A-priori power calculation

=== A Priori Non-Inferiority Power (with clustering) ===

“Given our design and expected variability, do we have enough statistical power (≥80%) to detect that LingualAI is not worse than human translators by more than Δ = 0.30 points?”

Inputs: N_LINES=33, MEAN_RATERS=7.0, ICC=0.25
 DELTA=0.30, MU_TRUE=0.10, SD_DIFF=0.60, ALPHA=0.025

Effective sample size (n_eff): 92.40
One-sided NI power: 89.3%

Sensitivity (power %) across ICC and SD assumptions:
 ICC | SD | n_eff | Power%

 0.20 | 0.60 | 105.0 | 92.7
 0.20 | 0.65 | 105.0 | 88.4
 0.20 | 0.70 | 105.0 | 83.3
 0.25 | 0.60 | 92.4 | 89.3
 0.25 | 0.65 | 92.4 | 84.1
 0.25 | 0.70 | 92.4 | 78.4
 0.30 | 0.60 | 82.5 | 85.7
 0.30 | 0.65 | 82.5 | 79.8
 0.30 | 0.70 | 82.5 | 73.7

Using a one-sided non-inferiority test (α=0.025), Δ=0.30, σ_d=0.60, expected μ_d=0.10, and clustering adjustment with mean 7 raters/line and ICC=0.25 (n_eff≈92), the projected power was 89%.

Python Code:

Non-inferiority a priori power calculator with clustering (no external deps)

This script computes:
1) Effective sample size after clustering by line/items (design effect)
2) One-sided non-inferiority power using a normal approximation
3) A small sensitivity table across plausible ICC and SD values
4) A ready-to-paste Methods sentence
#
Assumptions (edit the PARAMETERS block below to fit your study):
- Non-inferiority margin Δ on a 5-point Likert scale
- Expected true mean difference μ_d (human - AI), positive favors humans
- SD of paired differences σ_d (often ~0.6–0.7 for Likert domain deltas)
- Raters are clustered within items (lines), accounted via ICC and design effect
#
No SciPy required. Uses a z-alpha lookup for alpha ∈ {0.05, 0.025, 0.01}.

from math import sqrt, erf

-------------------- PARAMETERS --------------------
N_LINES = 33 # Total items/lines
MEAN_RATERS = 7.0 # Average raters per line
ICC = 0.25 # Intraclass correlation among raters on the same line
DELTA = 0.30 # Non-inferiority margin Δ (points on a 5-point scale)
MU_TRUE = 0.10 # Expected true mean difference (human - AI)
SD_DIFF = 0.60 # SD of paired differences σ_d
ALPHA = 0.025 # One-sided alpha (use 0.025 for 95% NI CI)
ICC_GRID = [0.20, 0.25, 0.30]
SD_GRID = [0.60, 0.65, 0.70]
--

Normal CDF via error function
def Phi(z: float) -> float:
 return 0.5 * (1.0 + erf(z / sqrt(2.0)))

Common z-quantiles for one-sided alpha
Z_ALPHA_LOOKUP = {
 0.05: -1.6448536269514722,
 0.025: -1.959963984540054,
 0.01: -2.3263478740408408,
}

def z_alpha(alpha: float) -> float:
 if alpha in Z_ALPHA_LOOKUP:
 return Z_ALPHA_LOOKUP[alpha]
 # Fallback: simple linear interpolation between nearby keys (coarse but fine for planning)
 keys = sorted(Z_ALPHA_LOOKUP.keys())
 if alpha <= keys[0]:
 return Z_ALPHA_LOOKUP[keys[0]]
 if alpha >= keys[-1]:
 return Z_ALPHA_LOOKUP[keys[-1]]
 # interpolate
 for i in range(len(keys)-1):
 if keys[i] <= alpha <= keys[i+1]:
 a0, a1 = keys[i], keys[i+1]
 z0, z1 = Z_ALPHA_LOOKUP[a0], Z_ALPHA_LOOKUP[a1]
 t = (alpha - a0) / (a1 - a0)
 return z0 + t * (z1 - z0)

def effective_n(n_items: int, mean_raters_per_item: float, icc: float) -> float:
 """
 Design effect for cluster (item)-level clustering with m raters per item and ICC=icc.
 n_eff = (n_items * m) / (1 + (m - 1) * ICC)
 """
 m = mean_raters_per_item
 deff = 1.0 + (m - 1.0) * icc
 return (n_items * m) / deff

def power_noninferiority(delta: float, # NI margin Δ
 mu_true: float, # expected true mean difference μ_d (human - AI)
 sd_diff: float, # SD of paired differences
 n_eff: float, # effective sample size after clustering
 alpha: float = 0.025):
 """
 One-sided NI power using normal approximation.
 Reject H0 if T < z_alpha, where T ~ N((μ_d - Δ)/(σ/√n_eff), 1).
 Power = Φ(z_alpha - (μ_d - Δ)/(σ/√n_eff))
 """
 za = z_alpha(alpha)
 ncp = (mu_true - delta) / (sd_diff / sqrt(n_eff))
 return Phi(za - ncp)

def methods_sentence(n_lines, mean_raters, icc, delta, mu_true, sd_diff, alpha):
 n_eff = effective_n(n_lines, mean_raters, icc)
 pw = power_noninferiority(delta, mu_true, sd_diff, n_eff, alpha)
 return (
 f"Using a one-sided non-inferiority test (α={alpha:.3f}), Δ={delta:.2f}, "
 f"σ_d={sd_diff:.2f}, expected μ_d={mu_true:.2f}, and clustering adjustment "
 f"with mean {mean_raters:.0f} raters/line and ICC={icc:.2f} (n_eff≈{n_eff:.0f}), "
 f"the projected power was {pw*100:.0f}%."
)

---- Compute baseline estimates ----
n_eff_base = effective_n(N_LINES, MEAN_RATERS, ICC)
power_base = power_noninferiority(DELTA, MU_TRUE, SD_DIFF, n_eff_base, ALPHA)
sentence = methods_sentence(N_LINES, MEAN_RATERS, ICC, DELTA, MU_TRUE, SD_DIFF, ALPHA)

print("=== A Priori Non-Inferiority Power (with clustering) ===\n")
print(f"Inputs: N_LINES={N_LINES}, MEAN_RATERS={MEAN_RATERS}, ICC={ICC:.2f}")
print(f" DELTA={DELTA:.2f}, MU_TRUE={MU_TRUE:.2f}, SD_DIFF={SD_DIFF:.2f}, ALPHA={ALPHA:.3f}\n")
print(f"Effective sample size (n_eff): {n_eff_base:.2f}")
print(f"One-sided NI power: {power_base*100:.1f}%\n")

---- Sensitivity grid ----
print("Sensitivity (power %) across ICC and SD assumptions:")
print(" ICC | SD | n_eff | Power% ")
print("------------------------------------")
for icc in ICC_GRID:
 n_eff_g = effective_n(N_LINES, MEAN_RATERS, icc)
 for sd in SD_GRID:
 p = power_noninferiority(DELTA, MU_TRUE, sd, n_eff_g, ALPHA)
 print(f" {icc:0.2f} | {sd:0.2f} | {n_eff_g:6.1f} | {p*100:6.1f}")

---- Suggested Methods sentence ----
print("\nSuggested Methods sentence:")
print(sentence)

