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Supplementary Methods

Global arable land mapping data. We constructed 1-km Global Arable Land Fraction (GALF)
by integrating multiple global satellite-derived land cover products with long-term temporal
coverage (=20 years) and high spatial resolution (<500 m), selecting only those with consistent

46 was excluded due to

temporal characteristics and spatial continuity. The FROM-GLC produc
variability in input scene timing that affected spatial coherence, while certain regional land cover
products were also omitted to maintain consistency across regions. The included global products
are the International Geosphere-Biosphere Programme (IGBP) from the Moderate Resolution
Imaging Spectroradiometer (MODIS, MCD12Q1 v061)*’, European Space Agency’s Climate
Change Initiative (CCI)*, GlobeLand30%, Global Land Analysis and Discovery (GLAD)
dataset®®, and GLC_FCS30D°'. Detailed specifications on cropland definitions, spatial
resolutions, and temporal coverages for each dataset are provided in Table S1. Note that for
datasets that do not explicitly distinguish arable land from woody croplands, we hereinafter refer

to all such areas collectively as cropland.

As shown in Table S1 and discussed previously®, cropland definitions vary across
products and deviate from the FAO cropland definition, which includes both arable land and
permanent woody crops. This introduces possible bias in our and similar analyses. For instance,
three products (CCI, GlobeLand30, and GLC_FCS30D) include permanent crops, mostly woody
tree crops (e.g., oil palm, cocoa, coffee, rubber, fruit orchards). Conversely, MODIS and GLAD
cropland maps exclude them. Furthermore, it is likely that the annual crops component of all
products is in fact aligned more with the FAO definition of temporary crops rather than arable
land®. This is because satellite-derived products, by their nature, primarily reflect land cover,
whereas cropland represents a combination of land cover and land use shaped by human
activities for food production®?, which are more difficult to distinguish from space. Relying
solely on individual land cover datasets could therefore lead to systematic over- or
underestimation of cropland extent, particularly in regions dominated by woody crops, such as
Southeast Asia.

New method to harmonize across global arable land datasets. To harmonize different
products and enhance consistency with the FAO definition of arable land, we developed a
synergy approach™-8 for generating GALF, the workflow of which is illustrated in Fig. S1.
Unlike previous studies®*¥, we focused exclusively on arable land rather than including
permanent crops for the following reasons: (1) arable land is consistently represented across land
cover products and FAO statistics (Table S1), and (2) the harmonization and validation of GALF
rely on ground reference samples*®>*-%% that are typically interpreted from satellite or aerial
imagery, which could mix woody crops with forests due to their tree-like canopy structure and
phenological characteristics. In other words, even if synergized cropland maps were generated
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following the FAO cropland definition (i.e., including both arable land and permanent crops), it
would be difficult to reliably validate the permanent crop component.

In constructing GALF, the synergy approach integrates five land cover products with
FAO country-level arable land statistics (FAOSTAT)®, considering only the arable land
components for products that explicitly distinguish them from woody crops. Woody vegetation
was further excluded using the GLAD tree cover mask>’. The approach assumes that strong
agreement among input layers increases confidence in arable land presence (Fig. S2), which
generally leads to improved mapping accuracy>*®. Given that most agreement scores can result
from multiple combinations of land cover products (Fig. S3), this method first requires ranking
the performance of each individual product. Unlike previous studies that rely solely on expert
judgment, ground reference samples, or FAOSTAT for ranking>*>¥, our approach ranks the
products based on both their accuracy against ground reference samples and their consistency
with FAOSTAT. This is based on the assumption that the product with the highest accuracy
against ground reference samples should also show the closest agreement with FAOSTAT
country-level arable land area, provided that sufficient validation samples are available and the
FAO statistics are reliable. Specifically, for each country, land cover products were first
evaluated and ranked by their overall accuracy when at least 20 validation samples were
available, considering some countries with small land areas. To avoid overinterpreting marginal
differences, only two decimal places of overall accuracy were considered®. In cases where
products had identical accuracy or fewer than 20 validation samples were available, the product
whose arable land area was closest to the FAOSTAT was assigned a higher rank. In some regions
lacking FAOSTAT, rankings were based on continental-scale validation results across nine
continental regions (Fig. S4), which were delineated according to administrative boundaries®
and the spatial clustering patterns of global arable land (Fig. 1a). More information on ground
samples and the performance evaluation of land cover products are provided in the section
below.

Once country-level performance rankings of input land cover products were available, an
agreement-ranking score lookup table was established based on binary permutations to prioritize
high-ranked regions that best matched reference data (Table S2). Different from previous
research that converted binary permutations to either agreement scores®*>’ or binary scores’®,
this study combined both scoring approaches to enhance the likelihood of identifying the optimal
configuration that best aligns with ground validation samples and FAO statistics. This is because
we found that each scoring method has inherent limitations, but they offer complementary
strengths when used together. The agreement-score approach®*>7 prioritizes regions where
multiple products consistently indicate the presence of arable land (Fig. S3). This method is
particularly effective in regions where the input land cover products have comparable accuracy;
however, it may underperform in cases where one product significantly outperforms the others.
For example, if a single product accurately captures the full extent of arable land, it may
mistakenly prioritize regions where multiple lower-performing products indicate arable land over
areas correctly identified by the high-performing product alone. Conversely, the binary-score
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approach’® gives priority to regions identified by the best-performing product but may be less
effective when multiple products exhibit similar accuracy (Fig. S3). Thus, combining both
approaches increases the diversity of scoring combinations and enhances the ability to identify
the configuration that best matches ground validation samples and FAO statistics. In this study,
applying the combined method to five input products resulted in a total of 58 unique scoring
combinations, whereas using either approach alone yielded only 32 combinations (i.e., 2°; see
Table S2).

Then, the ground samples and FAOSTAT were used again as benchmarks to identify the
best-performing scoring combinations. We found that the combination yielding the highest
overall accuracy did not always align with the one most closely matching the FAOSTAT-reported
arable land area, particularly in African countries. This discrepancy is likely attributable to
relatively low agreement among five land cover products over Africa (Fig. S2) and the inherent
uncertainties in both the ground reference and FAOSTAT data®. To balance both criteria, for
countries with more than 20 validation samples, we retained only those combinations that either
exceeded the overall accuracy of the best individual product or ranked within the top 10% of all
combinations based on overall accuracy. Among these, the combination with the closest arable
land area to the FAOSTAT was selected. For countries lacking sufficient validation samples, the
FAOSTAT alone was used to select the best combination. In cases where FAOSTAT data were
unavailable, but more than 20 validation samples were present, ground samples were directly
used to identify the optimal combination. For regions lacking both adequate validation samples
and FAOSTAT data, the best combination was selected based on the corresponding continental
validation results.

Finally, the 1-km GALF was computed by averaging arable land weights at 100-m
subpixels within areas defined by the optimal scoring combination. Considering that the spatial
resolution varies across input land cover datasets, all products were first reprojected into a
common coordinate system (WGS84; EPSG:4326) and resampled to a 100-m resolution to
facilitate the calculation of arable land fractions at the 1-km scale. In this calculation, 100-m
pixels classified as pure arable land by all overlapping products were assigned a weight of 1,
while pixels identified as mosaics (i.e., a mix of cropland and other land cover types) by any
product were assigned lower weights to reflect their partial arable land composition. Specifically,
for CCI, mosaic cropland classes were weighed as 0.75 when cropland fraction exceeded 50%,
and 0.25 when it was below 50%. For MODIS, mosaic cropland comprising 40—-60% cultivated
land was assigned a value of 0.5. In cases where a 100-m pixel was simultaneously labeled as
pure arable land and mosaic arable land by different products, the assigned weight was averaged
accordingly. Notably, a few small islands were not represented in the continental mask®*, for
which the arable land fraction was directly calculated based on the GLAD dataset™ due to its
similarity to the FAO arable land definition, high spatial resolution, and reliable accuracy, as
discussed below. We implemented the procedure using data from 2010 to identify the optimal
scoring combination, which was then applied to generate GALF for the years 2000, 2010, and
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2020. These three years represent the intersection of temporal coverage across all products, with
MODIS land cover from 2001 used as a proxy for 2000.

It should be noted that, although the proposed method is expected to produce high-quality
arable land maps beyond the capabilities of individual land cover products, its performance
strongly depends on the quality of the input datasets and may fail to capture arable land in
regions where most products perform poorly. One notable example is greenhouse agriculture,
which should ideally be detected by all land cover products but exhibits distinct spectral
reflectance compared with other arable land®®. We found that the ability of the products to detect
greenhouse infrastructures varies considerably. As examined, while small- to medium-sized
greenhouse facilities, such as those in Michoacan, Mexico (19.9°N, 102.2°W), are generally
captured by all products, only GlobeLand30 and CCI successfully detect the large-scale
greenhouse infrastructures (> 500 km?) in Almeria, Spain (36.7°N, 2.7°W)°7%%_In contrast, other
products misclassify these areas as impervious surfaces (GLC FCS30D), wetlands (GLAD), or
non-vegetated land (MODIS). Consequently, the proposed method cannot reliably capture these
large-scale greenhouse areas in Spain. To address this issue, we explicitly identified these
greenhouse areas across Spain by combining GlobeLand30 and CCI arable land layers with
GLC _FCS30D impervious surfaces and GLAD wetlands across Spain, before calculating the 1-
km arable land fraction. Fig. S5 demonstrates that this combined approach effectively captures
the greenhouse areas in southern Spain. On the other hand, in Africa and the Arabian Peninsula,
the quality and agreement among the five input cropland products were sometimes very low
(Fig. S2). For example, GLC FCS30D missed an entire scene in Sudan, while CCI misclassified
several roads within the Congolian rainforests as cropland. Therefore, we carefully compared
GALF with GLAD by evaluating their overall accuracy, area consistency with FAOSTAT
statistics, and spatial patterns of arable land distribution. Based on the assessment, we replaced
GALF with GLAD in the Republic of the Congo, Democratic Republic of the Congo, South
Sudan, Sudan, Somalia, and Saudi Arabia, where GLAD demonstrated comparable accuracy to
GALF but provided more realistic spatial patterns.

To the best of our knowledge, GALF is the first global long-term arable land fraction
product, providing a novel framework for assessing arable land dynamics in the 21" century.

Performance evaluation of input land cover products. To support the performance ranking of
land cover products in 2010 and identify the best scoring combination, we compiled multiple
sources of reference samples (Fig. S6). The year 2010 was selected because it represents the
midpoint of the study period and offers the most consistent availability of ground validation data.

46,59 and additional

The reference samples included two datasets from Tsinghua University
samples from the Geo-wiki crowdsourcing platform®® and the U.S. Geological Survey’s Land
Change Monitoring, Assessment and Projection (LCMAP)®!. The Tsinghua University

datasets*®> were originally developed to support the creation and validation of their 30-m global

land cover product (i.e., FROM-GLC), where cropland is defined as arable and tillage land with



182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215

216

217
218
219
220

herbaceous and/or shrub crops—thus more than arable land. The first dataset*® involves 36,352
globally distributed random samples, manually labeled by hundreds of students, researchers, and
experts using Google Earth imagery in or around 2010. The second dataset® contains 38,664
global random sample units spanning the years 1986 to 2010, derived through interpretation of
Landsat imagery®, MODIS enhanced vegetation index (EVI)’°, and other high-resolution images
via Google Earth. For this study, a total of 11,672 samples in 2010 were considered. The Geo-
wiki dataset®®’! records the dominant, secondary, and tertiary land cover types, with cropland
defined as “cultivated and managed” or “mosaic of cultivated and managed/natural vegetation™.
In this study, locations falling into any of the three cropland-related categories were considered
as reference. It comprises 151,942 globally distributed random samples derived from the visual
interpretation of Google Earth imagery before 2012. A subset of 12,555 samples from 2010 was
selected for analysis. The LCMAP reference dataset®' defines cropland as areas used for the
production of crops, including cultivated and uncultivated croplands, hay fields, orchards,
vineyards, and pasturelands actively managed for crop production. It offers annual land cover
labels for approximately 25000 random locations across the contiguous United States (CONUS)
from 1984 to 2021 based on systematic interpretation of Landsat imagery and aerial photographs.
A subset of 24,995 samples from 2010 was used in this study. To integrate the four sample sets
and avoid conflicting validation results, samples located within the same 1-km pixel were
merged, and those indicating different land cover types were excluded. A 1-km resolution was
adopted to ensure consistency in comparisons among the various land cover products and the
GALF. This resulted in a final dataset of 61,294 samples.

To validate the performance of different land cover products in mapping arable land, 1-
km arable land fraction maps were generated by averaging values from the 100-m resolution
layers, where any pixel with an arable land fraction greater than zero was designated as arable
land®’. Following previous studies®*>’, accuracy was quantified using overall accuracy (OA),
defined as the probability that a sample is correctly classified—i.e., the sum of true positives and
true negatives divided by the total number of samples. Continental and global validation results
for the five land cover products were summarized in Table S3, indicating that MODIS achieved
the highest overall accuracy globally and across most continents, followed by GLAD,
GlobeLand30, CCI, and GLC_FCS30D. However, despite its strong performance, MODIS
cannot be used independently to derive 1-km arable land fractions due to its relatively coarse
native resolution of 500 m. These performance rankings, along with country-level validation
results and FAOSTAT, form the basis for ranking individual land cover products and identifying
the optimal scoring combinations.

Validation of GALF. To independently assess the accuracy of the GALF maps, we conducted a
multi-scale validation in 2020 and compared it against other land cover products. Specifically,
we first assessed its spatial accuracy using an independent reference sample set®? (Fig. S6),
which defines cropland as rainfed and irrigated croplands following the United Nations’ Land
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Cover Classification rule’. This dataset integrates multiple data sources, including high-
resolution imagery from Google Earth, vegetation cover, plant phenology, tree height, and terrain
characteristics, and comprises 79,112 random samples. To avoid duplicate and conflicting
assessment results, samples located within the same 1-km pixel were merged, while those
indicating different land cover types were removed, leading to a final dataset of 79,001 samples.
Additionally, country-level arable land areas derived from GALF were compared with FAO
statistics to evaluate area consistency.

Before presenting the validation results, Fig. S7 provides an overview of global arable
land fraction patterns depicted by the GALF maps for the years 2000, 2010, and 2020. As shown,
arable land is predominantly concentrated in the Northern Hemisphere, particularly in North
America, Europe, South Asia, and East Asia. By contrast, arable land is more sparsely distributed
in low-latitude and Southern Hemisphere regions, including South America, Africa, Southeast
Asia, and Oceania. When compared with other land cover products, Table S4 shows that GALF
exhibits strong performance comparable to MODIS on the global scale and across all continents,
followed by GLAD, GlobeLand30, CCI, and GLC FCS30D. At the continental level, GALF
outperforms all other products in four out of nine regions, ranking second in four and third in
one. Similar results are also observed across different Koppen—Geiger climate zones: GALF
achieves the highest accuracy in 12 out of 26 zones, ranks second in 10 zones, and third in four
(Table SS).

On the other hand, Fig. S8 compares country-level arable land area estimates from
various land cover products against FAO-reported statistics. GALF achieves the highest
correlation (R = 0.993) and the lowest root mean square error (RMSE = 2.35 x 10* km?),
demonstrating superior accuracy in capturing national-scale arable land area. Compared to
GLAD and MODIS, GALF improves the correlation by more than 0.6% and reduces RMSE by
over 29%. For global total arable land, GLAD (1.32 x 107 km?), GALF (1.31 x 107 km?), and
MODIS (1.46 x 107 km?) are closest to the FAO-reported total (1.38 x 107 km?), while other
products (i.e., CCI, GlobeLand30, and GLC FCS30D) significantly overestimate the global
arable land area by more than 0.75 x 107 km?.

Built-up fraction. The 1-km built-up fraction was calculated using built-up surface data’"*

from the Global Human Settlement Layer (GHSL) project, developed by the European
Commission’s Joint Research Centre as part of the Copernicus Emergency Management Service.
Built-up surface is defined as the gross building footprint area (including wall thickness)
enclosed by the outer building walls. The dataset was generated using a symbolic machine
learning—based supervised classification approach’® applied to Sentinel-2 imagery’®, achieving a
high Intersection-over-Union (IoU)”” score of 0.92, placing it among the most accurate publicly
available built-up datasets. The data are temporally interpolated or extrapolated in five-year
intervals, covering the period from 1975 to 2030. In this study, 1-km built-up surface data for the
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years 2000, 2010, and 2020 were extracted and converted into built-up fractions by dividing the
built-up area within each grid cell by the cell’s total area.

Considering the uncertainties associated with GHSL, we also used the 30-m built-up land
data from GLAD?>. This product defines built-up land as areas containing man-made surfaces—
including infrastructure, commercial, and residential land uses—even if such surfaces do not
dominate within the pixel. It was produced using a deep learning convolution neural network
(CNN) algorithm’® applied to Landsat imagery, with training data collected from Open Street
Map (https://planet.osm.org; https://www.openstreetmap.org). While the overall accuracy was
not reported, the user’s accuracy ranged from 63.7% to 74.1% and the producer’s accuracy from

39.1% to 59.6%. In this study, we computed 1-km built-up fractions by averaging the 30-m
GLAD classifications within each 1-km grid cell. Given its relatively low classification accuracy,
this dataset was used solely to validate the results presented in the main text (see Supplementary
Discussion).

Climate classification. To understand the climatic constraints on arable land and built-up
systems, we used the 1-km constant Képpen—Geiger climate classification map’®*° for the period
1991-2020. The K&ppen—Geiger system delineates five major climate zones—tropical (A), arid
(B), temperate (C), cold (D), and polar (E)—based on seasonal patterns of monthly temperature
and precipitation. Precipitation regimes are further classified as desert (W), steppe (S), fully
humid (f), summer dry (s), winter dry (w), and monsoon (m), while temperature regimes include
hot (h), cold (k), hot summer (a), warm summer (b), cold summer (c), cold winter (d), tundra (T),
and frost (F). This classification scheme has been widely adopted in previously developed
K&ppen-Geiger climate classification maps®'"82. Compared with earlier versions that have
relatively coarse resolutions (>0.1°), the product used in this study offers a higher spatial
resolution (1 km) and includes corrections for topographic effects. It should be noted that
although climate zones shift with rising global temperatures’®*?, they are expected to remain
relatively stable over a few decades, as also evidenced by the relatively constant map for the
period 1991-20207%%°,

Historical land cover dynamics. To investigate the historical co-evolution of arable land and
built-up areas, we used two long-term land cover reconstructions: the History Database of the
Global Environment (HYDE v3.4)3* and the Land-use Harmonization 2 (LUH2)%. HYDE3.4
provides spatially explicit reconstructions of cropland and built-up areas at a resolution of 5 arc
minutes. It integrates historical census data, archaeological records, and satellite observations to
generate long-term time series from 10,000 BCE to 2024. Its most recent spatial allocation of
land use is primarily informed by FAO agricultural land use data and the CCI land cover,
supplemented with MODIS imagery and MapBiomas statistics (https://mapbiomas.org/) for
Brazil, Indonesia, and China. The historical spatial allocation of built-up areas is estimated by
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dividing each country’s total urban population by its average urban population density, while the
allocation of cropland is determined as the residual area after accounting for water bodies, snow
and ice, built-up areas, protected lands, and unused regions, which are calibrated using recent
land cover products. In this study, we used data from 0 CE onwards. LUH2 offers global annual
land-use states from 850 to 2100 at 0.25° resolution, combining historical reconstructions with
future projections from integrated assessment models. Designed for Earth system modelling,
LUH2 supports CMIP6 by providing consistent trajectories of land-use change, including
cropland, pasture, forestry, and urban areas. Its historical land use is based on HYDE v3.2. In this
work, we used historical LUH2 data from 850 to 2015. Note that although the definitions of
cropland and built-up areas in these datasets differ from those in GALF and GHSL, we expect
their historical evolution patterns to be largely consistent at climatic scales.
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Supplementary Discussions

Although GALF shows notable improvements over the five other land cover datasets
used, and GHSL remains the most accurate publicly available built-up dataset, we further assess
the robustness of our findings by replicating all figures using cropland and built-up data from
GLAD and historical land-use change from HYDE3.4. Note that GLAD cropland most closely
aligns with the FAO definition of arable land among the five land cover products used, although
it omits certain categories such as fallow land and temporary meadows and pastures’.

Replication of Fig. 1 using GLAD data. Fig. S9 shows that arable land and built-up surface
cover about 13.3 and 5.0 million km?in 2020. While the total arable land area closely matches
that of GALF, the built-up area is over seven times larger than the estimate from GHSL (Fig. 1).
Consistent with Fig. 1, 89% of the cropland and 81% of built-up areas are located in the same ten
of the thirty Koppen-Geiger climate classes, including mildly cold (Dfb, Dfa, Dwa), temperate
(Cfa, Cwa, Ctb), arid steppe (BSk, BSh), tropical savannah (Aw), and arid desert (BWh). Finer-
scale analyses in northwestern Canada, Argentina-Chile, North Africa, northeastern China, and
southeastern Australia (Figs. S9a1-S9c1) similarly demonstrate strong climate constraints on the
cropland and built-up extent. When aggregated across all thirty Kdppen—Geiger climate zones,
cropland and built-up areas exhibit a strong positive correlation (R = 0.82, p <0.01; Fig. S9d).

Replication of Fig. 2 using GLAD and LUH2 data. Fig. S10a demonstrates the changes in
GLAD cropland between 2020 and 2000, with and without concurrent built-up expansion at
0.05° resolution. Largely consistent with Fig. 2a, the results show approximately 67% of built-up
expansion occurred within 1 km of existing cropland, and that substantial cropland loss across
North America, Europe, East Asia, South Asia, and Southeast Asia. Despite notable regional
differences from GALF, similar spatial gradients of cropland change were observed across North
America (southeast to northwest), the Eurasian Agricultural Belt (west to east), across China
(southeast to northwest), and within India (from northern and coastal regions toward central
forested areas). In North America, the concurrent decline in cropland alongside built-up area
expansion is slightly less pronounced in the southeast, whereas cropland expansion in the
northwest is more extensive compared with GALF. In Sub-Saharan Africa, Fig. S10a reveals a
more pronounced cropland increase without substantial accompanying expansion of built-up
areas. In India, Fig. S10a shows widespread cropland expansion across central regions, whereas
Fig. 2a highlights cropland increases primarily concentrated in central forested zones. Despite
these differences, both figures consistently demonstrate the strong influence of built-up
expansion on cropland dynamics.
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Consistent with Fig. 2b, Fig. 10b shows that 49% of global cropland loss occurred within
1 km of built-up area loss, increasing to 99% within 5 km, where total cropland loss declined
sharply with distance from urban contraction. In line with Fig. 2¢, Fig. 10c¢ illustrates that much
of the Northern Hemisphere is experiencing land competition between cropland and built-up
areas, particularly across North America, Europe, and East Asia. By contrast, low-latitude
regions continue to support the concurrent expansion of cropland and urban areas. Fig. 10d
further confirms that the relationship between cropland and built-up areas can be characterized
by three distinct land-use regimes: co-development, stability, and competition.

Replication of Fig. 3 using GLAD data. Consistent with Fig. 3a, Fig. S11a demonstrates that
global cropland increased by 9% —from 12.2 to 13.3 million km*>—between 2000 and 2020, with
11.0 million km? remaining stable, 2.3 million km? newly cultivated, and 1.2 million km? lost.
Among them, 89% of net gains occurred in tropical and arid climates, while losses were
concentrated in temperate and cold climates, followed by arid and tropical climates (Fig. S11b).
More specifically, in regions experiencing large-scale cropland displacement, net cropland losses
chiefly occurred in the temperate climate while 92% of net gains were concentrated in arid
zones. By contrast, in regions undergoing cropland expansion, gains occurred across tropical,
arid, and temperate climates, with the tropical zone accounting for the largest share (56%) of the
net increase. Overall, these results reaffirm the robustness of the analyses in the main text.
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369  Fraction (GALF).

370
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Fig. S2. Agreement scores among five used cropland products (i.e., MODIS, CCI, GlobeLand30,
GLAD, and GLC FCS30D) at 1-km resolution in 2020. A score of 5 indicates that all products
consistently identify the presence of cropland.

Agreement-score Method: 3»2-122-2>2-3>1-1>1-2>1-3

A A Binary-score Method: 322-1>2-22>1-122-321-2>1-3

OOQOQQ@

Fig. S3. Schematic diagram illustrating possible permutations among three land cover products,
along with the ranking sequences derived from the agreement-score and binary-score methods.
Product A represents the highest accuracy product, followed by B and C. In this example, scores
“2” and “1” result from three different combinations. The primary difference between the two
methods is that the agreement-score method prioritizes region 2-3, whereas the binary-score
method prioritizes region 1-1 after accounting for regions 3, 2-1, and 2-2. Notably, the
divergence between the two methods increases with the number of input land cover products.
Combining both methods expands the set of possible permutations, thereby improving the
likelihood of identifying the optimal combination with the highest accuracy against ground
validation samples and strongest alignment with FAO arable land statistics.

= T

Continental Classification

Fig. S4. Classification of nine continental regions based on the Large Scale International
Boundary (LSIB)%. To reflect the spatial clustering of global arable land (Fig. 1), Asia was
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subdivided into four regions: East Asia, South Asia, Southeast Asia, and Southwest Asia.
Meanwhile, Europe, North Asia, and Central Asia were grouped into a single region.

2°55'W 2°50'W 2°45'W 2°40'W 2°35'W 2°30'W 2°20'W 2°5'W

2025'W 2°15'W 2°10'W

B Greenhouse

3°W 2°55'W 2°50'W 2°45'W 2°40'W 2°35'W 2°30'W 2°25'W 2°20'W 2°15'W 2°10'W 2°5'W

Fig. SS. Detected greenhouses at 1 km in southern Spain in 2020. The mapped greenhouse areas
are shown overlaid on Sentinel-2 imagery, where the white regions in the imagery correspond to
greenhouse structures.
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Fig. S6. Geographic distribution of reference samples. Samples in 2010 were used to evaluate
satellite-derived land cover products and determine the optimal scoring combination, while
samples in 2020 were used to assess the accuracy of the GALF product.
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405  Fig. S7. 1-km Global Arable Land Fraction (GALF) maps for the years 2000, 2010, and 2020.
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414  Fig. S9. Same as Fig. 1 in the main text but using GLAD cropland and built data.
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Supplementary Tables

Table S1. Specifications of five land cover products (MODIS, CCI, GlobeLand30, GLAD, and
GLC _FCS30D) and FAO dataset. The definition of arable land used in this study follows the
FAQ?’s definition of arable land, which is highlighted in bold.

Dataset Cropland Definition Spatial  Temporal
Res. Coverage
Cropland (lands covered with temporary crops with harvest cycle less
MODIS than one year. Includes areas of land temporarily fallow or left idle) and 500m  2001-2023
mosaic classes that mix cropland with other land cover types.
Rainfed cropland, herbaceous cover cropland, tree or shrub cover
CCI cropland, irrigated cropland, and mosaic classes that mix cropland with 300 m 1992-2020
other land cover types.
Category includes paddy fields, irrigated dry land, rain-fed dry land,
i i 2000,
GlobeLand30 Vegetabl§ land, pastgre plaptmg land, greenhouse lapd, land and mainly 30 m
for planting crops with fruit trees and other economic trees, as well as 2010, 2020
tea gardens, coffee gardens and other shrubs.
Land used for annual and perennial herbaceous crops for human 2000,
consumption, forage (including hay) and biofuel. Perennial woody 2005
GLAD crops, permanent pastures and shifting cultivation are excluded from 30 m 201 O,
the definition. The fallow length is limited to 4 years for the cropland ’
class. 2015, 2020
GLC FCS30D Rainfed cropland, irrigated cropland, herbaceous cover, and tree or 30 m 1985-2022
- shrub cover (orchard).
Arable land includes areas under temporary agricultural crops
(with multiple cropping counted once), temporary meadows for
mowing or pasture, and land temporarily fallow. Permanent crops Country
FAO refer to land cultivated with long-term crops that do not require annual Level 1961-2023
eve

replanting (e.g., cocoa, coffee, oil palm, and rubber), as well as land
with flowering trees and shrubs (e.g., roses and jasmine) and nurseries,
excluding those for forest trees that are classified as forest.

Table S2. Scoring scheme for the five input land cover datasets. The agreement-score approach

gives precedence to regions where multiple products consistently indicate arable land presence,
whereas the binary-score approach prioritizes regions identified by the best products. The

agreement and binary scores are identical for values of 0, 1, 2, 29, 30, and 31. Products are
ordered by descending accuracy: A, B, C, D, and E. A value of 1 indicates arable land presence
and 0 indicates absence.

Agreement Binary A B C D E
Score Score
31 31 1 1 1 1
30 30 1 1 1 1
29 29 1 1 1 0



28 27 1 1 0 1 1
27 23 1 0 1 1 1
26 15 0 1 1 1 1
25 28 1 1 1 0 0
24 26 1 1 0 1 0
23 22 1 0 1 1 0
22 14 0 1 1 1 0
21 25 1 1 0 0 1
20 21 1 0 1 0 1
19 13 0 1 1 0 1
18 19 1 0 0 1 1
17 11 0 1 0 1 1
16 7 0 0 1 1 1
15 24 1 1 0 0 0
14 20 1 0 1 0 0
13 18 1 0 0 1 0
12 17 1 0 0 0 1
11 12 0 1 1 0 0
10 10 0 1 0 1 0
9 9 0 1 0 0 1
8 5 0 0 1 1 0
7 6 0 0 1 0 1
6 3 0 0 0 1 1
5 16 1 0 0 0 0
4 18 0 1 0 0 0
3 4 0 0 1 0 0
2 2 0 0 0 1 0
1 1 0 0 0 0 1
0 0 0 0 0 0 0

434

435  Table S3. Overall accuracy of the five input land cover products and GALF at continental and
436  global scales, evaluated against 2010 reference samples. To avoid overinterpretation of marginal
437  differences in ranking input products, only two decimal places were considered. As GALF is not
438 independent of the reference samples, its accuracy is presented to assess the performance of the
439  proposed method rather than for strict validation. The top three products are highlighted in red,
440  green, and blue.

Continents MODIS CCI  GlobeLand30 GLAD GLC_FCS30D GALF

North America 0.871 0.786 0.767 0.816 0.706 0.874
Europe &
North Asia 0.866 0.835 0.846 0.870 0.807 0.877

Oceania 0.936 0.867 0.917 0.933 0.839 0.943




441

442
443
444

445

446
447
448

Africa 0.876 0.759 0.862 0.872 0.851 0.899

East Asia 0.819 0.735 0.800 0.828 0.755 0.844
Southeast Asia  0.824 0.609 0.780 0.817 0.697 0.833
Southwest Asia ~ 0.876 0.817 0.852 0.868 0.772 0.882

South Asia 0.766 0.703 0.754 0.800 0.705 0.808
South America  0.847 0.736 0.825 0.849 0.759 0.852

Global 0.869 0.784 0.808 0.842 0.755 0.877

Table S4. Overall accuracy of GALF and the five input land cover products at continental and
global scales, evaluated against independent reference samples from 2020. The top three
products are highlighted in red, green, and blue.

Continents MODIS CCI  GlobeLand30 GLAD GLC_FCS30D GALF

North America  0.921  0.848 0.850 0.885 0.782 0.919
I\Elgrrt‘l’lp/ii‘a 0.885  0.809 0.854 0.896 0.775 0.893
Oceania 0917  0.857 0.931 0.919 0.783 0.922
Africa 0.882  0.692 0.824 0.825 0.800 0.864
East Asia 0.823  0.656 0.726 0.811 0.702 0.834
Southeast Asia  0.866  0.583 0.824 0.846 0.652 0.867
Southwest Asia ~ 0.843  0.715 0.824 0.837 0.632 0.843
South Asia 0.838  0.731 0.820 0.836 0.760 0.843
South America ~ 0.902  0.745 0.858 0.898 0.764 0.899
Global 0.887  0.765 0.839 0.871 0.763 0.887

Table S5. Same as Table S4 but stratified by Koppen—Geiger climate zones. Climate zones with
fewer than 100 reference samples were excluded from the analysis. The top three products are
highlighted in red, green, and blue.

Climates MODIS CCI GlobeLand30 GLAD GLC_FCS30D GALF

Af 0.947 0.697 0.909 0.942 0.792 0.941

Am 0.902 0.663 0.886 0.888 0.786 0.893

Aw 0.850 0.668 0.795 0.815 0.732 0.838




449

450

BWh 0.955 0.923 0.945 0.950 0.895 0.951
BWk 0.966 0.934 0.961 0.956 0.888 0.962
BSh 0.863 0.698 0.824 0.833 0.721 0.857
BSk 0.831 0.749 0.857 0.861 0.706 0.867
Csa 0.756 0.581 0.668 0.744 0.555 0.748
Csb 0.868 0.705 0.786 0.814 0.610 0.870
Cwa 0.838 0.679 0.734 0.794 0.701 0.823
Cwb 0.843 0.623 0.672 0.766 0.678 0.806
Cfa 0.804 0.625 0.631 0.753 0.598 0.804
Ctb 0.781 0.705 0.774 0.807 0.663 0.805
Cfc 0.991 0912 0.982 0.982 0.876 0.991
Dsa 0.778 0.481 0.759 0.759 0.418 0.766
Dsb 0.916 0.619 0914 0.896 0.546 0.934
Dsc 0.999 0.946 1 0.997 0.952 0.999
Dwa 0.782 0.701 0.736 0.783 0.710 0.807
Dwb 0.872 0.723 0.825 0.850 0.745 0.877
Dwc 0.994 0.870 0.992 0.993 0.910 0.995
Dwd 1 0.983 1 1 1 1
Dfa 0.785 0.711 0.711 0.724 0.668 0.788
Ditb 0.855 0.762 0.772 0.837 0.682 0.860
Dfc 0.996 0.970 0.991 0.996 0.950 0.997
ET 0.998 0.926 0.997 0.998 0.954 0.998
EF 1 0.999 1 1 1 1
Average 0.891 0.764 0.851 0.875 0.759 0.891
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