combination with the highest accuracy against ground 385 
validation samples and strongest alignment with FAO arable land statistics. 386 

 387 

 388 

Fig. S4. Classification of nine continental regions based on the Large Scale International 389 
Boundary (LSIB)64. To reflect the spatial clustering of global arable land (Fig. 1), Asia was 390 



subdivided into four regions: East Asia, South Asia, Southeast Asia, and Southwest Asia. 391 
Meanwhile, Europe, North Asia, and Central Asia were grouped into a single region.  392 

 393 

 394 

Fig. S5. Detected greenhouses at 1 km in southern Spain in 2020. The mapped greenhouse areas 395 
are shown overlaid on Sentinel-2 imagery, where the white regions in the imagery correspond to 396 
greenhouse structures. 397 

 398 



 399 

Fig. S6. Geographic distribution of reference samples. Samples in 2010 were used to evaluate 400 
satellite-derived land cover products and determine the optimal scoring combination, while 401 
samples in 2020 were used to assess the accuracy of the GALF product.  402 

 403 



 404 

Fig. S7. 1-km Global Arable Land Fraction (GALF) maps for the years 2000, 2010, and 2020.  405 

 406 



 407 

Fig. S8. Comparison of country-level arable land area (km2) estimates from GALF and other 408 
products with FAO-reported arable land statistics in 2020, with countries lacking FAO reports 409 
excluded from the analysis. The total global arable land area reported by FAO is 1.38 × 107 km2 410 
in 2020. 411 

 412 



 413 

Fig. S9. Same as Fig. 1 in the main text but using GLAD cropland and built data.  414 

 415 



 416 

Fig. S10. Same as Fig. 2 in the main text but using GLAD cropland and built data as well as 417 
LUH2 data.  418 

 419 



 420 

Fig. S11. Same as Fig. 3 in the main text but using GLAD cropland data.   421 



Supplementary Tables 422 

 423 

Table S1. Specifications of five land cover products (MODIS, CCI, GlobeLand30, GLAD, and 424 
GLC_FCS30D) and FAO dataset. The definition of arable land used in this study follows the 425 
FAO’s definition of arable land, which is highlighted in bold.  426 

Dataset Cropland Definition 
Spatial 

Res. 

Temporal 

Coverage 

MODIS 
Cropland (lands covered with temporary crops with harvest cycle less 

than one year. Includes areas of land temporarily fallow or left idle) and 

mosaic classes that mix cropland with other land cover types. 

500 m 2001-2023 

CCI 

Rainfed cropland, herbaceous cover cropland, tree or shrub cover 

cropland, irrigated cropland, and mosaic classes that mix cropland with 

other land cover types. 

300 m 1992-2020 

GlobeLand30 

Category includes paddy fields, irrigated dry land, rain-fed dry land, 

vegetable land, pasture planting land, greenhouse land, land and mainly 

for planting crops with fruit trees and other economic trees, as well as 

tea gardens, coffee gardens and other shrubs. 

30 m 
2000, 

2010, 2020 

GLAD 

Land used for annual and perennial herbaceous crops for human 

consumption, forage (including hay) and biofuel. Perennial woody 

crops, permanent pastures and shifting cultivation are excluded from 

the definition. The fallow length is limited to 4 years for the cropland 

class. 

30 m 

2000, 

2005, 

2010, 

2015, 2020 

GLC_FCS30D 
Rainfed cropland, irrigated cropland, herbaceous cover, and tree or 

shrub cover (orchard). 
30 m 1985-2022 

FAO 

Arable land includes areas under temporary agricultural crops 

(with multiple cropping counted once), temporary meadows for 

mowing or pasture, and land temporarily fallow. Permanent crops 

refer to land cultivated with long-term crops that do not require annual 

replanting (e.g., cocoa, coffee, oil palm, and rubber), as well as land 

with flowering trees and shrubs (e.g., roses and jasmine) and nurseries, 

excluding those for forest trees that are classified as forest. 

Country 

Level 
1961-2023 

 427 

Table S2. Scoring scheme for the five input land cover datasets. The agreement-score approach 428 
gives precedence to regions where multiple products consistently indicate arable land presence, 429 
whereas the binary-score approach prioritizes regions identified by the best products. The 430 
agreement and binary scores are identical for values of 0, 1, 2, 29, 30, and 31. Products are 431 
ordered by descending accuracy: A, B, C, D, and E. A value of 1 indicates arable land presence 432 
and 0 indicates absence. 433 

Agreement 

Score 

Binary 

Score 
A B C D E 

31 31 1 1 1 1 1 

30 30 1 1 1 1 0 

29 29 1 1 1 0 1 



28 27 1 1 0 1 1 

27 23 1 0 1 1 1 

26 15 0 1 1 1 1 

25 28 1 1 1 0 0 

24 26 1 1 0 1 0 

23 22 1 0 1 1 0 

22 14 0 1 1 1 0 

21 25 1 1 0 0 1 

20 21 1 0 1 0 1 

19 13 0 1 1 0 1 

18 19 1 0 0 1 1 

17 11 0 1 0 1 1 

16 7 0 0 1 1 1 

15 24 1 1 0 0 0 

14 20 1 0 1 0 0 

13 18 1 0 0 1 0 

12 17 1 0 0 0 1 

11 12 0 1 1 0 0 

10 10 0 1 0 1 0 

9 9 0 1 0 0 1 

8 5 0 0 1 1 0 

7 6 0 0 1 0 1 

6 3 0 0 0 1 1 

5 16 1 0 0 0 0 

4 18 0 1 0 0 0 

3 4 0 0 1 0 0 

2 2 0 0 0 1 0 

1 1 0 0 0 0 1 

0 0 0 0 0 0 0 

 434 

Table S3. Overall accuracy of the five input land cover products and GALF at continental and 435 
global scales, evaluated against 2010 reference samples. To avoid overinterpretation of marginal 436 
differences in ranking input products, only two decimal places were considered. As GALF is not 437 
independent of the reference samples, its accuracy is presented to assess the performance of the 438 
proposed method rather than for strict validation. The top three products are highlighted in red, 439 
green, and blue. 440 

Continents MODIS CCI GlobeLand30 GLAD GLC_FCS30D GALF 

North America 0.871 0.786 0.767 0.816 0.706  0.874 

Europe & 

North Asia 
0.866 0.835 0.846 0.870 0.807 0.877 

Oceania 0.936 0.867 0.917 0.933 0.839 0.943 



Africa 0.876 0.759 0.862 0.872 0.851 0.899 

East Asia 0.819 0.735 0.800 0.828 0.755 0.844 

Southeast Asia 0.824 0.609 0.780 0.817 0.697 0.833 

Southwest Asia 0.876 0.817 0.852 0.868 0.772 0.882 

South Asia 0.766 0.703 0.754 0.800 0.705 0.808 

South America 0.847 0.736 0.825 0.849 0.759 0.852 

Global 0.869 0.784 0.808 0.842 0.755 0.877 

 441 

Table S4. Overall accuracy of GALF and the five input land cover products at continental and 442 
global scales, evaluated against independent reference samples from 2020. The top three 443 
products are highlighted in red, green, and blue. 444 

Continents MODIS CCI GlobeLand30 GLAD GLC_FCS30D GALF 

North America 0.921 0.848 0.850 0.885 0.782 0.919 

Europe & 

North Asia 
0.885 0.809 0.854 0.896 0.775 0.893 

Oceania 0.917 0.857 0.931 0.919 0.783 0.922 

Africa 0.882 0.692 0.824 0.825 0.800 0.864 

East Asia 0.823 0.656 0.726 0.811 0.702 0.834 

Southeast Asia 0.866 0.583 0.824 0.846 0.652 0.867 

Southwest Asia 0.843 0.715 0.824 0.837 0.632 0.843 

South Asia 0.838 0.731 0.820 0.836 0.760 0.843 

South America 0.902 0.745 0.858 0.898 0.764 0.899 

Global 0.887 0.765 0.839 0.871 0.763 0.887 

 445 

Table S5. Same as Table S4 but stratified by Köppen–Geiger climate zones. Climate zones with 446 
fewer than 100 reference samples were excluded from the analysis. The top three products are 447 
highlighted in red, green, and blue. 448 

Climates MODIS CCI GlobeLand30 GLAD GLC_FCS30D GALF 

Af 0.947 0.697 0.909 0.942 0.792 0.941 

Am 0.902 0.663 0.886 0.888 0.786 0.893 

Aw 0.850 0.668 0.795 0.815 0.732 0.838 



BWh 0.955 0.923 0.945 0.950 0.895 0.951 

BWk 0.966 0.934 0.961 0.956 0.888 0.962 

BSh 0.863 0.698 0.824 0.833 0.721 0.857 

BSk 0.831 0.749 0.857 0.861 0.706 0.867 

Csa 0.756 0.581 0.668 0.744 0.555 0.748 

Csb 0.868 0.705 0.786 0.814 0.610 0.870 

Cwa 0.838 0.679 0.734 0.794 0.701 0.823 

Cwb 0.843 0.623 0.672 0.766 0.678 0.806 

Cfa 0.804 0.625 0.631 0.753 0.598 0.804 

Cfb 0.781 0.705 0.774 0.807 0.663 0.805 

Cfc 0.991 0.912 0.982 0.982 0.876 0.991 

Dsa 0.778 0.481 0.759 0.759 0.418 0.766 

Dsb 0.916 0.619 0.914 0.896 0.546 0.934 

Dsc 0.999 0.946 1 0.997 0.952 0.999 

Dwa 0.782 0.701 0.736 0.783 0.710 0.807 

Dwb 0.872 0.723 0.825 0.850 0.745 0.877 

Dwc 0.994 0.870 0.992 0.993 0.910 0.995 

Dwd 1 0.983 1 1 1 1 

Dfa 0.785 0.711 0.711 0.724 0.668 0.788 

Dfb 0.855 0.762 0.772 0.837 0.682 0.860 

Dfc 0.996 0.970 0.991 0.996 0.950 0.997 

ET 0.998 0.926 0.997 0.998 0.954 0.998 

EF 1 0.999 1 1 1 1 

Average 0.891 0.764 0.851 0.875 0.759 0.891 

 449 
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