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Supplementary Fig. 1 The P2-and O3-type crystal structures. a, The hexagonal structure of P2-type oxide with the space group of P63/mmc (194). b, The Rhombohedral structure O3-type oxide with the space group of R-3m (166). The TM stand for transition metal.
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Supplementary Fig. 2 Shift of the (002) and (004) diffraction peak of P2-NaMN and P2-NaMNNb compounds.
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[bookmark: _Hlk72352671]Supplementary Fig. 3 a, Field-emission scanning electron microscope (SEM) image of P2-NaMNNb compound. b, HADDF-STEM image that illustrates the surface reconstruction layer of P2-NaMNNb only exists along [100] direction.
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Supplementary Fig. 4 Fast Fourier Transform (FFT) diffraction of P2-NaMNNb and P2-NaMN.
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Supplementary Fig. 5 Schematic diagram of spinel-like-atomic structure projected along [110] crystallographic direction.
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Supplementary Fig. 6 a, STEM-HAADF image showing Energy Spectrum Line Scan position. B, Corresponding EDS line profiles of (a) O (orange), Na (green), Mn (red), Ni (blue) and Nb (cyan-blue).
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[bookmark: _Hlk72401043]Supplementary Fig. 7 a-c, HAADF images of the Na0.78Ni0.3Mn0.67O2 particles projected along [010] zone axes taken after different electron beam irradiation times (0 min, 1 min and 3 min) with a dose rate of ~1.12 × 104 electrons Å-2 s-1, at a dwell time of ~1μs/pixel.
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Supplementary Fig. 8 a, HRTEM image of the Na0.78Ni0.3Mn0.67O2 projected along [010] zone axis, and taken after different electron beam irradiation times (0 min, 1 min and 3 min corresponding to b, c, d.
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Supplementary Fig. 9 Charge–discharge curves of a, P2-NaMNNb and b, P2-NaMN cathode at 25 °C and -40 °C. 
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Supplementary Fig. 10 Ex-situ XPS analysis of a Ni 2p and Mn 2p for P2-NaMN at pristine state, charge to 4.15 V. b, Ni 2p, c, Mn 2p and d, Nb 3d for P2-NaMNNb at pristine state, charge to 4.15 V and discharge to 2.4 V, respectively.
[bookmark: _Hlk79915991]The valance states of the elements at different charge/discharge voltages of P2-NaMN and P2-NaMNNb were investigated by ex-situ X-ray photoelectron spectroscopy (XPS). For P2-NaMNNb, the high-resolution spectrum of Ni 2p reveals that the 2p3/2 and 2p1/2 peaks of Ni are 854.2 and 871.6 eV, respectively. When charged to 4.15 V, the spectrum of Ni2+ 2p shifts to the direction of high binding energy (Supplementary Fig. 10b). It shifts to Ni3+ and a tiny valence state of Ni4+, indicating oxidation of Ni2+/Ni3+/Ni4+1,2, which means more electrons participate in the redox reaction to contribute more capacity than that of P2-NaMN (Supplementary Fig. 10a). This consequence fits well with the circumstance of CV (Fig. 3a) and charging/discharging curves (Supplementary Fig. 9). After discharged to 2.4 V, the valence of Ni close to +2 with trivial trivalent nickel, this is because the valance of Ni is not completely reduced to +2 at 2.4 V. The XPS Mn 2p spectrum of P2-NaMNNb (Supplementary Fig. 10c) depicts that co-existence of Mn3+ and Mn4+ with the ratio of 0.27 : 0.73 owing to the Nb doping. During the charging process, the valence of Mn gradually increases, and only Mn4+ exists when reaching 4.15 V. Moreover, the valence of Mn remains +4 after discharged to 2.4 V, indicating that the presence of Mn4+ is steady upon cycling. The valence of Nb is +5 during the entire charge and discharge process, which proving that Nb does not participate in charge compensation (Supplementary Fig. 10d).
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Supplementary Fig. 11 Calculated Na+ diffusion coefficients of P2-NaMN electrodes from GITT at 25 and -40 °C.
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Supplementary Fig. 12 Long-term cycling stability at a high rate of 5 C at 25 °C.
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[bookmark: _Hlk69406458]Supplementary Fig. 13 a, The average working voltage (> 3.3 V) in the rate of 0.5 C at -40 °C. b, Corresponding charging and discharging curves of various cycle numbers at -40 °C.
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[bookmark: _Hlk74165781]Supplementary Fig. 14 Structure evolution of P2-NaMNNb upon Na+ extraction/insertion. a, The typical intensity contour maps of in-situ XRD patterns corresponding to the charge and discharge curves between 2.4-4.15 V. b, The variation of cell parameters a/b (green lines), c (blue lines), and V (gray lines).
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Supplementary Fig. 15 Comparison of X-ray diffraction patterns of P2-NaMNNb and P2-NaMN after 30 cycles.
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Supplementary Fig. 16 EDX spectra of a, P2-NaMN, b, P2-NaMNNb of Na anodes after 30 cycles.
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[bookmark: _Hlk77429032][bookmark: _Hlk77274821]Supplementary Fig. 17 The total density of state of Na24Ni10Mn22O64. 
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Supplementary Fig. 18 Galvanostatic charge/discharge curves of the hard carbon electrode. 
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[bookmark: _Hlk69409260]Supplementary Fig. 19 a Galvanostatic charge/discharge curves of various rate of the full-cell at 25 °C. b Galvanostatic charge/discharge curves of various cycles numbers at 25 °C.
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[bookmark: _Hlk76216193]Supplementary Fig. 20 Galvanostatic charge/discharge curves of various rate of the full-cell at -40 °C.
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Supplementary Fig. 21 The image of the low temperature electrochemical test for half and full cell at -40 °C.






Supplementary Table 1. Stoichiometry from the inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis.
	
	Na
	Mn
	Ni
	Nb

	Na0.78Mn0.67Ni0.31Nb0.02O2
	0.78
	0.67
	0.31
	0.02




Supplementary Table 2. Crystallographic parameters of P2-NaMNNb refined by the Rietveld method.
	site
	x
	y
	z
	Occ.

	Naf
	0
	0
	1/4
	0.237

	Nae
	2/3
	1/3
	3/4
	0.543

	Mn
	0
	0
	0
	0.670

	Ni
	0
	0
	0
	0.310

	Nb
	0
	0
	0
	0.02

	O
	2/3
	1/3
	0.07520
	1

	a= 2.888(2)Å
	c= 11.155(4)Å
	V=80.56(2)Å3
	Rp= 2.36%
	Rwp= 4.19%






Supplementary Table 3. Crystallographic parameters of P2-NaMN refined by the Rietveld method.
	site
	x
	y
	z
	Occ.

	Naf
	0
	0
	1/4
	0.303

	Nae
	2/3
	1/3
	3/4
	0.477

	Mn
	0
	0
	0
	0.68

	Ni
	0
	0
	0
	0.32

	O
	2/3
	1/3
	0.07239
	1

	a= 2.887(1)Å
	c= 11.148(2)Å
	V=80.46(1)Å3
	Rp= 3.17%
	Rwp= 5.61%






Supplementary Table 4. Comparison of low-temperature performance of various cathode materials for sodium ion batteries.
	
	Cathode
	Electrolyte
	Anode
	Operating temperature
	Capacity retention (vs.25 °C)
	Ref.

	
	NVP-CNTs
	NaPF6/G2
	Bi
	-15 °C
	84.3%
	3

	
	NVPOF
	NaClO4 in
EC/PC+5% FEC
	3DSG
	-25 °C
	60.7%
	4

	
	NVPF-NTP
	NaClO4 in
EC/PC+5% FEC
	Na
	-25 °C
	76.4%
	5

	
	NVPC
	Na[FSA]-[C2C1im][FSA] +0.2Na[FSA]
	Na
	-20 °C
	57.1%
	6

	polyanion
materials
	NGO@ Na3V(PO3)3N
	NaClO4 in
EC/PC+5% FEC
	Na
	-15 °C
	75%
	7

	
	Na4Fe3(PO4)2(P2O7)
	NaClO4 in
EC/PC+5% FEC
	Na
	-20 °C
	87.7%
	8

	
	Na4MnCr(PO4)3
	NaClO4 in PC with 5 % and 10 % FEC
	Hard carbon
	-10 °C
	79%
	9

	
	NVP@3D hierarchical porous architectures
	NaClO4 in EC/PC (1:1) +5% FEC
	Na
	-20 °C
	93%
	10

	
	Na3Fe2(PO4)3@flake-porous
	NaClO4 in EC/DMC
	Hard carbon
	-20 °C
	48.3%
	11

	
	Mo-doped Na3V2(PO4)3 nanowires
	NaClO4 in EC/DMC+5% FEC
	Hard carbon
	-15 °C
	95.9%
	12

	
	NVP@C
	NaClO4 in EC/PC
	Na
	-30 °C
	88%
	13

	Prussian blue material
	PB/CNT
	NaClO4 in EC/PC
	Na
	-25 °C
	85%
	14

	Layered oxide material
	RAHC
Na[Ni0.60Co0.05Mn0.35]O2
	NaPF6 in
EMS (98%) and FEC (2%)
	Hard carbon
	-20 °C
	79.7%
(vs 30°C)
	15

	
	Na2/3Ni1/3Mn7/12Fe1/12O2
	NaClO4 in PC+5% FEC
	Na
	-25 °C
	63%
	16

	
	NCM@NTP7
	NaPF6 in a EC/DEC(11 v/v)
	Na
	-20 °C
	80.5%
	17

	
	Na0.67Ni0.2Co0.2Mn0.6O2
	NaPF6 in diglyme
	Na
	-40 °C
	78.8%
	18

	
	P2-NaMNNb
	NaPF6 in diglyme
	Na
	-40 °C
	98%
	Our work

	
	
	
	Hard carbon
	
	97.2%
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