

1 **Global Arable Land Is Shifting Toward the Tropics and**
2 **Drylands Under Urbanization**

3 Lun Gao^{a, b, *}, Xiaoman Lu^b, Weston Anderson^{c, d, e}, Corey Lesk^{f, g, h}, Elise Mazurⁱ, Fred Stolleⁱ,
4 Peter Potapovⁱ, Francesco N. Tubiello^j, Steffen Fritz^k, Jiafu Mao^b, Liangzhi You^{l, m}, Deepak Ray^a

5 ^a Institute on the Environment, University of Minnesota, St. Paul, MN, USA

6 ^b Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

7 ^c Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD,
8 USA

9 ^d NASA Goddard Space Flight Center, Earth Science Division, Greenbelt, MD, USA

10 ^e Geographical Sciences, University of Maryland, College Park, MD, USA

11 ^f Department of Earth and Atmospheric Science, University of Quebec in Montreal, Montreal,
12 QC, Canada

13 ^g Department of Geography, Dartmouth College, Hanover, NH, USA

14 ^h Neukom Institute for Computational Science, Dartmouth College, Hanover, NH, USA

15 ⁱ World Resources Institute, Washington, DC, USA

16 ^j Statistics Division, Food and Agriculture Organization of the United Nations, Rome 00153,
17 Italy

18 ^k International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361
19 Laxenburg, Austria

20 ^l International Food Policy Research Institute, Washington, DC, USA

21 ^m Digital Agricultural Research Institute, College of Economics and Management, Huazhong
22 Agricultural University, Wuhan, Hubei, China

23

24

25

26 **Supplementary Methods**

27

28 **Global arable land mapping data.** We constructed 1-km Global Arable Land Fraction (GALF)
29 by integrating multiple global satellite-derived land cover products with long-term temporal
30 coverage (≥ 20 years) and high spatial resolution (≤ 500 m), selecting only those with consistent
31 temporal characteristics and spatial continuity. The FROM-GLC product⁴⁶ was excluded due to
32 variability in input scene timing that affected spatial coherence, while certain regional land cover
33 products were also omitted to maintain consistency across regions. The included global products
34 are the International Geosphere-Biosphere Programme (IGBP) from the Moderate Resolution
35 Imaging Spectroradiometer (MODIS, MCD12Q1 v061)⁴⁷, European Space Agency's Climate
36 Change Initiative (CCI)⁴⁸, GlobeLand30⁴⁹, Global Land Analysis and Discovery (GLAD)
37 dataset⁵⁰, and GLC_FCS30D⁵¹. Detailed specifications on cropland definitions, spatial
38 resolutions, and temporal coverages for each dataset are provided in **Table S1**. Note that for
39 datasets that do not explicitly distinguish arable land from woody croplands, we hereinafter refer
40 to all such areas collectively as cropland.

41 As shown in **Table S1** and discussed previously⁵, cropland definitions vary across
42 products and deviate from the FAO cropland definition, which includes both arable land and
43 permanent woody crops. This introduces possible bias in our and similar analyses. For instance,
44 three products (CCI, GlobeLand30, and GLC_FCS30D) include permanent crops, mostly woody
45 tree crops (e.g., oil palm, cocoa, coffee, rubber, fruit orchards). Conversely, MODIS and GLAD
46 cropland maps exclude them. Furthermore, it is likely that the annual crops component of all
47 products is in fact aligned more with the FAO definition of temporary crops rather than arable
48 land⁵. This is because satellite-derived products, by their nature, primarily reflect land cover,
49 whereas cropland represents a combination of land cover and land use shaped by human
50 activities for food production⁵², which are more difficult to distinguish from space. Relying
51 solely on individual land cover datasets could therefore lead to systematic over- or
52 underestimation of cropland extent, particularly in regions dominated by woody crops, such as
53 Southeast Asia.

54

55 **New method to harmonize across global arable land datasets.** To harmonize different
56 products and enhance consistency with the FAO definition of arable land, we developed a
57 synergy approach⁵³⁻⁵⁸ for generating GALF, the workflow of which is illustrated in **Fig. S1**.
58 Unlike previous studies⁵³⁻⁵⁸, we focused exclusively on arable land rather than including
59 permanent crops for the following reasons: (1) arable land is consistently represented across land
60 cover products and FAO statistics (**Table S1**), and (2) the harmonization and validation of GALF
61 rely on ground reference samples^{46,59-62} that are typically interpreted from satellite or aerial
62 imagery, which could mix woody crops with forests due to their tree-like canopy structure and
63 phenological characteristics. In other words, even if synergized cropland maps were generated

64 following the FAO cropland definition (i.e., including both arable land and permanent crops), it
65 would be difficult to reliably validate the permanent crop component.

66 In constructing GALF, the synergy approach integrates five land cover products with
67 FAO country-level arable land statistics (FAOSTAT)⁶³, considering only the arable land
68 components for products that explicitly distinguish them from woody crops. Woody vegetation
69 was further excluded using the GLAD tree cover mask⁵⁰. The approach assumes that strong
70 agreement among input layers increases confidence in arable land presence (**Fig. S2**), which
71 generally leads to improved mapping accuracy⁵⁴⁻⁵⁸. Given that most agreement scores can result
72 from multiple combinations of land cover products (**Fig. S3**), this method first requires ranking
73 the performance of each individual product. Unlike previous studies that rely solely on expert
74 judgment, ground reference samples, or FAOSTAT for ranking⁵⁴⁻⁵⁸, our approach ranks the
75 products based on both their accuracy against ground reference samples and their consistency
76 with FAOSTAT. This is based on the assumption that the product with the highest accuracy
77 against ground reference samples should also show the closest agreement with FAOSTAT
78 country-level arable land area, provided that sufficient validation samples are available and the
79 FAO statistics are reliable. Specifically, for each country, land cover products were first
80 evaluated and ranked by their overall accuracy when at least 20 validation samples were
81 available, considering some countries with small land areas. To avoid overinterpreting marginal
82 differences, only two decimal places of overall accuracy were considered⁵⁶. In cases where
83 products had identical accuracy or fewer than 20 validation samples were available, the product
84 whose arable land area was closest to the FAOSTAT was assigned a higher rank. In some regions
85 lacking FAOSTAT, rankings were based on continental-scale validation results across nine
86 continental regions (**Fig. S4**), which were delineated according to administrative boundaries⁶⁴
87 and the spatial clustering patterns of global arable land (**Fig. 1a**). More information on ground
88 samples and the performance evaluation of land cover products are provided in the section
89 below.

90 Once country-level performance rankings of input land cover products were available, an
91 agreement-ranking score lookup table was established based on binary permutations to prioritize
92 high-ranked regions that best matched reference data (**Table S2**). Different from previous
93 research that converted binary permutations to either agreement scores⁵⁴⁻⁵⁷ or binary scores⁵⁸,
94 this study combined both scoring approaches to enhance the likelihood of identifying the optimal
95 configuration that best aligns with ground validation samples and FAO statistics. This is because
96 we found that each scoring method has inherent limitations, but they offer complementary
97 strengths when used together. The agreement-score approach⁵⁴⁻⁵⁷ prioritizes regions where
98 multiple products consistently indicate the presence of arable land (**Fig. S3**). This method is
99 particularly effective in regions where the input land cover products have comparable accuracy;
100 however, it may underperform in cases where one product significantly outperforms the others.
101 For example, if a single product accurately captures the full extent of arable land, it may
102 mistakenly prioritize regions where multiple lower-performing products indicate arable land over
103 areas correctly identified by the high-performing product alone. Conversely, the binary-score

104 approach⁵⁸ gives priority to regions identified by the best-performing product but may be less
105 effective when multiple products exhibit similar accuracy (**Fig. S3**). Thus, combining both
106 approaches increases the diversity of scoring combinations and enhances the ability to identify
107 the configuration that best matches ground validation samples and FAO statistics. In this study,
108 applying the combined method to five input products resulted in a total of 58 unique scoring
109 combinations, whereas using either approach alone yielded only 32 combinations (i.e., 2^5 ; see
110 **Table S2**).

111 Then, the ground samples and FAOSTAT were used again as benchmarks to identify the
112 best-performing scoring combinations. We found that the combination yielding the highest
113 overall accuracy did not always align with the one most closely matching the FAOSTAT-reported
114 arable land area, particularly in African countries. This discrepancy is likely attributable to
115 relatively low agreement among five land cover products over Africa (**Fig. S2**) and the inherent
116 uncertainties in both the ground reference and FAOSTAT data⁶⁵. To balance both criteria, for
117 countries with more than 20 validation samples, we retained only those combinations that either
118 exceeded the overall accuracy of the best individual product or ranked within the top 10% of all
119 combinations based on overall accuracy. Among these, the combination with the closest arable
120 land area to the FAOSTAT was selected. For countries lacking sufficient validation samples, the
121 FAOSTAT alone was used to select the best combination. In cases where FAOSTAT data were
122 unavailable, but more than 20 validation samples were present, ground samples were directly
123 used to identify the optimal combination. For regions lacking both adequate validation samples
124 and FAOSTAT data, the best combination was selected based on the corresponding continental
125 validation results.

126 Finally, the 1-km GALF was computed by averaging arable land weights at 100-m
127 subpixels within areas defined by the optimal scoring combination. Considering that the spatial
128 resolution varies across input land cover datasets, all products were first reprojected into a
129 common coordinate system (WGS84; EPSG:4326) and resampled to a 100-m resolution to
130 facilitate the calculation of arable land fractions at the 1-km scale. In this calculation, 100-m
131 pixels classified as pure arable land by all overlapping products were assigned a weight of 1,
132 while pixels identified as mosaics (i.e., a mix of cropland and other land cover types) by any
133 product were assigned lower weights to reflect their partial arable land composition. Specifically,
134 for CCI, mosaic cropland classes were weighed as 0.75 when cropland fraction exceeded 50%,
135 and 0.25 when it was below 50%. For MODIS, mosaic cropland comprising 40–60% cultivated
136 land was assigned a value of 0.5. In cases where a 100-m pixel was simultaneously labeled as
137 pure arable land and mosaic arable land by different products, the assigned weight was averaged
138 accordingly. Notably, a few small islands were not represented in the continental mask⁶⁴, for
139 which the arable land fraction was directly calculated based on the GLAD dataset⁵⁰ due to its
140 similarity to the FAO arable land definition, high spatial resolution, and reliable accuracy, as
141 discussed below. We implemented the procedure using data from 2010 to identify the optimal
142 scoring combination, which was then applied to generate GALF for the years 2000, 2010, and

143 2020. These three years represent the intersection of temporal coverage across all products, with
144 MODIS land cover from 2001 used as a proxy for 2000.

145 It should be noted that, although the proposed method is expected to produce high-quality
146 arable land maps beyond the capabilities of individual land cover products, its performance
147 strongly depends on the quality of the input datasets and may fail to capture arable land in
148 regions where most products perform poorly. One notable example is greenhouse agriculture,
149 which should ideally be detected by all land cover products but exhibits distinct spectral
150 reflectance compared with other arable land⁶⁶. We found that the ability of the products to detect
151 greenhouse infrastructures varies considerably. As examined, while small- to medium-sized
152 greenhouse facilities, such as those in Michoacán, Mexico (19.9°N, 102.2°W), are generally
153 captured by all products, only GlobeLand30 and CCI successfully detect the large-scale
154 greenhouse infrastructures (> 500 km²) in Almería, Spain (36.7°N, 2.7°W)^{67,68}. In contrast, other
155 products misclassify these areas as impervious surfaces (GLC_FCS30D), wetlands (GLAD), or
156 non-vegetated land (MODIS). Consequently, the proposed method cannot reliably capture these
157 large-scale greenhouse areas in Spain. To address this issue, we explicitly identified these
158 greenhouse areas across Spain by combining GlobeLand30 and CCI arable land layers with
159 GLC_FCS30D impervious surfaces and GLAD wetlands across Spain, before calculating the 1-
160 km arable land fraction. **Fig. S5** demonstrates that this combined approach effectively captures
161 the greenhouse areas in southern Spain. On the other hand, in Africa and the Arabian Peninsula,
162 the quality and agreement among the five input cropland products were sometimes very low
163 (**Fig. S2**). For example, GLC_FCS30D missed an entire scene in Sudan, while CCI misclassified
164 several roads within the Congolian rainforests as cropland. Therefore, we carefully compared
165 GALF with GLAD by evaluating their overall accuracy, area consistency with FAOSTAT
166 statistics, and spatial patterns of arable land distribution. Based on the assessment, we replaced
167 GALF with GLAD in the Republic of the Congo, Democratic Republic of the Congo, South
168 Sudan, Sudan, Somalia, and Saudi Arabia, where GLAD demonstrated comparable accuracy to
169 GALF but provided more realistic spatial patterns.

170 To the best of our knowledge, GALF is the first global long-term arable land fraction
171 product, providing a novel framework for assessing arable land dynamics in the 21st century.

172

173 **Performance evaluation of input land cover products.** To support the performance ranking of
174 land cover products in 2010 and identify the best scoring combination, we compiled multiple
175 sources of reference samples (**Fig. S6**). The year 2010 was selected because it represents the
176 midpoint of the study period and offers the most consistent availability of ground validation data.
177 The reference samples included two datasets from Tsinghua University^{46,59} and additional
178 samples from the Geo-wiki crowdsourcing platform⁶⁰ and the U.S. Geological Survey's Land
179 Change Monitoring, Assessment and Projection (LCMAP)⁶¹. The Tsinghua University
180 datasets^{46,59} were originally developed to support the creation and validation of their 30-m global
181 land cover product (i.e., FROM-GLC), where cropland is defined as arable and tillage land with

182 herbaceous and/or shrub crops—thus more than arable land. The first dataset⁴⁶ involves 36,352
183 globally distributed random samples, manually labeled by hundreds of students, researchers, and
184 experts using Google Earth imagery in or around 2010. The second dataset⁵⁹ contains 38,664
185 global random sample units spanning the years 1986 to 2010, derived through interpretation of
186 Landsat imagery⁶⁹, MODIS enhanced vegetation index (EVI)⁷⁰, and other high-resolution images
187 via Google Earth. For this study, a total of 11,672 samples in 2010 were considered. The Geo-
188 wiki dataset^{60,71} records the dominant, secondary, and tertiary land cover types, with cropland
189 defined as “cultivated and managed” or “mosaic of cultivated and managed/natural vegetation”.
190 In this study, locations falling into any of the three cropland-related categories were considered
191 as reference. It comprises 151,942 globally distributed random samples derived from the visual
192 interpretation of Google Earth imagery before 2012. A subset of 12,555 samples from 2010 was
193 selected for analysis. The LCMAP reference dataset⁶¹ defines cropland as areas used for the
194 production of crops, including cultivated and uncultivated croplands, hay fields, orchards,
195 vineyards, and pasturelands actively managed for crop production. It offers annual land cover
196 labels for approximately 25000 random locations across the contiguous United States (CONUS)
197 from 1984 to 2021 based on systematic interpretation of Landsat imagery and aerial photographs.
198 A subset of 24,995 samples from 2010 was used in this study. To integrate the four sample sets
199 and avoid conflicting validation results, samples located within the same 1-km pixel were
200 merged, and those indicating different land cover types were excluded. A 1-km resolution was
201 adopted to ensure consistency in comparisons among the various land cover products and the
202 GALF. This resulted in a final dataset of 61,294 samples.

203 To validate the performance of different land cover products in mapping arable land, 1-
204 km arable land fraction maps were generated by averaging values from the 100-m resolution
205 layers, where any pixel with an arable land fraction greater than zero was designated as arable
206 land⁵⁷. Following previous studies⁵⁴⁻⁵⁷, accuracy was quantified using overall accuracy (OA),
207 defined as the probability that a sample is correctly classified—i.e., the sum of true positives and
208 true negatives divided by the total number of samples. Continental and global validation results
209 for the five land cover products were summarized in **Table S3**, indicating that MODIS achieved
210 the highest overall accuracy globally and across most continents, followed by GLAD,
211 GlobeLand30, CCI, and GLC_FCS30D. However, despite its strong performance, MODIS
212 cannot be used independently to derive 1-km arable land fractions due to its relatively coarse
213 native resolution of 500 m. These performance rankings, along with country-level validation
214 results and FAOSTAT, form the basis for ranking individual land cover products and identifying
215 the optimal scoring combinations.

216

217 **Validation of GALF.** To independently assess the accuracy of the GALF maps, we conducted a
218 multi-scale validation in 2020 and compared it against other land cover products. Specifically,
219 we first assessed its spatial accuracy using an independent reference sample set⁶² (**Fig. S6**),
220 which defines cropland as rainfed and irrigated croplands following the United Nations' Land

221 Cover Classification rule⁷². This dataset integrates multiple data sources, including high-
222 resolution imagery from Google Earth, vegetation cover, plant phenology, tree height, and terrain
223 characteristics, and comprises 79,112 random samples. To avoid duplicate and conflicting
224 assessment results, samples located within the same 1-km pixel were merged, while those
225 indicating different land cover types were removed, leading to a final dataset of 79,001 samples.
226 Additionally, country-level arable land areas derived from GALF were compared with FAO
227 statistics to evaluate area consistency.

228 Before presenting the validation results, **Fig. S7** provides an overview of global arable
229 land fraction patterns depicted by the GALF maps for the years 2000, 2010, and 2020. As shown,
230 arable land is predominantly concentrated in the Northern Hemisphere, particularly in North
231 America, Europe, South Asia, and East Asia. By contrast, arable land is more sparsely distributed
232 in low-latitude and Southern Hemisphere regions, including South America, Africa, Southeast
233 Asia, and Oceania. When compared with other land cover products, **Table S4** shows that GALF
234 exhibits strong performance comparable to MODIS on the global scale and across all continents,
235 followed by GLAD, GlobeLand30, CCI, and GLC_FCS30D. At the continental level, GALF
236 outperforms all other products in four out of nine regions, ranking second in four and third in
237 one. Similar results are also observed across different Köppen–Geiger climate zones: GALF
238 achieves the highest accuracy in 12 out of 26 zones, ranks second in 10 zones, and third in four
239 (**Table S5**).

240 On the other hand, **Fig. S8** compares country-level arable land area estimates from
241 various land cover products against FAO-reported statistics. GALF achieves the highest
242 correlation ($R = 0.993$) and the lowest root mean square error ($RMSE = 2.35 \times 10^4 \text{ km}^2$),
243 demonstrating superior accuracy in capturing national-scale arable land area. Compared to
244 GLAD and MODIS, GALF improves the correlation by more than 0.6% and reduces RMSE by
245 over 29%. For global total arable land, GLAD ($1.32 \times 10^7 \text{ km}^2$), GALF ($1.31 \times 10^7 \text{ km}^2$), and
246 MODIS ($1.46 \times 10^7 \text{ km}^2$) are closest to the FAO-reported total ($1.38 \times 10^7 \text{ km}^2$), while other
247 products (i.e., CCI, GlobeLand30, and GLC_FCS30D) significantly overestimate the global
248 arable land area by more than $0.75 \times 10^7 \text{ km}^2$.

249

250 **Built-up fraction.** The 1-km built-up fraction was calculated using built-up surface data^{73,74}
251 from the Global Human Settlement Layer (GHSL) project, developed by the European
252 Commission’s Joint Research Centre as part of the Copernicus Emergency Management Service.
253 Built-up surface is defined as the gross building footprint area (including wall thickness)
254 enclosed by the outer building walls. The dataset was generated using a symbolic machine
255 learning–based supervised classification approach⁷⁵ applied to Sentinel-2 imagery⁷⁶, achieving a
256 high Intersection-over-Union (IoU)⁷⁷ score of 0.92, placing it among the most accurate publicly
257 available built-up datasets. The data are temporally interpolated or extrapolated in five-year
258 intervals, covering the period from 1975 to 2030. In this study, 1-km built-up surface data for the

259 years 2000, 2010, and 2020 were extracted and converted into built-up fractions by dividing the
260 built-up area within each grid cell by the cell's total area.

261 Considering the uncertainties associated with GHSL, we also used the 30-m built-up land
262 data from GLAD⁵⁰. This product defines built-up land as areas containing man-made surfaces—
263 including infrastructure, commercial, and residential land uses—even if such surfaces do not
264 dominate within the pixel. It was produced using a deep learning convolution neural network
265 (CNN) algorithm⁷⁸ applied to Landsat imagery, with training data collected from Open Street
266 Map (<https://planet.osm.org>; <https://www.openstreetmap.org>). While the overall accuracy was
267 not reported, the user's accuracy ranged from 63.7% to 74.1% and the producer's accuracy from
268 39.1% to 59.6%. In this study, we computed 1-km built-up fractions by averaging the 30-m
269 GLAD classifications within each 1-km grid cell. Given its relatively low classification accuracy,
270 this dataset was used solely to validate the results presented in the main text (see Supplementary
271 Discussion).

272

273 **Climate classification.** To understand the climatic constraints on arable land and built-up
274 systems, we used the 1-km constant Köppen–Geiger climate classification map^{79,80} for the period
275 1991–2020. The Köppen–Geiger system delineates five major climate zones—tropical (A), arid
276 (B), temperate (C), cold (D), and polar (E)—based on seasonal patterns of monthly temperature
277 and precipitation. Precipitation regimes are further classified as desert (W), steppe (S), fully
278 humid (f), summer dry (s), winter dry (w), and monsoon (m), while temperature regimes include
279 hot (h), cold (k), hot summer (a), warm summer (b), cold summer (c), cold winter (d), tundra (T),
280 and frost (F). This classification scheme has been widely adopted in previously developed
281 Köppen–Geiger climate classification maps^{81,82}. Compared with earlier versions that have
282 relatively coarse resolutions ($\geq 0.1^\circ$), the product used in this study offers a higher spatial
283 resolution (1 km) and includes corrections for topographic effects. It should be noted that
284 although climate zones shift with rising global temperatures^{79,83}, they are expected to remain
285 relatively stable over a few decades, as also evidenced by the relatively constant map for the
286 period 1991–2020^{79,80}.

287

288 **Historical land cover dynamics.** To investigate the historical co-evolution of arable land and
289 built-up areas, we used two long-term land cover reconstructions: the History Database of the
290 Global Environment (HYDE v3.4)⁸⁴ and the Land-use Harmonization 2 (LUH2)⁸⁵. HYDE3.4
291 provides spatially explicit reconstructions of cropland and built-up areas at a resolution of 5 arc
292 minutes. It integrates historical census data, archaeological records, and satellite observations to
293 generate long-term time series from 10,000 BCE to 2024. Its most recent spatial allocation of
294 land use is primarily informed by FAO agricultural land use data and the CCI land cover,
295 supplemented with MODIS imagery and MapBiomass statistics (<https://mapbiomas.org/>) for
296 Brazil, Indonesia, and China. The historical spatial allocation of built-up areas is estimated by

297 dividing each country's total urban population by its average urban population density, while the
298 allocation of cropland is determined as the residual area after accounting for water bodies, snow
299 and ice, built-up areas, protected lands, and unused regions, which are calibrated using recent
300 land cover products. In this study, we used data from 0 CE onwards. LUH2 offers global annual
301 land-use states from 850 to 2100 at 0.25° resolution, combining historical reconstructions with
302 future projections from integrated assessment models. Designed for Earth system modelling,
303 LUH2 supports CMIP6 by providing consistent trajectories of land-use change, including
304 cropland, pasture, forestry, and urban areas. Its historical land use is based on HYDE v3.2. In this
305 work, we used historical LUH2 data from 850 to 2015. Note that although the definitions of
306 cropland and built-up areas in these datasets differ from those in GALF and GHSL, we expect
307 their historical evolution patterns to be largely consistent at climatic scales.

308

309 **Supplementary Discussions**

310

311 Although GALF shows notable improvements over the five other land cover datasets
312 used, and GHSL remains the most accurate publicly available built-up dataset, we further assess
313 the robustness of our findings by replicating all figures using cropland and built-up data from
314 GLAD and historical land-use change from HYDE3.4. Note that GLAD cropland most closely
315 aligns with the FAO definition of arable land among the five land cover products used, although
316 it omits certain categories such as fallow land and temporary meadows and pastures⁵.

317

318 **Replication of Fig. 1 using GLAD data.** **Fig. S9** shows that arable land and built-up surface
319 cover about 13.3 and 5.0 million km² in 2020. While the total arable land area closely matches
320 that of GALF, the built-up area is over seven times larger than the estimate from GHSL (**Fig. 1**).
321 Consistent with **Fig. 1**, 89% of the cropland and 81% of built-up areas are located in the same ten
322 of the thirty Köppen-Geiger climate classes, including mildly cold (Dfb, Dfa, Dwa), temperate
323 (Cfa, Cwa, Cfb), arid steppe (BSk, BSh), tropical savannah (Aw), and arid desert (BWh). Finer-
324 scale analyses in northwestern Canada, Argentina-Chile, North Africa, northeastern China, and
325 southeastern Australia (**Figs. S9a1-S9c1**) similarly demonstrate strong climate constraints on the
326 cropland and built-up extent. When aggregated across all thirty Köppen-Geiger climate zones,
327 cropland and built-up areas exhibit a strong positive correlation ($R = 0.82$, $p < 0.01$; **Fig. S9d**).

328

329 **Replication of Fig. 2 using GLAD and LUH2 data.** **Fig. S10a** demonstrates the changes in
330 GLAD cropland between 2020 and 2000, with and without concurrent built-up expansion at
331 0.05° resolution. Largely consistent with **Fig. 2a**, the results show approximately 67% of built-up
332 expansion occurred within 1 km of existing cropland, and that substantial cropland loss across
333 North America, Europe, East Asia, South Asia, and Southeast Asia. Despite notable regional
334 differences from GALF, similar spatial gradients of cropland change were observed across North
335 America (southeast to northwest), the Eurasian Agricultural Belt (west to east), across China
336 (southeast to northwest), and within India (from northern and coastal regions toward central
337 forested areas). In North America, the concurrent decline in cropland alongside built-up area
338 expansion is slightly less pronounced in the southeast, whereas cropland expansion in the
339 northwest is more extensive compared with GALF. In Sub-Saharan Africa, **Fig. S10a** reveals a
340 more pronounced cropland increase without substantial accompanying expansion of built-up
341 areas. In India, **Fig. S10a** shows widespread cropland expansion across central regions, whereas
342 **Fig. 2a** highlights cropland increases primarily concentrated in central forested zones. Despite
343 these differences, both figures consistently demonstrate the strong influence of built-up
344 expansion on cropland dynamics.

345 Consistent with **Fig. 2b**, **Fig. 10b** shows that 49% of global cropland loss occurred within
346 1 km of built-up area loss, increasing to 99% within 5 km, where total cropland loss declined
347 sharply with distance from urban contraction. In line with **Fig. 2c**, **Fig. 10c** illustrates that much
348 of the Northern Hemisphere is experiencing land competition between cropland and built-up
349 areas, particularly across North America, Europe, and East Asia. By contrast, low-latitude
350 regions continue to support the concurrent expansion of cropland and urban areas. **Fig. 10d**
351 further confirms that the relationship between cropland and built-up areas can be characterized
352 by three distinct land-use regimes: co-development, stability, and competition.

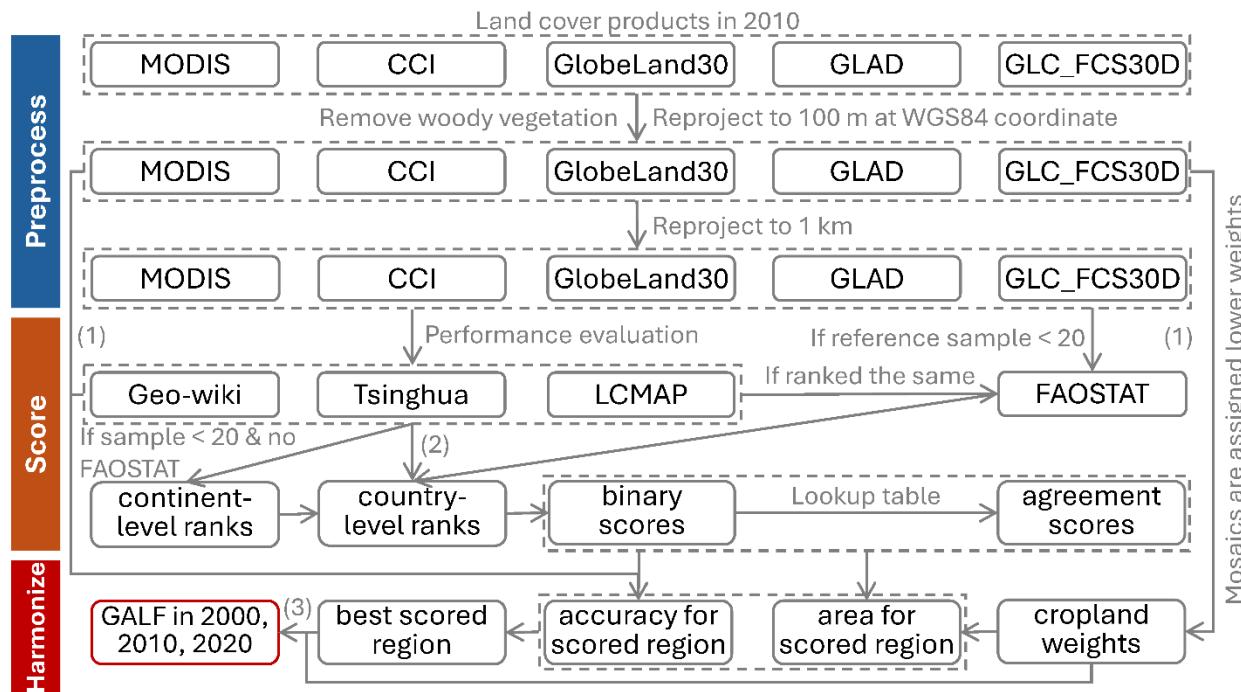
353

354 **Replication of Fig. 3 using GLAD data.** Consistent with **Fig. 3a**, **Fig. S11a** demonstrates that
355 global cropland increased by 9%—from 12.2 to 13.3 million km²—between 2000 and 2020, with
356 11.0 million km² remaining stable, 2.3 million km² newly cultivated, and 1.2 million km² lost.
357 Among them, 89% of net gains occurred in tropical and arid climates, while losses were
358 concentrated in temperate and cold climates, followed by arid and tropical climates (**Fig. S11b**).
359 More specifically, in regions experiencing large-scale cropland displacement, net cropland losses
360 chiefly occurred in the temperate climate while 92% of net gains were concentrated in arid
361 zones. By contrast, in regions undergoing cropland expansion, gains occurred across tropical,
362 arid, and temperate climates, with the tropical zone accounting for the largest share (56%) of the
363 net increase. Overall, these results reaffirm the robustness of the analyses in the main text.

364

365 **Supplementary Figures**

366



(1) Add directly detected large-scale greenhouse areas in Spain

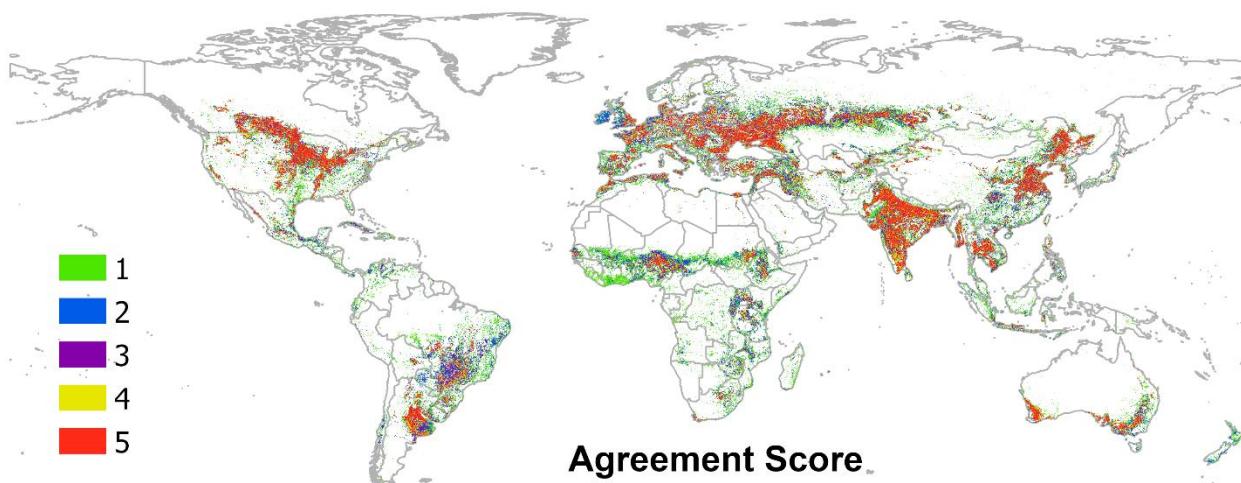
(2) If sample ≥ 20 and ranked successfully

(3) Directly use GLAD in Republic of the Congo, Democratic Republic of the Congo, South Sudan, Sudan, Somalia, and Saudi Arabia

367

368 **Fig. S1.** Flowchart showing the proposed method in calculating the 1-km Global Arable Land 369 Fraction (GALF).

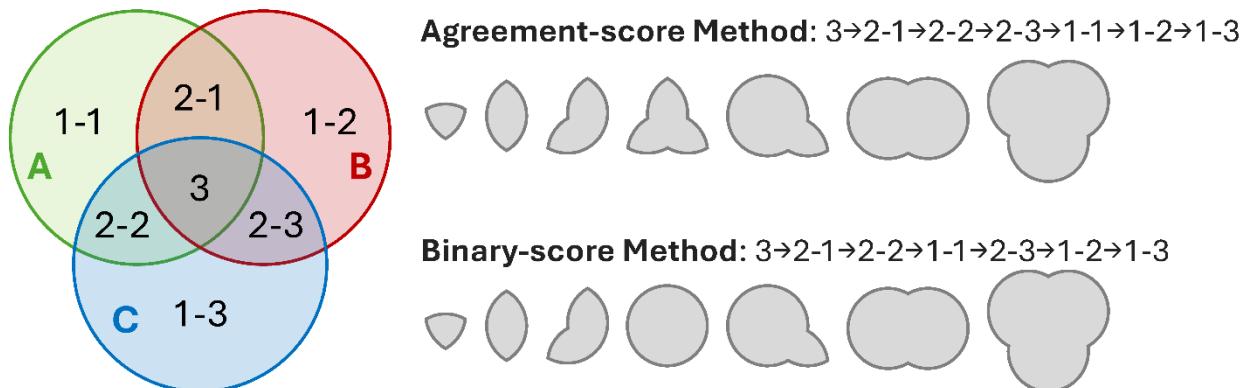
370



371

372 **Fig. S2.** Agreement scores among five used cropland products (i.e., MODIS, CCI, GlobeLand30,
373 GLAD, and GLC_FCS30D) at 1-km resolution in 2020. A score of 5 indicates that all products
374 consistently identify the presence of cropland.

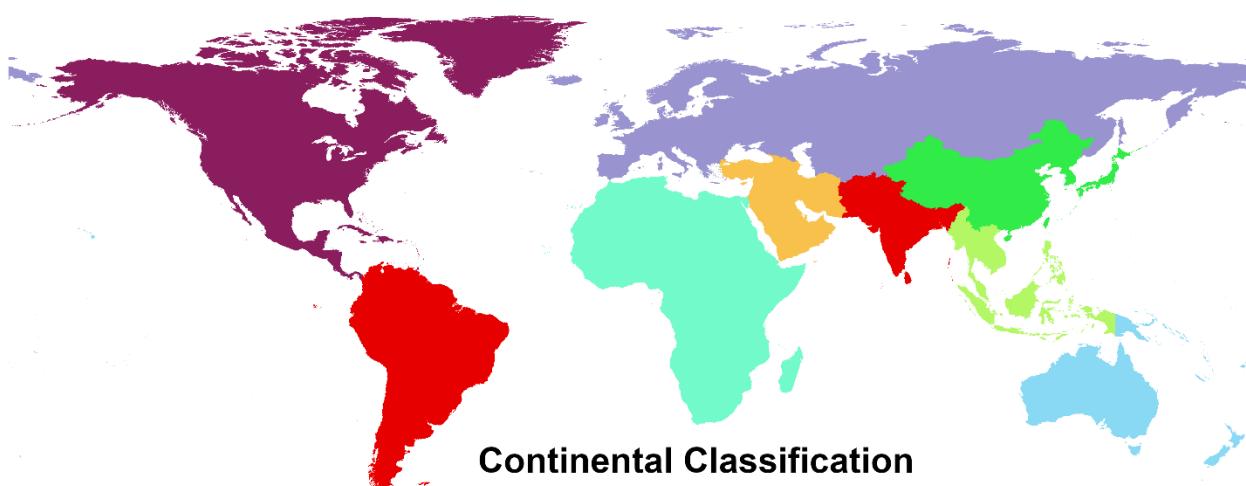
375



376

377 **Fig. S3.** Schematic diagram illustrating possible permutations among three land cover products,
378 along with the ranking sequences derived from the agreement-score and binary-score methods.
379 Product A represents the highest accuracy product, followed by B and C. In this example, scores
380 “2” and “1” result from three different combinations. The primary difference between the two
381 methods is that the agreement-score method prioritizes region 2-3, whereas the binary-score
382 method prioritizes region 1-1 after accounting for regions 3, 2-1, and 2-2. Notably, the
383 divergence between the two methods increases with the number of input land cover products.
384 Combining both methods expands the set of possible permutations, thereby improving the
385 likelihood of identifying the optimal combination with the highest accuracy against ground
386 validation samples and strongest alignment with FAO arable land statistics.

387

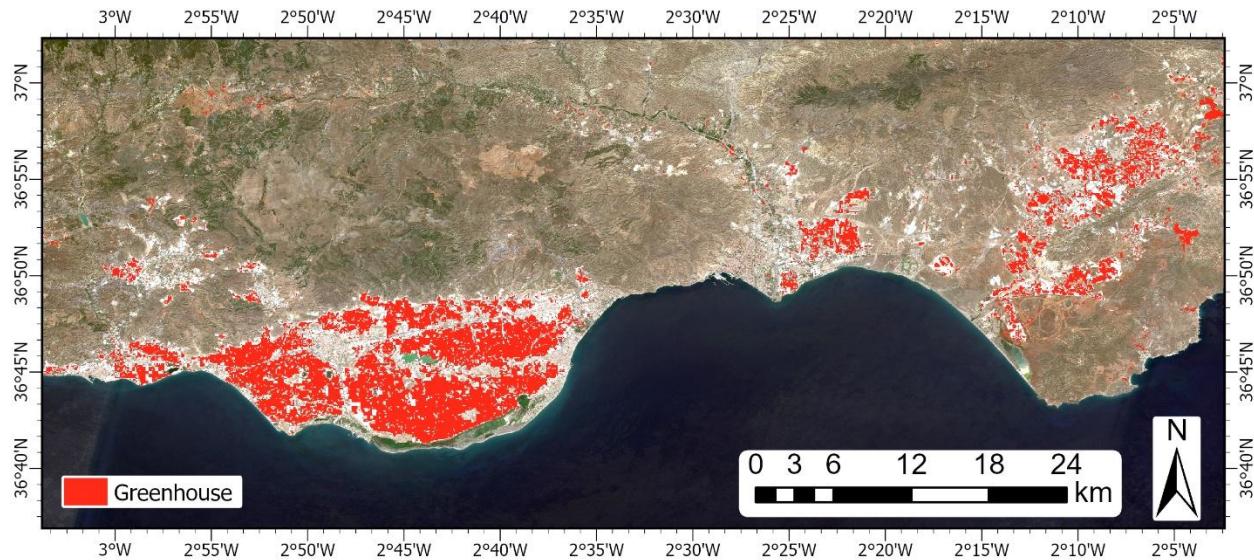


388

389 **Fig. S4.** Classification of nine continental regions based on the Large Scale International
390 Boundary (LSIB)⁶⁴. To reflect the spatial clustering of global arable land (**Fig. 1**), Asia was

391 subdivided into four regions: East Asia, South Asia, Southeast Asia, and Southwest Asia.
392 Meanwhile, Europe, North Asia, and Central Asia were grouped into a single region.

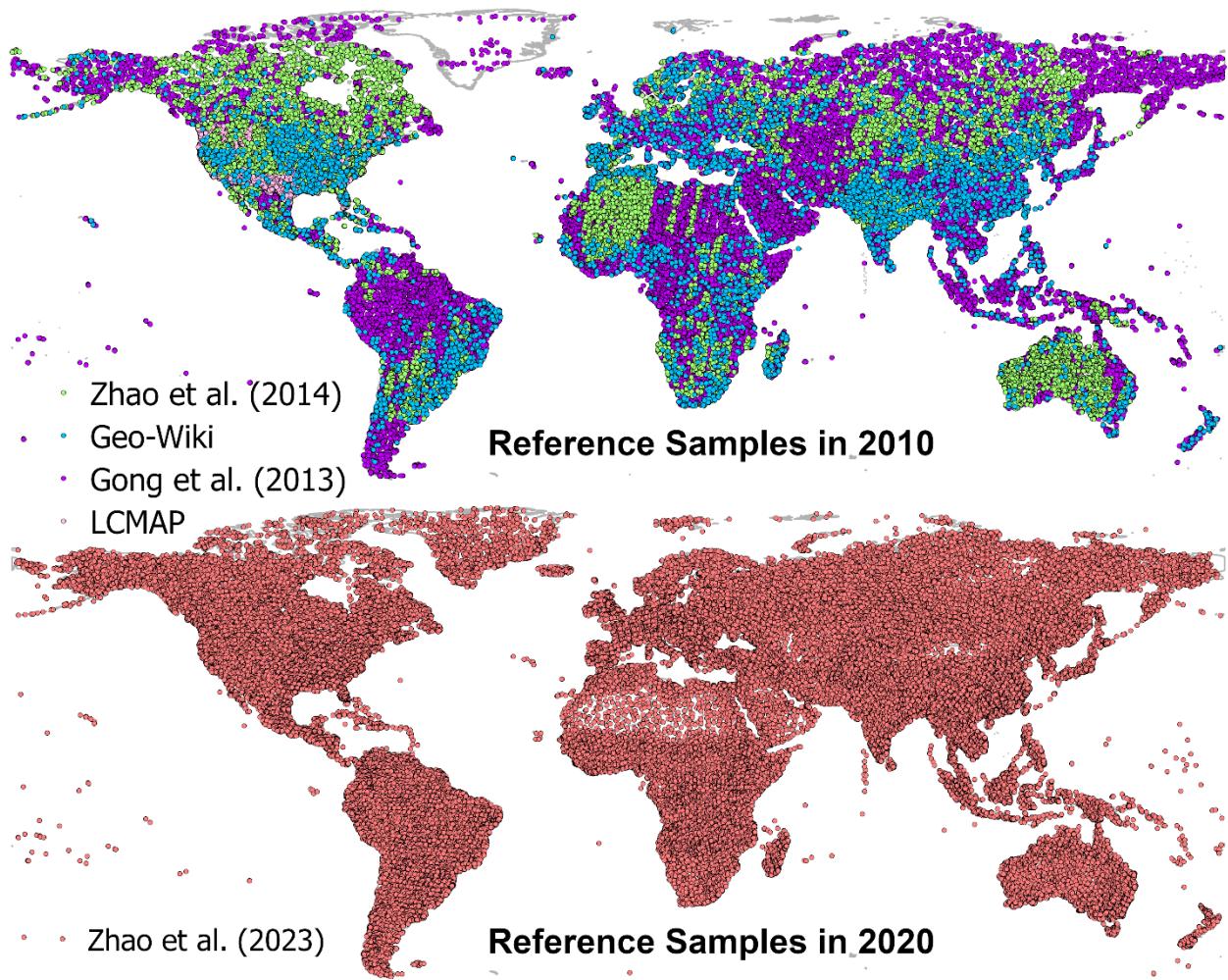
393



394

395 **Fig. S5.** Detected greenhouses at 1 km in southern Spain in 2020. The mapped greenhouse areas
396 are shown overlaid on Sentinel-2 imagery, where the white regions in the imagery correspond to
397 greenhouse structures.

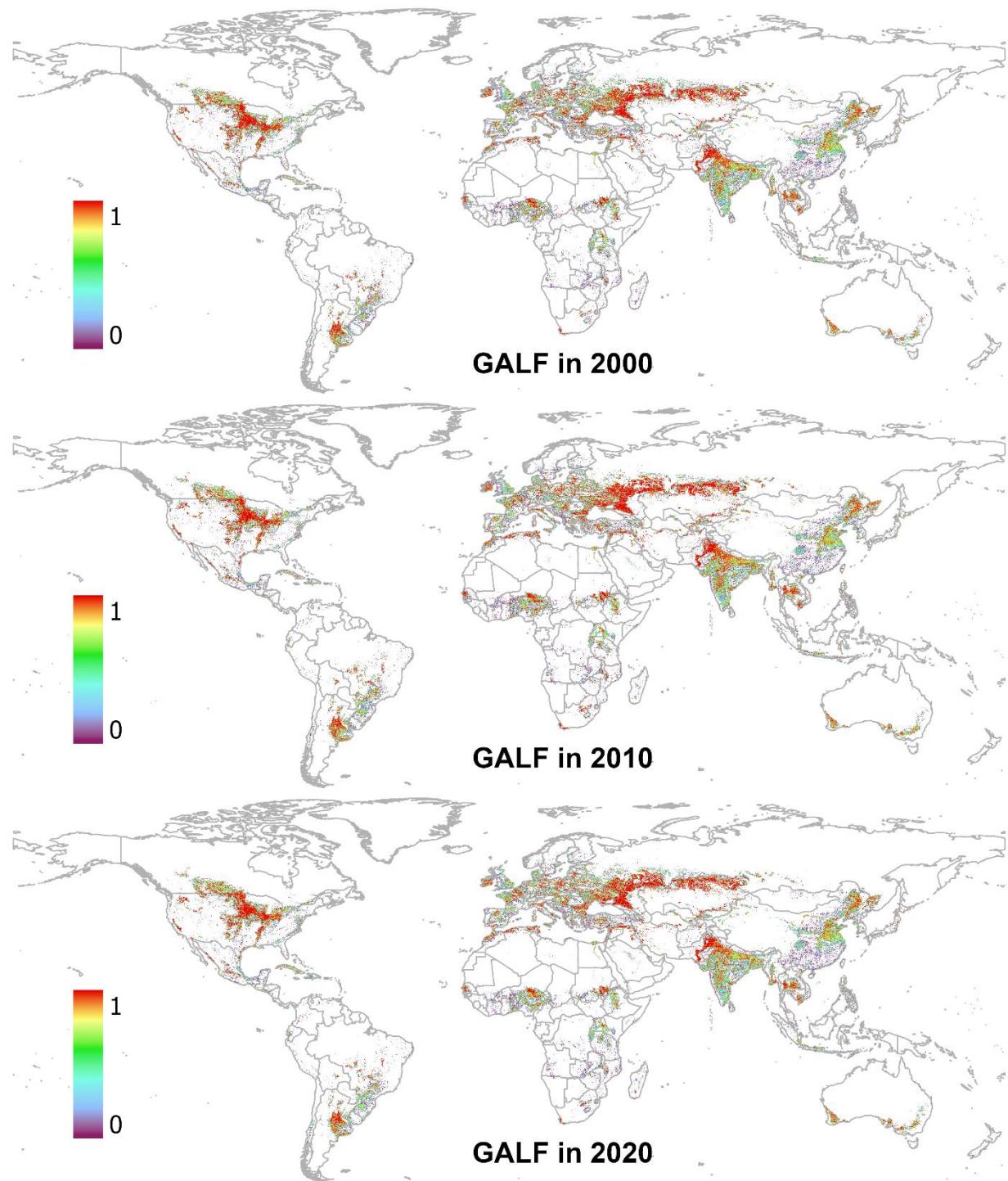
398



399

400 **Fig. S6.** Geographic distribution of reference samples. Samples in 2010 were used to evaluate
401 satellite-derived land cover products and determine the optimal scoring combination, while
402 samples in 2020 were used to assess the accuracy of the GALF product.

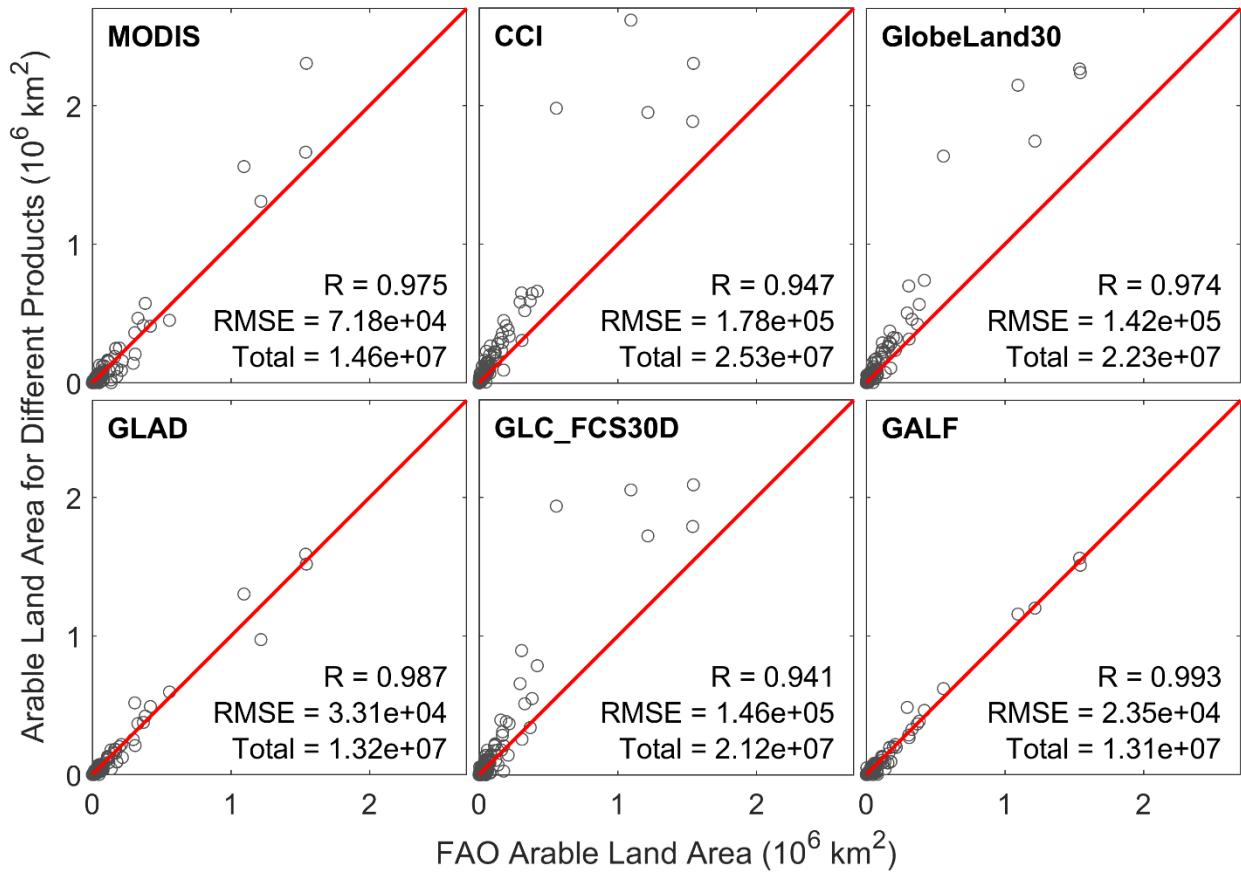
403



404

405 **Fig. S7.** 1-km Global Arable Land Fraction (GALF) maps for the years 2000, 2010, and 2020.

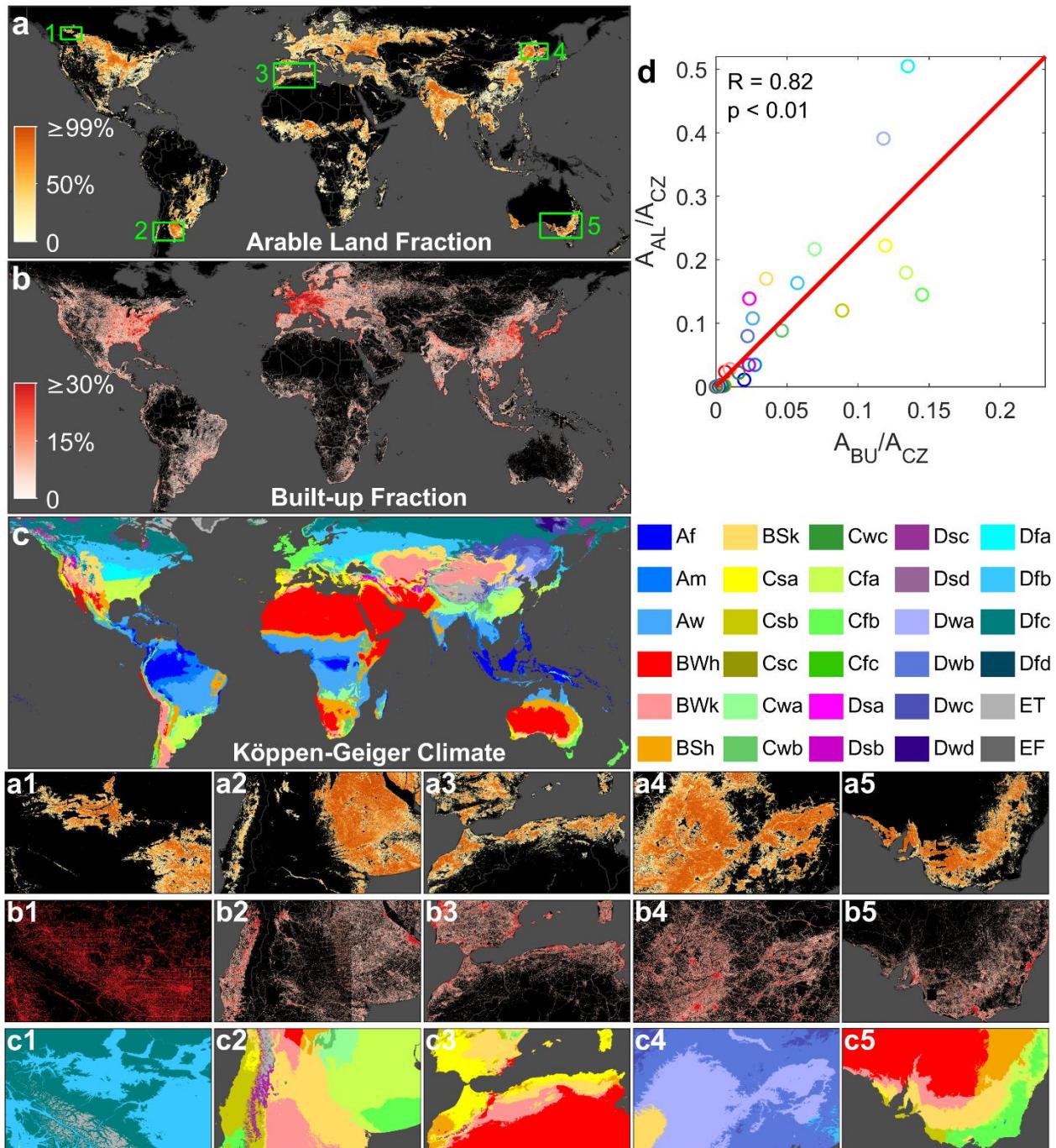
406

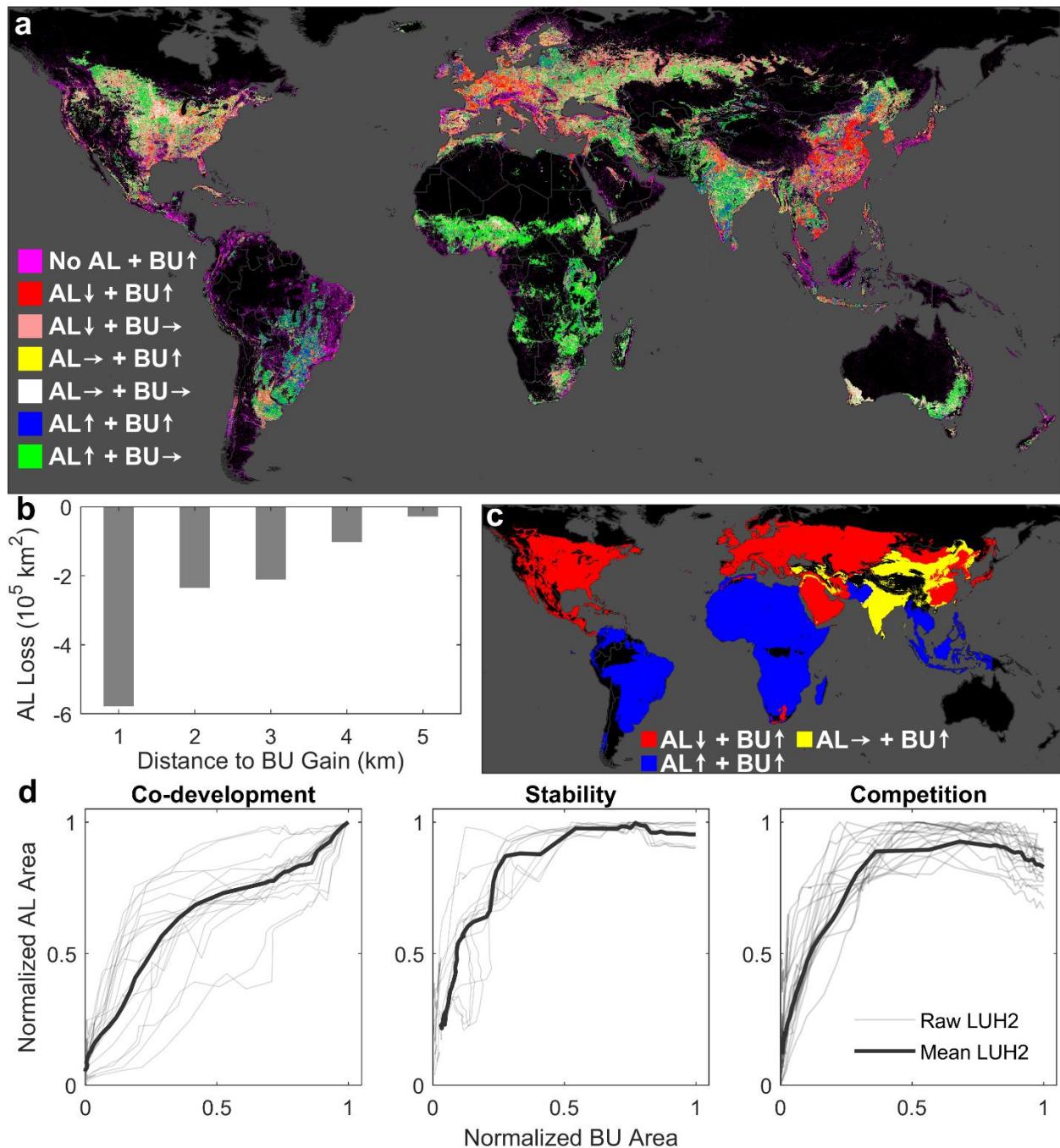


407

408 **Fig. S8.** Comparison of country-level arable land area (km^2) estimates from GALF and other
 409 products with FAO-reported arable land statistics in 2020, with countries lacking FAO reports
 410 excluded from the analysis. The total global arable land area reported by FAO is $1.38 \times 10^7 \text{ km}^2$
 411 in 2020.

412

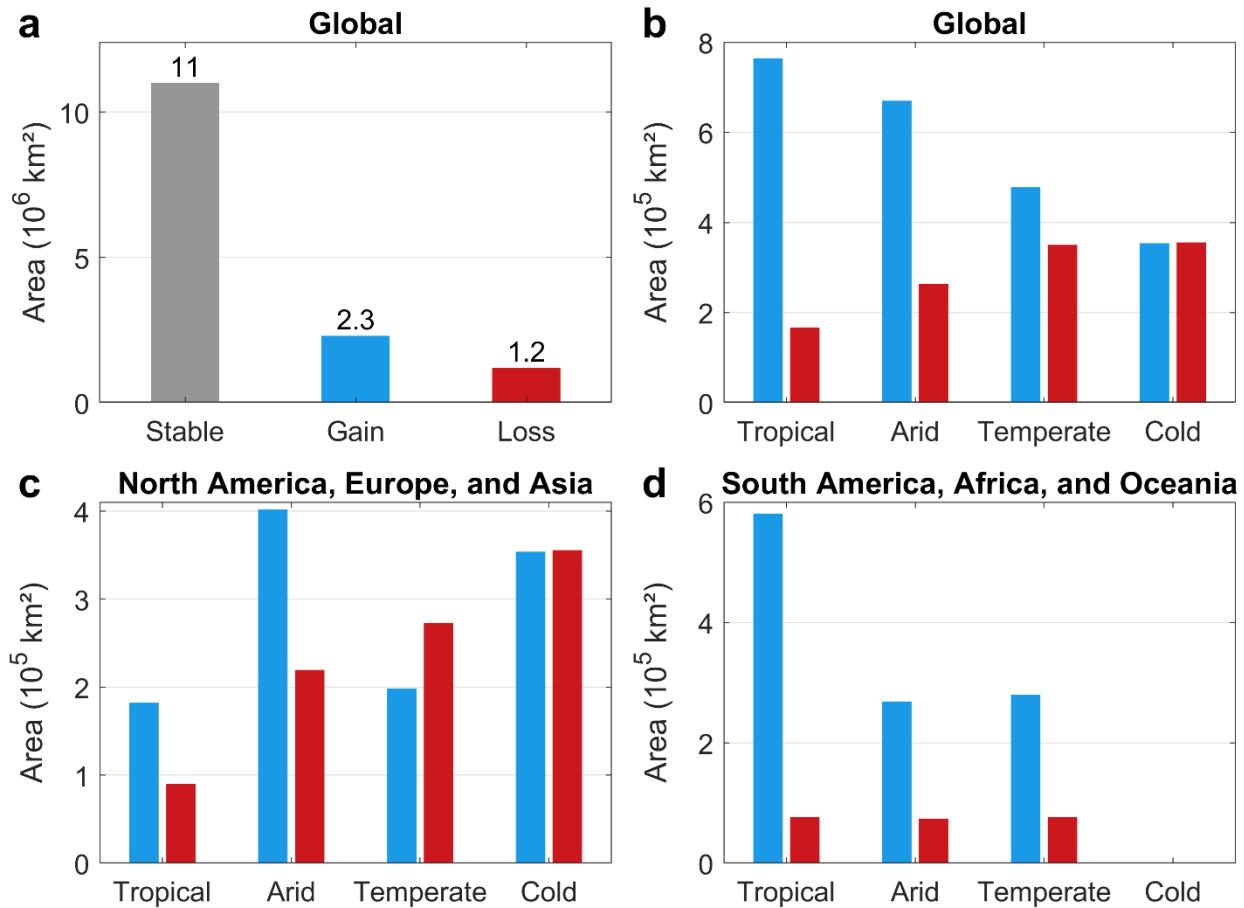




416

417 **Fig. S10.** Same as **Fig. 2** in the main text but using GLAD cropland and built data as well as
418 LUH2 data.

419



420

421 **Fig. S11.** Same as **Fig. 3** in the main text but using GLAD cropland data.

422 **Supplementary Tables**

423

424 **Table S1.** Specifications of five land cover products (MODIS, CCI, GlobeLand30, GLAD, and
425 GLC_FCS30D) and FAO dataset. The definition of arable land used in this study follows the
426 FAO's definition of arable land, which is highlighted in bold.

Dataset	Cropland Definition	Spatial Res.	Temporal Coverage
MODIS	Cropland (lands covered with temporary crops with harvest cycle less than one year. Includes areas of land temporarily fallow or left idle) and mosaic classes that mix cropland with other land cover types.	500 m	2001-2023
CCI	Rainfed cropland, herbaceous cover cropland, tree or shrub cover cropland, irrigated cropland, and mosaic classes that mix cropland with other land cover types.	300 m	1992-2020
GlobeLand30	Category includes paddy fields, irrigated dry land, rain-fed dry land, vegetable land, pasture planting land, greenhouse land, land mainly for planting crops with fruit trees and other economic trees, as well as tea gardens, coffee gardens and other shrubs.	30 m	2000, 2010, 2020
GLAD	Land used for annual and perennial herbaceous crops for human consumption, forage (including hay) and biofuel. Perennial woody crops, permanent pastures and shifting cultivation are excluded from the definition. The fallow length is limited to 4 years for the cropland class.	30 m	2000, 2005, 2010, 2015, 2020
GLC_FCS30D	Rainfed cropland, irrigated cropland, herbaceous cover, and tree or shrub cover (orchard).	30 m	1985-2022
FAO	Arable land includes areas under temporary agricultural crops (with multiple cropping counted once), temporary meadows for mowing or pasture, and land temporarily fallow. Permanent crops refer to land cultivated with long-term crops that do not require annual replanting (e.g., cocoa, coffee, oil palm, and rubber), as well as land with flowering trees and shrubs (e.g., roses and jasmine) and nurseries, excluding those for forest trees that are classified as forest.	Country Level	1961-2023

427

428 **Table S2.** Scoring scheme for the five input land cover datasets. The agreement-score approach
429 gives precedence to regions where multiple products consistently indicate arable land presence,
430 whereas the binary-score approach prioritizes regions identified by the best products. The
431 agreement and binary scores are identical for values of 0, 1, 2, 29, 30, and 31. Products are
432 ordered by descending accuracy: A, B, C, D, and E. A value of 1 indicates arable land presence
433 and 0 indicates absence.

Agreement Score	Binary Score	A	B	C	D	E
31	31	1	1	1	1	1
30	30	1	1	1	1	0
29	29	1	1	1	0	1

28	27	1	1	0	1	1
27	23	1	0	1	1	1
26	15	0	1	1	1	1
25	28	1	1	1	0	0
24	26	1	1	0	1	0
23	22	1	0	1	1	0
22	14	0	1	1	1	0
21	25	1	1	0	0	1
20	21	1	0	1	0	1
19	13	0	1	1	0	1
18	19	1	0	0	1	1
17	11	0	1	0	1	1
16	7	0	0	1	1	1
15	24	1	1	0	0	0
14	20	1	0	1	0	0
13	18	1	0	0	1	0
12	17	1	0	0	0	1
11	12	0	1	1	0	0
10	10	0	1	0	1	0
9	9	0	1	0	0	1
8	5	0	0	1	1	0
7	6	0	0	1	0	1
6	3	0	0	0	1	1
5	16	1	0	0	0	0
4	18	0	1	0	0	0
3	4	0	0	1	0	0
2	2	0	0	0	1	0
1	1	0	0	0	0	1
0	0	0	0	0	0	0

434

435 **Table S3.** Overall accuracy of the five input land cover products and GALF at continental and
 436 global scales, evaluated against 2010 reference samples. To avoid overinterpretation of marginal
 437 differences in ranking input products, only two decimal places were considered. As GALF is not
 438 independent of the reference samples, its accuracy is presented to assess the performance of the
 439 proposed method rather than for strict validation. The top three products are highlighted in red,
 440 green, and blue.

Continents	MODIS	CCI	GlobeLand30	GLAD	GLC_FCS30D	GALF
North America	0.871	0.786	0.767	0.816	0.706	0.874
Europe & North Asia	0.866	0.835	0.846	0.870	0.807	0.877
Oceania	0.936	0.867	0.917	0.933	0.839	0.943

Africa	0.876	0.759	0.862	0.872	0.851	0.899
East Asia	0.819	0.735	0.800	0.828	0.755	0.844
Southeast Asia	0.824	0.609	0.780	0.817	0.697	0.833
Southwest Asia	0.876	0.817	0.852	0.868	0.772	0.882
South Asia	0.766	0.703	0.754	0.800	0.705	0.808
South America	0.847	0.736	0.825	0.849	0.759	0.852
Global	0.869	0.784	0.808	0.842	0.755	0.877

441

442 **Table S4.** Overall accuracy of GALF and the five input land cover products at continental and
 443 global scales, evaluated against independent reference samples from 2020. The top three
 444 products are highlighted in red, green, and blue.

Continents	MODIS	CCI	GlobeLand30	GLAD	GLC_FCS30D	GALF
North America	0.921	0.848	0.850	0.885	0.782	0.919
Europe & North Asia	0.885	0.809	0.854	0.896	0.775	0.893
Oceania	0.917	0.857	0.931	0.919	0.783	0.922
Africa	0.882	0.692	0.824	0.825	0.800	0.864
East Asia	0.823	0.656	0.726	0.811	0.702	0.834
Southeast Asia	0.866	0.583	0.824	0.846	0.652	0.867
Southwest Asia	0.843	0.715	0.824	0.837	0.632	0.843
South Asia	0.838	0.731	0.820	0.836	0.760	0.843
South America	0.902	0.745	0.858	0.898	0.764	0.899
Global	0.887	0.765	0.839	0.871	0.763	0.887

445

446 **Table S5.** Same as **Table S4** but stratified by Köppen–Geiger climate zones. Climate zones with
 447 fewer than 100 reference samples were excluded from the analysis. The top three products are
 448 highlighted in red, green, and blue.

Climates	MODIS	CCI	GlobeLand30	GLAD	GLC_FCS30D	GALF
Af	0.947	0.697	0.909	0.942	0.792	0.941
Am	0.902	0.663	0.886	0.888	0.786	0.893
Aw	0.850	0.668	0.795	0.815	0.732	0.838

BWh	0.955	0.923	0.945	0.950	0.895	0.951
BWk	0.966	0.934	0.961	0.956	0.888	0.962
BSh	0.863	0.698	0.824	0.833	0.721	0.857
BSk	0.831	0.749	0.857	0.861	0.706	0.867
Csa	0.756	0.581	0.668	0.744	0.555	0.748
Csb	0.868	0.705	0.786	0.814	0.610	0.870
Cwa	0.838	0.679	0.734	0.794	0.701	0.823
Cwb	0.843	0.623	0.672	0.766	0.678	0.806
Cfa	0.804	0.625	0.631	0.753	0.598	0.804
Cfb	0.781	0.705	0.774	0.807	0.663	0.805
Cfc	0.991	0.912	0.982	0.982	0.876	0.991
Dsa	0.778	0.481	0.759	0.759	0.418	0.766
Dsb	0.916	0.619	0.914	0.896	0.546	0.934
Dsc	0.999	0.946	1	0.997	0.952	0.999
Dwa	0.782	0.701	0.736	0.783	0.710	0.807
Dwb	0.872	0.723	0.825	0.850	0.745	0.877
Dwc	0.994	0.870	0.992	0.993	0.910	0.995
Dwd	1	0.983	1	1	1	1
Dfa	0.785	0.711	0.711	0.724	0.668	0.788
Dfb	0.855	0.762	0.772	0.837	0.682	0.860
Dfc	0.996	0.970	0.991	0.996	0.950	0.997
ET	0.998	0.926	0.997	0.998	0.954	0.998
EF	1	0.999	1	1	1	1
Average	0.891	0.764	0.851	0.875	0.759	0.891

449

450

451 **Reference**

452 46. Gong, P. *et al.* Finer resolution observation and monitoring of global land cover: First
453 mapping results with Landsat TM and ETM+ data. *Int. J. Remote Sens.* **34**, 2607–2654
454 (2013).

455 47. Friedl, M. A. *et al.* Global land cover mapping from MODIS: algorithms and early results.
456 *Remote Sens. Environ.* **83**, 287–302 (2002).

457 48. European Space Agency. Climate Change Initiative Land Cover.
458 <http://maps.elie.ucl.ac.be/CCI/viewer/index.php> (2015).

459 49. Chen, J. *et al.* Global land cover mapping at 30 m resolution: A POK-based operational
460 approach. *ISPRS J. Photogramm. Remote Sens.* **103**, 7–27 (2015).

461 50. Potapov, P. *et al.* The global 2000–2020 land cover and land use change dataset derived from
462 the Landsat archive: first results. *Front. Remote Sens.* **3**, 856903 (2022).

463 51. Zhang, X. *et al.* GLC_FCS30D: The first global 30-m land-cover dynamic monitoring
464 product with a fine classification system from 1985 to 2022 using dense time-series Landsat
465 imagery and continuous change-detection method. *Earth Syst. Sci. Data Discuss.* **2023**, 1–32
466 (2023).

467 52. Kerr, J. & Cihlar, J. Land use and cover with intensity of agriculture for Canada from satellite
468 and census data. *Glob. Ecol. Biogeogr.* **12**, 161–172 (2003).

469 53. Jung, M. *et al.* Exploiting synergies of global land cover products for carbon cycle modeling.
470 *Remote Sens. Environ.* **101**, 534–553 (2006).

471 54. Ramankutty, N. *et al.* Farming the planet: 1. Geographic distribution of global agricultural
472 lands in the year 2000. *Glob. Biogeochem. Cycles* **22**, GB1003 (2008).

473 55. Fritz, S. *et al.* Cropland for sub-Saharan Africa: A synergistic approach using five land cover
474 data sets. *Geophys. Res. Lett.* **38**, L04402 (2011).

475 56. Fritz, S. *et al.* Mapping global cropland and field size. *Glob. Change Biol.* **21**, 1980–1992
476 (2015).

477 57. Lu, M. *et al.* A cultivated planet in 2010: 1. The global synergy cropland map. *Earth Syst.*
478 *Sci. Data* **12**, 1913–1928 (2020).

479 58. Tubiello, F. *et al.* A new cropland area database by country circa 2020. *Earth Syst. Sci. Data*
480 **15**, 4997–5015 (2023).

481 59. Zhao, Y. *et al.* Towards a common validation sample set for global land-cover mapping. *Int.*
482 *J. Remote Sens.* **35**, 4795–4814 (2014).

483 60. Fritz, S. *et al.* A global dataset of crowdsourced land cover and land use reference data. *Sci.*
484 *Data* **4**, 170075 (2017).

485 61. Stehman, S. *et al.* Validation of the US Geological Survey's Land Change Monitoring,
486 Assessment and Projection (LCMAP) Collection 1.0 annual land cover products, 1985–2017.
487 *Remote Sens. Environ.* **265**, 112646 (2021).

488 62. Zhao, T. *et al.* Assessing the accuracy and consistency of six fine-resolution global land cover
489 products using a novel stratified random sampling validation dataset. *Remote Sens.* **15**, 2285
490 (2023).

491 63. FAO. FAOSTAT land use [Dataset]. <http://www.fao.org/faostat/en/#data/RL> (2019).

492 64. U.S. Department of State, Office of the Geographer. Large Scale International Boundaries

493 (LSIB) – Simplified (2017). Available at: [https://developers.google.com/earth-](https://developers.google.com/earth-engine/datasets/catalog/USDOS_LSIB_SIMPLE_2017)

494 [engine/datasets/catalog/USDOS_LSIB_SIMPLE_2017](https://developers.google.com/earth-engine/datasets/catalog/USDOS_LSIB_SIMPLE_2017)

495 65. World Bank. Global strategy to improve agricultural and rural statistics. *Econ. Sect. Work*

496 **56719-GLB** (2011).

497 66. Tong, X. *et al.* Global area boom for greenhouse cultivation revealed by satellite mapping.

498 *Nat. Food* **5**, 513–523 (2024).

499 67. Gómez-Galán, M. *et al.* Assessment of postural load during melon cultivation in

500 Mediterranean greenhouses. *Sustainability* **10**, 2729 (2018).

501 68. Mendoza-Fernández, A. *et al.* The role of technology in greenhouse agriculture: Towards a

502 sustainable intensification in Campo de Dalías (Almería, Spain). *Agronomy* **11**, 101 (2021).

503 69. Woodcock, C. E. *et al.* Free access to Landsat imagery. *Science* **320**, 1011 (2008).

504 70. Huete, A. *et al.* Overview of the radiometric and biophysical performance of the MODIS

505 vegetation indices. *Remote Sens. Environ.* **83**, 195–213 (2002).

506 71. Anderson, J. R. *A Land Use and Land Cover Classification System for Use with Remote*

507 *Sensor Data* Vol. 964 (US Government Printing Office, 1976).

508 72. Di Gregorio, A. *Land Cover Classification System: Classification Concepts and User*

509 *Manual: LCCS* (Food & Agriculture Org., 2005).

510 73. European Commission. Joint Research Centre. *GHSL Data Package 2023*. Publications

511 Office of the European Union, <https://data.europa.eu/doi/10.2760098587> (2023).

512 74. Pesaresi, M. *et al.* Advances on the Global Human Settlement Layer by joint assessment of

513 Earth Observation and population survey data. *Int. J. Digit. Earth* **17**, 2390454 (2024).

514 75. Garnelo, M. & Shanahan, M. Reconciling deep learning with symbolic artificial intelligence:

515 representing objects and relations. *Curr. Opin. Behav. Sci.* **29**, 17–23 (2019).

516 76. Phiri, D. *et al.* Sentinel-2 data for land cover/use mapping: A review. *Remote Sens.*

517 **12**, 2291 (2020).

518 77. Everingham, M. *et al.* The Pascal Visual Object Classes (VOC) Challenge. *Int. J. Comput.*

519 *Vis.* **88**, 303–338 (2010).

520 78. Ronneberger, O. *et al.* U-net: Convolutional networks for biomedical image segmentation.

521 *Lect. Notes Comput. Sci.* **9351**, 234–241 (2015).

522 79. Beck, H. E. *et al.* High-resolution (1 km) Köppen–Geiger maps for 1901–2099 based on

523 constrained CMIP6 projections. *Sci. Data* **10**, 724 (2023).

524 80. Beck, H. E. *et al.* Present and future Köppen-Geiger climate classification maps at 1-km

525 resolution. *Sci. Data* **5**, 180214 (2018).

526 81. Kottek, M., *et al.* World map of the Köppen-Geiger climate classification updated. *Meteorol.*

527 *Z.* **15**, 259–263 (2006).

528 82. Peel, M. C., *et al.* Updated world map of the Köppen-Geiger climate classification. *Hydrol.*

529 *Earth Syst. Sci.* **11**, 1633–1644 (2007).

530 83. Mahlstein, I., *et al.* Pace of shifts in climate regions increases with global temperature. *Nat.*

531 *Clim. Change* **3**, 739–743 (2013).

532 84. Klein G. *et al.* Anthropogenic land use estimates for the Holocene – HYDE 3.2. *Earth Syst.*
533 *Sci. Data* **9**, 927–953 (2017).

534 85. Hurt, G. C. *et al.* Harmonization of global land-use change and management for the period
535 850–2100 (LUH2) for CMIP6. *Geosci. Model Dev.* **13**, 5425–5464 (2020).

536

537