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Supplementary Note 1: Data mining
1.1 Data availability
Buchwald-Hartwig reactions1, Palladium-catalyzed cross coupling data for Suzuki-Miyaura2,
asymmetric N, S-acetal formation3 and asymmetric hydrogenation reactions4 were used as
objectives for machine learning.

1.1.1 Buchwald-Hartwig amination (BHA)

Catalyst
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Additive
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1.1.2 Suzuki-Miyaura coupling (SMC)

Base

Solvent

Ligand

R1 = Cl, Br, OTf, I, B(OH)2, Bpin, BF3k R2 = Br, B(OH)2, Bpin, BF3k

Et3N, LiOtBu, K3PO4, KOH, NaHCO3, NaOH

MeOH, THF, MeCN, DMF
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1.1.3 Asymmetric N, S-acetal formation (ANSA)

Catalyst

R1 = Ph,
4-CF3Ph,
4-OMePh,
1-naphthyl,

2,4-dichlorophenyl

R2= Ph,
Cy,
Et,

4-OMePh,
2-MePh
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1.1.4 Asymmetric hydrogenation reactions (AHR)
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Solvent
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Fig .S1 Heatmaps for yields distribution of BHA.
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Fig .S2 Heatmaps for yields distribution of SMC.
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Fig .S3 Heatmaps for ee distribution of ANSA.
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Fig .S4 Heatmaps for ee distribution of AHR.
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1.2 Analysis of data
Fig 5-8 show the similarity score matrix of each category in each data set. Color of each grid
reflects the Tanimoto coefficient5 between molecule in row and molecule in column.

Fig .S5 Similarity score matrix of aryl halides in BHA.

Fig .S6 Similarity score matrix of bases in BHA.



22

Fig .S7 Similarity score matrix of ligands in BHA.

Fig .S8 Similarity score matrix of additives in BHA.
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Fig .S9 Similarity score matrix of aryl halides in SMC.

Fig .S10 Similarity score matrix of boronic acids in SMC.
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Fig .S11 Similarity score matrix of ligands in SMC.

Fig .S12 Similarity score matrix of bases in SMC.
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Fig .S13 Similarity score matrix of solvents in SMC.

Fig .S14 Similarity score matrix of imines in ANSA.
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Fig .S15 Similarity score matrix of mercaptans in ANSA.

Fig .S16 Similarity score matrix of catalysts in ANSA.
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Fig .S17 Similarity score matrix of imines in AHR.

Fig .S18 Similarity score matrix of olefins in AHR.
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Fig .S19 Similarity score matrix of catalysts in AHR.

Fig .S20 Similarity score matrix of solvents in AHR.
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Supplementary Note 2: Calculation of descriptors
2.1 Computational Methods
Full molecule structures were optimized with density functional B3LYP 6, and the 6-311G*
basis set7. Descriptors were calculated from these structures using density functional m062x8

and def2tzvp basis set9.

Table .S1 Descriptors used for MLmodels
No. Description Source atom level or molecule level
1 Atom type Gaussian 09 atom level
2 Coordinate of the optimized structure Gaussian 09 atom level
3 Mulliken charges of the optimized structure Gaussian 09 atom level
4 NPA charges of the optimized structure Gaussian 09 atom level
5 NMR shielding of the optimized structure Gaussian 09 atom level
6 HOMO of the optimized structure Gaussian 09 molecule level
7 LUMO of the optimized structure Gaussian 09 molecule level
8 Zero-point energy of the optimized structure Gaussian 09 molecule level
9 Volumn of the optimized structure Gaussian 09 molecule level
10 Dipole of the optimized structure Gaussian 09 molecule level

2.2 Three-dimensional information reconstruction for machine learning
Unlike existing methods that use key substructures in molecules to describe molecular
structure characteristics, we use atomic-level descriptors to fully extract chemical information
based on 3d structures required for reactions. Our idea in extracting chemical information is
that the 3D structure of molecules can be determined by the order of atoms and atomic
coordinates, while other atomic features such as NPA charge, NMR Shielding, etc. are
extracted in the same order as atoms. Since this transformation from 3D space to 2D vector is
based on linear structure formula, it can ensure that the chemical features correspond to the
atom to which it belongs.
We get linear structure formula of compounds from Reaxys database, extract the chemical

symbols in sequence, and convert the chemical symbols into numeric identifiers to produce
atomic sequential features. We used Guassian 09 to optimize the structure of a molecule, and
the resulting 3D molecular coordinates were also arranged in the atomic order of the linear
structure formula, producing 3D coordinate features for the atomic descriptor. The properties
of atoms such as NPA charge and NMR shielding are also treated in the same way. Finally, all
these atomic level features are normalized.
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Fig. S21 General representation for three-dimensional information reconstruction using
Atomic level features. The linear structure formula for the substance XPhos is
(C6H11)2P(C6H4C6H2(CH(CH3)2)3), and the extraction of atomic features is carried out in this
order.
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Supplementary Note 3: Model generation
3.1 Data set split
5-fold cross-validation splits the data into 5 groups. Each of these groups are test set in turn,
utilising the remaining data as training. Average metrics can then be calculated. K-fold cross
validation is good for datasets as the data is used efficiently (every data point is part of test set
at some point) and avoids chance biases in a static train/test split.

3.2 Machine learning hyperparameters
All regression models and classification models except neural networks were implemented
with Python scripts using SciKitLearn10. Neural networks were built with Pytorch11.

Table .S2 Parameters of MLmodels (except neural networks)
Models Parameters

Regression

AdaBoost random_state=42, n_estimators=100
LinearRegression default

Support Vector Machine max_iter=10000
K-Nearest Neighbors n_neighbors=7

Random Forest n_estimators=100, random_state=42
Gradient Boosting default

Classification
AdaBoost random_state=42, n_estimators=100

K-Nearest Neighbors n_neighbors=7
LinearRegression penalty=’l2’

For regression analysis, all neural networks used the ‘SGD’ optimizer and sigmoid
activation function, had a learning rate of 0.02, batch size of training data size and weight
decay of 0.01. In BHA, SMC, ANSA, the neural networks had two layers with 1000, 500
nodes, respectively, and batch normalization. In AHR, the neural networks had two layers
with 200, 50 nodes, respectively, and batch normalization. When leaving out one molecule, all
neural networks had two layers with 0.5 and 0.5 dropouts.

For classification analysis, the neural network used the ‘SGD’ optimizer, sigmoid
activation function and ‘BCEWithLogits’ loss function, had two layers with 200, 50 nodes,
respectively, and batch normalization.

3.3 Metrics
When predicting yields and enantiomeric excess, we used R2 and RMSE to evaluate machine
learning models. R2 and RMSE are defined in equations (1) and (2), where n is the number of
samples, ��� is the predicted value of ��, �� is the mean value of y.

�2 = 1 − ( �=1
� (���−��)2�

�=1
� (��−��)2�

) (1)

���� = 1
� �=1

� (��� − ��)2� (2)

When predicting the R/S configurations in AHR, we use accuracy to evaluate machine
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learning models. Accuracy is defined in equations (3), where TP is the number of true
positives, TN is the number of true negatives, P is the number of positives and N is the
number of negatives.

Acc = ��+��
�+�

(3)

3.4 Comparison of different descriptors on sparse data sets
AHR is a typical sparse reaction data set: it has 260 compounds, but only 334 reactions. The
number of reactions is so small that the breadth of the feature space of the chemical reaction
is not spanned. We found that short molecular-level descriptors perform better in small,
simple chemical spaces, while information-rich long descriptors such as atomic-level
descriptors are better at handling complex data sets. The comparison of different types of
descriptors on this sparse reaction data set is still to be expected.
When only the molecular level descriptor (MLD) is used (Fig. 7), most models have low

performance, and the short descriptor's low dimensionality has the most severe impact on
SVM performance, with R2 0.19. But we can see that as model complexity and presentation
increase, so does performance. The contrast is obvious when using atomic level descriptor
(ALD) (Fig. 8), the performance of these models has improved significantly, indicating that
this complete chemical information expression based on 3D structural information is useful
for sparse chemical reaction data sets. As a combination of the two descriptors above, MALD
achieves optimal performance (Fig. 9). The Neural Network model using this descriptor
achieves a staggering 0.99 R2. It can be seen that on sparse reaction datasets, these two levels
of descriptors can complement each other. It should not be overlooked that the SMOTE
algorithm also plays an important role in this data set.

Fig. S22 Prediction results with MLD on AHR data set (5-fold cross-validation).
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Fig. S23 Prediction results with ALD onAHR data set (5-fold cross-validation).

Fig. S24 Prediction results with MALD onAHR data set (5-fold cross-validation).



34

3.5 Leave one molecule out prediction (LOMOP)

Fig .25 The best LOMOP in aryl halide category in BHA.

Fig .S26 The best LOMOP in additive category in BHA.
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Fig .S27 The best LOMOP in ligand category in BHA.

Fig .S28 The best LOMOP in base category in BHA.
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Fig .S29 The best LOMOP in ligand category in SMC.

Fig .S30 The best LOMOP in boronic acid category in SMC.
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Fig .S30 The best LOMOP in aryl halide category in SMC.

Fig .S31 The best LOMOP in base category in SMC.



38

Fig .S32 The best LOMOP in solvent category in SMC.

Fig .S33 The best LOMOP in imine category in ANSA.
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Fig .S34 The best LOMOP in mercaptan category in ANSA.

Fig .S35 The best LOMOP in catalyst category in ANSA.
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3.6 Detailed Description of Our Machine Learning Methods
Next, we introduce how to use scikit-learn and pytorch code for various ML algorithms in this
study. We will focus on demonstrating how to use, modify, and run code, with emphasis on
key lines. Our code uses CUDA so that it can use GPU, which reduces computing time. Here,
we take the neural network as a representative example.
We have installed eclipse IDE 2021, anaconda 3, python 3.6, python 1.1 and scikit-learn in

Ubuntu system, and there is an NVIDIA 1070 graphics card on the computer. We configured
the virtual environment built in Anaconda in eclipse, and then created a python type project to
write the code of this study.
In the following script, we loaded the reaction data, created the Neural Network model, and

completed the training and verification. We highlighted the key operations..12

#!/usr/bin/env python
# coding: utf-8

import numpy as np
from matplotlib import pyplot as plt
import matplotlib.patches as mpatches
import pandas as pd
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Variable
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network importMLPRegressor
from sklearn.svm import LinearSVR
import time
import os
from pandas.core.indexes.numeric import Int64Index
import suzuki18.lib_for_suzuki as suzuki
from torch.nn.modules import padding
import random
use_gpu = torch.cuda.is_available()

DATA_DIR = 'data/'
time_s = time.strftime("%Y%m%d%H%M%S", time.localtime())
OUT_DIR = 'out/models'+time_s+'/'
if not os.path.exists(OUT_DIR):
os.mkdir(OUT_DIR)

INPUTS_HOMO_Energy = 'HOMO_Energy.csv'
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INPUTS_LUMO_Energy = 'LUMO_Energy.csv'
INPUTS_Dipole = 'Dipole.csv'
INPUTS_Volumn = 'Volumn.csv'
INPUTS_Single_Energy = 'Single_Energy.csv'
INPUTS_Atom = 'Atom.csv'
INPUTS_Coord = 'Coord.csv'
INPUTS_Mulliken_charges = 'Mulliken_charges.csv'
INPUTS_NAO_charge = 'NAO_charge.csv'
INPUTS_NMR_Shielding = 'NMR_Shielding.csv'
YIELDS_DF = 'reac_yields.csv'

inputs_HOMO_Energy = pd.read_csv(DATA_DIR + INPUTS_HOMO_Energy)
inputs_HOMO_Energy = inputs_HOMO_Energy.fillna(0.)
inputs_LUMO_Energy = pd.read_csv(DATA_DIR + INPUTS_LUMO_Energy)
inputs_LUMO_Energy = inputs_LUMO_Energy.fillna(0.)
inputs_Dipole = pd.read_csv(DATA_DIR + INPUTS_Dipole)
inputs_Dipole = inputs_Dipole.fillna(0.)
inputs_Volumn = pd.read_csv(DATA_DIR + INPUTS_Volumn)
inputs_Volumn = inputs_Volumn.fillna(0.)
inputs_Single_Energy = pd.read_csv(DATA_DIR + INPUTS_Single_Energy)
inputs_Single_Energy = inputs_Single_Energy.fillna(0.)

inputs_Atom = pd.read_csv(DATA_DIR + INPUTS_Atom)[idex_thres]
inputs_Coord = pd.read_csv(DATA_DIR + INPUTS_Coord)[idex_thres]
inputs_Mulliken_charges = pd.read_csv(DATA_DIR + INPUTS_Mulliken_charges)[idex_thres]
inputs_NAO_charge = pd.read_csv(DATA_DIR + INPUTS_NAO_charge)[idex_thres]
inputs_NMR_Shielding = pd.read_csv(DATA_DIR + INPUTS_NMR_Shielding)[idex_thres]
inputs_occupy = pd.read_csv(DATA_DIR + INPUTS_OCCUPY)[idex_thres]
yields = pd.read_csv(DATA_DIR + YIELDS_DF)[idex_thres]

total_cleaned_len = len(inputs_HOMO_Energy)
train_index = random.sample(range(total_cleaned_len), int(total_cleaned_len*0.8))
train_indices = np.zeros((total_cleaned_len)).astype(np.bool)
for tcl in range(total_cleaned_len):
if tcl in train_index:
train_indices[tcl] = True

test_indices = ~ train_indices

np.savetxt(OUT_DIR + 'data_train_indices.csv', train_indices, delimiter = ',')
np.savetxt(OUT_DIR + 'data_test_indices.csv', test_indices, delimiter = ',')

input_atomlevel_dim = inputs_HOMO_Energy.shape[1] + inputs_LUMO_Energy.shape[1] +
inputs_Dipole.shape[1] + inputs_Volumn.shape[1] + inputs_Single_Energy.shape[1]#25
output_dim = 1
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inputs_HOMO_Energy = suzuki.scale_inputs(inputs_HOMO_Energy)
inputs_LUMO_Energy = suzuki.scale_inputs(inputs_LUMO_Energy)
inputs_Dipole = suzuki.scale_inputs(inputs_Dipole)
inputs_Volumn = suzuki.scale_inputs(inputs_Volumn)
inputs_Single_Energy = suzuki.scale_inputs(inputs_Single_Energy)

inputs_Atom = suzuki.scale_inputs(inputs_Atom)
inputs_Coord = suzuki.scale_inputs(inputs_Coord)
inputs_Mulliken_charges = suzuki.scale_inputs(inputs_Mulliken_charges)
inputs_NAO_charge = suzuki.scale_inputs(inputs_NAO_charge)
inputs_NMR_Shielding = suzuki.scale_inputs(inputs_NMR_Shielding)

inputs_occupy_dim = inputs_occupy.shape[1]
inputs = np.concatenate((inputs_HOMO_Energy,inputs_LUMO_Energy),axis=1)
inputs = np.concatenate((inputs,inputs_Dipole),axis=1)
inputs = np.concatenate((inputs,inputs_Volumn),axis=1)
inputs = np.concatenate((inputs,inputs_Single_Energy),axis=1)

if USE_OCCUPY_ATOMLEVEL == 0:
inputs = np.concatenate((inputs,inputs_occupy),axis=1)
ann_input_dim = inputs.shape[1]

elif USE_OCCUPY_ATOMLEVEL == 1:
inputs = np.concatenate((inputs,inputs_Atom),axis=1)
inputs = np.concatenate((inputs,inputs_Coord),axis=1)
inputs = np.concatenate((inputs,inputs_Mulliken_charges),axis=1)
inputs = np.concatenate((inputs,inputs_NAO_charge),axis=1)
inputs = np.concatenate((inputs,inputs_NMR_Shielding),axis=1)

yields = np.array(yields['x'])
yields = yields.flatten()
yields = np.nan_to_num(yields, nan=0)
inputs = inputs[:,15:]
input_dim = inputs.shape[1]
print('input_dim: ', input_dim)
# Use the indices to generate train/test sets
X_train = inputs[train_indices]
y_train = yields[train_indices]
featuresTrain = torch.from_numpy(X_train)
targetsTrain = torch.from_numpy(y_train)

X_test = inputs[test_indices]
y_test = yields[test_indices]
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featuresTest = torch.from_numpy(X_test)
targetsTest = torch.from_numpy(y_test)

train = torch.utils.data.TensorDataset(featuresTrain,targetsTrain)
test = torch.utils.data.TensorDataset(featuresTest,targetsTest)

train_loader = torch.utils.data.DataLoader(train, batch_size = batch_size, shuffle = False)
test_loader = torch.utils.data.DataLoader(test, batch_size = batch_size_test, shuffle = False)

class NN_Chem(nn.Module):
def __init__(self, input_dim, output_dim):
super(NN_Chem, self).__init__()
self.fc_1 = nn.Linear(input_dim, 1000)
self.bn_1 = nn.BatchNorm1d(1000)
# Non-linearity 1
self.relu_1 = nn.Sigmoid()
self.fc_2 = nn.Linear(1000, 500)
self.bn_2 = nn.BatchNorm1d(500)
self.relu_2 = nn.Sigmoid()
self.fc_3 = nn.Linear(500, output_dim)

def forward(self, x):
# Linear function 1
out = self.fc_1(x)
out = self.bn_1(out)
# Non-linearity 1
out = self.relu_1(out)
out = self.fc_2(out)
out = self.bn_2(out)
out = self.relu_2(out)
out = self.fc_3(out)
return out

# Create NN
model = NN_Chem(input_dim, output_dim)

if use_gpu:
model = model.cuda()

def squared_loss(y_true, y_pred):
"""Compute the squared loss for regression.

Parameters
----------
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y_true : array-like or label indicator matrix
Ground truth (correct) values.

y_pred : array-like or label indicator matrix
Predicted values, as returned by a regression estimator.

Returns
-------
loss : float
The degree to which the samples are correctly predicted.

"""
return ((y_true - y_pred) ** 2).mean() / 2

# SGD Optimizer
learning_rate = 0.02
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=0.01)

# NN model training
count = 0
loss_list = []
iteration_list = []
rmse_list = []
best_rmse = 10000.#
for epoch in range(num_epochs):
for i, (features_train, labels) in enumerate(train_loader)

if use_gpu:
features_train = features_train.cuda()
labels = labels.cuda()

features_train = Variable(features_train.to(torch.float))
labels = Variable(labels.to(torch.float))

# Clear gradients
optimizer.zero_grad()
# Forward propagation
outputs = model(features_train)

outputs = outputs.squeeze(-1)
# Calculate softmax and ross entropy loss
#loss = error(outputs, labels)
loss = squared_loss(outputs, labels)

# Calculating gradients
loss.backward()
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# Update parameters
optimizer.step()

count += 1
if count % 50 == 0:
# Calculate Accuracy
correct = 0
total = 0
rmse = 0
# Predict test dataset
for features_test, labels_test in test_loader:
if use_gpu:
features_test = features_test.cuda()
labels_test = labels_test.cuda()

features_test = Variable(features_test.to(torch.float))
# Forward propagation
outputs_test = model(features_test)
total += 1
rmse += mean_squared_error((labels_test.to(torch.float)).data.cpu(), outputs_test.data.cpu())

** 0.5

rmse = rmse/float(total)

if rmse < best_rmse:
best_rmse = rmse
for f in os.listdir(OUT_DIR):
if(os.path.isfile(OUT_DIR+f)) and 'best_model' in f:
os.remove(OUT_DIR+f)

time_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
torch.save(model, OUT_DIR+'best_model_epoch_'+str(count-1)+'_'+time_str+'.pkl')
r_squared = r2_score((labels_test.to(torch.float)).data.cpu(), outputs_test.data.cpu())
predictions = []
r2_values = []
rmse_values = []
r2_values.append(r_squared)
rmse_values.append(rmse)
predictions.append(outputs_test.data.cpu().squeeze(-1))
fig_title = OUT_DIR+'model_epoch_'+str(count-1)+'_'+time_str
utils.plot_models(predictions,
r2_values,
rmse_values,
(labels_test.to(torch.float)).data.cpu(),
save=True,
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fig_title = fig_title)

loss_list.append(loss.data.cpu())
iteration_list.append(count)
rmse_list.append(rmse)
if count % 500 == 0:
# Print Loss
print('Iteration: {} Loss: {} , Rmse: {}'.format(count, loss.data.cpu(), rmse))
time_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
torch.save(model, OUT_DIR+'model_epoch_'+str(count-1)+'_'+time_str+'.pkl')
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