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Supplementary Note 1: Data mining

1.1 Data availability

Buchwald-Hartwig reactions', Palladium-catalyzed cross coupling data for Suzuki-Miyaura?,
asymmetric N, S-acetal formation® and asymmetric hydrogenation reactions* were used as
objectives for machine learning.

1.1.1 Buchwald-Hartwig amination (BHA)
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1.1.2 Suzuki-Miyaura coupling (SMC)
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1.1.3 Asymmetric N, S-acetal formation (ANSA)
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1.1.4 Asymmetric hydrogenation reactions (AHR)
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Buchwald-Hartwig amination
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Fig .S1 Heatmaps for yields distribution of BHA.

17




Suzuki-Mi
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Fig .S2 Heatmaps for yields distribution of SMC.
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Asymmetric N,S-acetal formation

Fig .S3 Heatmaps for ee distribution of ANSA.
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Asymmetric hydrogenation reactions
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Fig .S4 Heatmaps for ee distribution of AHR.
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1.2 Analysis of data
Fig 5-8 show the similarity score matrix of each category in each data set. Color of each grid
reflects the Tanimoto coefficient® between molecule in row and molecule in column.
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Buchwald-Hartwig amination-aryl halide
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Fig .S5 Similarity score matrix of aryl halides in BHA.

Buchwald-Hartwig amination-base

Fig .S6 Similarity score matrix of bases in BHA.
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Fig .S7 Similarity score matrix of ligands in BHA.

Buchwald-Hartwig amination-additive

Fig .S8 Similarity score matrix of additives in BHA.
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Suzuki-Miyaura couplin

Fig .S9 Similarity score matrix of aryl halides in SMC.

Fig .S10 Similarity score matrix of boronic acids in SMC.
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Fig .S11 Similarity score matrix of ligands in SMC.

Fig .S12 Similarity score matrix of bases in SMC.
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Fig .S13 Similarity score matrix of solvents in SMC.

Asymmetric N,S-acetal formation-imine

Fig .S14 Similarity score matrix of imines in ANSA.
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Asymmetric N,S-acetal formation-mercaptan

Fig .S15 Similarity score matrix of mercaptans in ANSA.

Fig .S16 Similarity score matrix of catalysts in ANSA.
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Fig .S18 Similarity score matrix of olefins in AHR.
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Fig .S19 Similarity score matrix of catalysts in AHR.

Fig .S20 Similarity score matrix of solvents in AHR.
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Supplementary Note 2: Calculation of descriptors

2.1 Computational Methods

Full molecule structures were optimized with density functional B3LYP ¢, and the 6-311G*
basis set’. Descriptors were calculated from these structures using density functional m062x3
and def2tzvp basis set’.

Table .S1 Descriptors used for ML models

No. Description Source atom level or molecule level
1 Atom type Gaussian 09 atom level
2 Coordinate of the optimized structure Gaussian 09 atom level
3 Mulliken charges of the optimized structure Gaussian 09 atom level
4 NPA charges of the optimized structure Gaussian 09 atom level
5 NMR shielding of the optimized structure Gaussian 09 atom level
6 HOMO of the optimized structure Gaussian 09 molecule level
7 LUMO of the optimized structure Gaussian 09 molecule level
8 Zero-point energy of the optimized structure Gaussian 09 molecule level
9 Volumn of the optimized structure Gaussian 09 molecule level
10 Dipole of the optimized structure Gaussian 09 molecule level

2.2 Three-dimensional information reconstruction for machine learning

Unlike existing methods that use key substructures in molecules to describe molecular
structure characteristics, we use atomic-level descriptors to fully extract chemical information
based on 3d structures required for reactions. Our idea in extracting chemical information is
that the 3D structure of molecules can be determined by the order of atoms and atomic
coordinates, while other atomic features such as NPA charge, NMR Shielding, etc. are
extracted in the same order as atoms. Since this transformation from 3D space to 2D vector is
based on linear structure formula, it can ensure that the chemical features correspond to the
atom to which it belongs.

We get linear structure formula of compounds from Reaxys database, extract the chemical
symbols in sequence, and convert the chemical symbols into numeric identifiers to produce
atomic sequential features. We used Guassian 09 to optimize the structure of a molecule, and
the resulting 3D molecular coordinates were also arranged in the atomic order of the linear
structure formula, producing 3D coordinate features for the atomic descriptor. The properties
of atoms such as NPA charge and NMR shielding are also treated in the same way. Finally, all
these atomic level features are normalized.
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order.
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Supplementary Note 3: Model generation

3.1 Data set split

5-fold cross-validation splits the data into 5 groups. Each of these groups are test set in turn,
utilising the remaining data as training. Average metrics can then be calculated. K-fold cross
validation is good for datasets as the data is used efficiently (every data point is part of test set
at some point) and avoids chance biases in a static train/test split.

3.2 Machine learning hyperparameters
All regression models and classification models except neural networks were implemented

with Python scripts using SciKitLearn!®. Neural networks were built with Pytorch!!.

Table .S2 Parameters of ML models (except neural networks)

Models Parameters
AdaBoost random_state=42, n_estimators=100
LinearRegression default
. Support Vector Machine max_iter=10000
Regression - -
K-Nearest Neighbors n_neighbors=7
Random Forest n_estimators=100, random_state=42
Gradient Boosting default
AdaBoost random_state=42, n_estimators=100
Classification K-Nearest Neighbors n_neighbors=7
LinearRegression penalty="12’

For regression analysis, all neural networks used the ‘SGD’ optimizer and sigmoid
activation function, had a learning rate of 0.02, batch size of training data size and weight
decay of 0.01. In BHA, SMC, ANSA, the neural networks had two layers with 1000, 500
nodes, respectively, and batch normalization. In AHR, the neural networks had two layers
with 200, 50 nodes, respectively, and batch normalization. When leaving out one molecule, all
neural networks had two layers with 0.5 and 0.5 dropouts.

For classification analysis, the neural network used the ‘SGD’ optimizer, sigmoid
activation function and ‘BCEWithLogits’ loss function, had two layers with 200, 50 nodes,
respectively, and batch normalization.

3.3 Metrics
When predicting yields and enantiomeric excess, we used R? and RMSE to evaluate machine
learning models. R?> and RMSE are defined in equations (1) and (2), where n is the number of

samples, is the predicted value of , isthe mean value of y.
(= )P
2=1_( _J;L(_)Z (1)
1
= Lc- oy @

When predicting the R/S configurations in AHR, we use accuracy to evaluate machine
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learning models. Accuracy is defined in equations (3), where TP is the number of true
positives, TN is the number of true negatives, P is the number of positives and N is the
number of negatives.

Acc = + 3)

3.4 Comparison of different descriptors on sparse data sets

AHR is a typical sparse reaction data set: it has 260 compounds, but only 334 reactions. The
number of reactions is so small that the breadth of the feature space of the chemical reaction
is not spanned. We found that short molecular-level descriptors perform better in small,
simple chemical spaces, while information-rich long descriptors such as atomic-level
descriptors are better at handling complex data sets. The comparison of different types of
descriptors on this sparse reaction data set is still to be expected.

When only the molecular level descriptor (MLD) is used (Fig. 7), most models have low
performance, and the short descriptor's low dimensionality has the most severe impact on
SVM performance, with R? 0.19. But we can see that as model complexity and presentation
increase, so does performance. The contrast is obvious when using atomic level descriptor
(ALD) (Fig. 8), the performance of these models has improved significantly, indicating that
this complete chemical information expression based on 3D structural information is useful
for sparse chemical reaction data sets. As a combination of the two descriptors above, MALD
achieves optimal performance (Fig. 9). The Neural Network model using this descriptor
achieves a staggering 0.99 R2. It can be seen that on sparse reaction datasets, these two levels
of descriptors can complement each other. It should not be overlooked that the SMOTE
algorithm also plays an important role in this data set.
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Fig. S22 Prediction results with MLD on AHR data set (5-fold cross-validation).
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3.5 Leave one molecule out prediction (LOMOP)
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Fig .25 The best LOMOP in aryl halide category in BHA.
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Fig .S30 The best LOMOP in boronic acid category in SMC.
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3.6 Detailed Description of Our Machine Learning Methods

Next, we introduce how to use scikit-learn and pytorch code for various ML algorithms in this
study. We will focus on demonstrating how to use, modify, and run code, with emphasis on
key lines. Our code uses CUDA so that it can use GPU, which reduces computing time. Here,
we take the neural network as a representative example.

We have installed eclipse IDE 2021, anaconda 3, python 3.6, python 1.1 and scikit-learn in
Ubuntu system, and there is an NVIDIA 1070 graphics card on the computer. We configured
the virtual environment built in Anaconda in eclipse, and then created a python type project to
write the code of this study.

In the following script, we loaded the reaction data, created the Neural Network model, and
completed the training and verification. We highlighted the key operations.

#!/usr/bin/env python

# coding: utf-8

import numpy as np

from matplotlib import pyplot as plt

import matplotlib.patches as mpatches

import pandas as pd

import torch

import torch.nn as nn

import torchvision.transforms as transforms

from torch.autograd import Variable

from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural network import MLPRegressor
from sklearn.svm import LinearSVR

import time

import os

from pandas.core.indexes.numeric import Int64Index
import suzukil 8.1ib_for suzuki as suzuki

from torch.nn.modules import padding

import random

use_gpu = torch.cuda.is_available()

DATA_DIR = 'data/'
time_s = time.strftime("" %Y %m%d%H%M%S", time.localtime())
OUT _DIR = 'out/models'+time_s+'/'
if not os.path.exists(OUT_DIR):
0s.mkdir(OUT_DIR)
INPUTS_HOMO _Energy = "HOMO_Energy.csv'
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INPUTS LUMO Energy = 'LUMO_Energy.csv'
INPUTS_Dipole = 'Dipole.csv'

INPUTS_Volumn = 'Volumn.csv'

INPUTS_Single Energy = 'Single Energy.csv'
INPUTS_Atom = "'Atom.csv'

INPUTS_Coord = 'Coord.csv'

INPUTS_ Mulliken_charges = '"Mulliken_charges.csv'
INPUTS_NAO_charge = 'NAO_charge.csv'
INPUTS NMR Shielding = 'NMR_Shielding.csv'
YIELDS DF = 'reac_yields.csv'

inputs. HOMO_Energy = pd.read_csv(DATA DIR + INPUTS _HOMO _Energy)
inputs. HOMO_Energy = inputs HOMO_Energy.fillna(0.)

inputs LUMO_Energy = pd.read_csv(DATA DIR + INPUTS LUMO_Energy)
inputs LUMO_Energy = inputs LUMO_Energy.fillna(0.)

inputs_Dipole = pd.read_csv(DATA DIR + INPUTS_Dipole)

inputs_Dipole = inputs_Dipole.fillna(0.)

inputs_Volumn = pd.read_csv(DATA_ DIR + INPUTS_Volumn)

inputs_Volumn = inputs _Volumn.fillna(0.)

inputs_Single Energy = pd.read csv(DATA DIR + INPUTS Single Energy)
inputs_Single Energy = inputs_Single Energy.fillna(0.)

inputs_Atom = pd.read_csv(DATA DIR + INPUTS_ Atom)[idex_thres]

inputs_Coord = pd.read _csv(DATA DIR + INPUTS_Coord)[idex_thres]

inputs_Mulliken charges = pd.read_csv(DATA_ DIR + INPUTS_ Mulliken charges)[idex_thres]
inputs NAO_charge = pd.read_csv(DATA DIR + INPUTS NAO charge)[idex thres]

inputs NMR_Shielding = pd.read_csv(DATA_DIR + INPUTS NMR _Shielding)[idex_thres]
inputs_occupy = pd.read_csv(DATA DIR + INPUTS_OCCUPY)[idex_thres]

yields = pd.read_csv(DATA DIR + YIELDS DF)[idex thres]

total cleaned len = len(inputs. HOMO_Energy)
train_index = random.sample(range(total cleaned len), int(total cleaned len*0.8))
train_indices = np.zeros((total cleaned len)).astype(np.bool)
for tcl in range(total cleaned len):
if tcl in train_index:
train_indices[tcl] = True

test_indices = ~ train_indices

np.savetxt(OUT_DIR + 'data_train_indices.csv', train_indices, delimiter =",")

np.savetxt(OUT_DIR + 'data_test_indices.csv', test_indices, delimiter ="',")

input_atomlevel dim = inputs HOMO_ Energy.shape[l] + inputs LUMO Energy.shape[l] -+
inputs_Dipole.shape[1] + inputs_Volumn.shape[1] + inputs_Single Energy.shape[1]#25

output dim =1
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inputs. HOMO_Energy = suzuki.scale inputs(inputs HOMO _Energy)
inputs LUMO_Energy = suzuki.scale inputs(inputs LUMO_Energy)
inputs_Dipole = suzuki.scale_inputs(inputs_Dipole)

inputs_Volumn = suzuki.scale_inputs(inputs_Volumn)

inputs_Single Energy = suzuki.scale_inputs(inputs_Single Energy)

inputs_Atom = suzuki.scale inputs(inputs_Atom)

inputs_Coord = suzuki.scale_inputs(inputs_Coord)

inputs_Mulliken charges = suzuki.scale inputs(inputs_Mulliken charges)
inputs NAO_charge = suzuki.scale inputs(inputs NAO_charge)

inputs NMR_Shielding = suzuki.scale inputs(inputs NMR_Shielding)

inputs_occupy_dim = inputs_occupy.shape[1]

inputs = np.concatenate((inputs. HOMO_Energy,inputs LUMO_Energy),axis=1)
inputs = np.concatenate((inputs,inputs_Dipole),axis=1)

inputs = np.concatenate((inputs,inputs_Volumn),axis=1)

inputs = np.concatenate((inputs,inputs_Single Energy),axis=1)

if USE OCCUPY ATOMLEVEL == 0:
inputs = np.concatenate((inputs,inputs_occupy),axis=1)
ann_input_dim = inputs.shape[1]

elif USE OCCUPY ATOMLEVEL == 1:
inputs = np.concatenate((inputs,inputs _Atom),axis=1)
inputs = np.concatenate((inputs,inputs_Coord),axis=1)
inputs = np.concatenate((inputs,inputsMulliken charges),axis=1)
inputs = np.concatenate((inputs,inputs NAO_charge),axis=1)

inputs = np.concatenate((inputs,inputs NMR _Shielding),axis=1)

yields = np.array(yields['x'])

yields = yields.flatten()

yields = np.nan_to_num(yields, nan=0)
inputs = inputs[:,15:]

input_dim = inputs.shape[1]
print('input_dim: ', input_dim)

# Use the indices to generate train/test sets
X_train = inputs[train_indices]

y_train = yields[train_indices]
featuresTrain = torch.from numpy(X_train)

targetsTrain = torch.from numpy(y_train)

X _test = inputs[test_indices]

y_test = yields[test_indices]
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featuresTest = torch.from numpy(X test)
targetsTest = torch.from numpy(y_test)

train = torch.utils.data. TensorDataset(features Train,targetsTrain)

test = torch.utils.data. TensorDataset(features Test, targetsTest)

train_loader = torch.utils.data.Datal.oader(train, batch_size = batch_size, shuffle = False)

test_loader = torch.utils.data.Datal.oader(test, batch size = batch_size_test, shuffle = False)

class NN _Chem(nn.Module):

def init (self, input_dim, output dim):
super(NN_Chem, self). init ()
self.fc_1 =nn.Linear(input_dim, 1000)
self.bn_1 = nn.BatchNorm1d(1000)
# Non-linearity 1
self.relu_1 = nn.Sigmoid()
self.fc_2 =nn.Linear(1000, 500)
self.bn_2 = nn.BatchNorm1d(500)
self.relu_2 = nn.Sigmoid()
self.fc_3 =nn.Linear(500, output dim)

def forward(self, x):
# Linear function 1
out = self.fc_1(x)
out = self.bn_1(out)
# Non-linearity 1
out = self.relu_1(out)
out = self.fc_2(out)
out = self.bn_2(out)
out = self.relu_2(out)
out = self.fc_3(out)

return out

# Create NN
model = NN_Chem(input_dim, output_dim)

if use_gpu:

model = model.cuda()

def squared loss(y_true, y_pred):

"""Compute the squared loss for regression.

Parameters
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v_true : array-like or label indicator matrix

Ground truth (correct) values.

v_pred : array-like or label indicator matrix

Predicted values, as returned by a regression estimator.

Returns
loss : float
The degree to which the samples are correctly predicted.

e

return ((y_true - y_pred) ** 2).mean() / 2

# SGD Optimizer
learning_rate = 0.02

optimizer = torch.optim.SGD(model.parameters(), Ir=learning_rate, weight decay=0.01)

# NN model training

count =0

loss list =[]

iteration_list = []

rmse_list =[]

best rmse = 10000.#

for epoch in range(num_epochs):

for i, (features_train, labels) in enumerate(train_loader)

if use_gpu:
features_train = features_train.cuda()
labels = labels.cuda()
features_train = Variable(features_train.to(torch.float))
labels = Variable(labels.to(torch.float))

# Clear gradients
optimizer.zero_grad()
# Forward propagation

outputs = model(features_train)

outputs = outputs.squeeze(-1)
# Calculate softmax and ross entropy loss
#loss = error(outputs, labels)

loss = squared_loss(outputs, labels)

# Calculating gradients

loss.backward()
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# Update parameters

optimizer.step()

count += 1
if count % 50 == 0:

# Calculate Accuracy

correct =0
total = 0
rmse =0

# Predict test dataset
for features_test, labels_test in test_loader:
if use_gpu:
features_test = features_test.cuda()
labels_test = labels_test.cuda()
features_test = Variable(features_test.to(torch.float))
# Forward propagation
outputs_test = model(features_test)
total += 1
rmse += mean_squared_error((labels_test.to(torch.float)).data.cpu(), outputs_test.data.cpu())
**0.5

rmse = rmse/float(total)

if rmse < best_rmse:
best rmse = rmse
for fin os.listdir(OUT_DIR):
if(os.path.isfile(OUT _DIR+f)) and 'best model' in f:
os.remove(OUT_DIR+f)
time_str = time.strftime(" %Y %m%d%H%M%S", time.localtime())
torch.save(model, OUT_DIR+'best model epoch_'+str(count-1)+' "+time str+'.pkl")
r_squared =12 _score((labels_test.to(torch.float)).data.cpu(), outputs_test.data.cpu())
predictions = []
r2_values =[]
rmse_values = []
r2_values.append(r_squared)
rmse_values.append(rmse)
predictions.append(outputs_test.data.cpu().squeeze(-1))
fig_title = OUT DIR+'model_epoch_'+str(count-1)+'_'+time str
utils.plot_models(predictions,
r2_values,
rmse_values,
(labels_test.to(torch.float)).data.cpu(),

save=True,

45



fig_title = fig_title)

loss_list.append(loss.data.cpu())

iteration_list.append(count)

rmse_list.append(rmse)

if count % 500 == 0:
# Print Loss
print('Iteration: {} Loss: {} , Rmse: {}'.format(count, loss.data.cpu(), rmse))
time_str = time.strftime(" %Y %m%d%H%M%S", time.localtime())
torch.save(model, OUT_DIR+'model _epoch_'+str(count-1)+' '+time_str+'.pkl")
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