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Fig. S1. ATR-FTIR spectrum of the pristine silica–polymer aerogel (SiA). The bands associated with surface silanols (O–H stretching), alkyl chains (C–H stretching).
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Fig. S2. CO2 adsorption isotherms of representative silanized aerogels at 298, 323, and 343 K. The isotherms illustrate the temperature dependence of CO2 uptake for SiA–X(t)–PZI sorbents (X = A, G, GT, V; see legend for specific samples).


Table S1. Textural parameters of pristine and silanized aerogels SiA–X(t) (X = A, G, GT, V; t = organosilane CVD time). Micropore surface area, mesopore surface area, specific surface area, total pore volume, and average pore size were obtained from N2 adsorption analysis (see Experimental Section). 
	Samples
	Micropores surface area 
(m2 g−1)
	Mesopores surface area
(m2 g−1)
	Specific surface area
(m2 g−1)
	Total pore volume 
(cc g−1)
	Average Pore Size 
(nm)

	SiA
	150.08
	549.36 
	699.44
	1.235
	7.06

	SiA–A(4)
	169.02
	417.04
	586.06
	1.087
	7.42

	SiA–A(14)
	88.01
	202.44
	290.45
	0.706
	9.72

	SiA–A(24)
	69.42
	138.53
	207.95
	0.892
	17.16

	SiA–G(4)
	311.43
	522.72
	834.15
	2.094
	10.04

	SiA–G(14)
	233.91
	360.20
	594.11
	1.877
	12.64

	SiA–G(24)
	215.26
	368.23
	583.49
	1.396
	9.57

	SiA–GT(4)
	272.41
	611.66
	884.07
	1.392
	6.30

	SiA–GT(14)
	215.40
	422.41
	637.81
	1.963
	12.31

	SiA–GT(24)
	143.55
	358.38
	501.93
	0.897
	7.15

	SiA–V(4)
	226.43
	260.09
	486.52
	1.117
	9.18

	SiA–V(14)
	155.14
	271.96
	427.10
	0.762
	7.13

	SiA–V(24)
	112.45
	119.28
	231.73
	0.653
	11.27





Table S2. Comparison of BET surface area and compressive strength for representative aerogels reported in the literature and for the present silica–polymer aerogels. 
	Aerogels
	BET surface area
(m2 g−1)
	Compression
Strength
(MPa)
	Reference

	Alginate-based aerogels
	/
	3.53
	[1]

	PI-TPUs
	17.19–113.78
	3.06
	[2]

	PI-2
	/
	2.41
	[3]

	SiC aerogels
	/
	2.86
	[4]

	kapok fiber-PPy aerogels
	/
	0.12
	[5]

	CNF/PNIPAm composite aerogels
	44.05
	0.227
	[6]

	SMCAs
	/
	1.25
	[7]

	CMP aerogels
	181.00
	0.54
	[8]

	TPs-modified lignocellulose aerogels
	36.77
	0.014
	[9]

	WTP-PVA Carbon aerogels
	783.00
	3.50
	[10]

	SiA
	699.44
	2.14
	This work

	SiA–A(4)
	586.06
	1.98
	This work

	SiA–A(14)
	290.45
	1.48
	This work

	SiA–A(24)
	207.95
	1.19
	This work

	SiA–G(4)
	834.15
	2.60
	This work

	SiA–G(14)
	594.11
	2.68
	This work

	SiA–G(24)
	583.49
	3.24
	This work

	SiA–GT(4)
	884.07
	3.17
	This work

	SiA–GT(14)
	637.81
	2.51
	This work

	SiA–GT(24)
	501.93
	1.94
	This work

	SiA–V(4)
	486.52
	3.50
	This work

	SiA–V(14)
	427.10
	3.80
	This work

	SiA–V(24)
	231.73
	5.32
	This work





Table S3. Comparison of CO2 adsorption capacities of various adsorbents under low-pressure conditions. For each material, the adsorption temperature, CO2 partial pressure, and equilibrium uptake are listed. 
	Absorbents
	Temperature
(K)
	Pressure
(mbar)
	CO2 uptake
(mmol g−1)
	Reference

	HKUST-1
	298
	50
	0.24
	[11]

	MOF-74(Zn)
	298
	50
	0.67
	[12]

	Bio-MOF-11
	298
	50
	0.48
	[13]

	ZIF-78
	298
	50
	0.33
	[14]

	ZIF-8
	298
	50
	0.05
	[15]

	UiO-66
	298
	50
	0.15
	[16]

	MOF-808
	298
	50
	0.19
	[17]

	ILMLs(2.8nm)
	298
	50
	0.70
	[17]

	PVAm(0.7)-HCl@MIL-101
	298
	50
	0.87
	[18]

	AC800
	298
	50
	1.09
	[19]

	U67-3AS(2)
	298
	50
	0.45
	[20]

	HCP-MAAM-1
	298
	50
	0.11
	[21]

	MOF-808-EDTA-TREN(0.3)
	298
	50
	0.68
	[22]

	WSC-500-1
	298
	50
	1.18
	[23]

	Soot_H2O2(9h)_KOH
	298
	50
	0.35
	[24]

	BBC-KOH
	298
	50
	0.84
	[25]

	CALF-20
	303
	50
	1.75
	[26]

	MOF-808-DL-Lys
	298
	50
	0.72
	[27]

	SiA–PZI
	298
	50
	1.60
	This work

	SiA–PZI
	298
	30
	1.53
	This work

	SiA–PZI
	298
	10
	1.45
	This work

	SiA–PZI
	323
	50
	1.95
	This work

	SiA–PZI
	323
	30
	1.88
	This work

	SiA–PZI
	323
	10
	1.74
	This work

	SiA–PZI
	343
	50
	1.44
	This work

	SiA–PZI
	343
	30
	1.32
	This work

	SiA–PZI
	343
	10
	1.08
	This work

	SiA–V(4)–PZI
	298
	50
	1.56
	This work

	SiA–V(4)–PZI
	298
	30
	1.51
	This work

	SiA–V(4)–PZI
	298
	10
	1.43
	This work

	SiA–V(4)–PZI
	323
	50
	1.75
	This work

	SiA–V(4)–PZI
	323
	30
	1.67
	This work

	SiA–V(4)–PZI
	323
	10
	1.53
	This work

	SiA–V(4)–PZI
	343
	50
	1.66
	This work

	SiA–V(4)–PZI
	343
	30
	1.52
	This work

	SiA–V(4)–PZI
	343
	10
	1.23
	This work

	SiA–A(24)–PZI
	298
	50
	2.05
	This work

	SiA–A(24)–PZI
	298
	30
	1.97
	This work

	SiA–A(24)–PZI
	298
	10
	1.90
	This work

	SiA–A(24)–PZI
	323
	50
	2.00
	This work

	SiA–A(24)–PZI
	323
	30
	1.93
	This work

	SiA–A(24)–PZI
	323
	10
	1.82
	This work

	SiA–A(24)–PZI
	343
	50
	1.78
	This work

	SiA–A(24)–PZI
	343
	30
	1.61
	This work

	SiA–A(24)–PZI
	343
	10
	1.34
	This work
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Table S4. Fitted parameters and regression correlation coefficients (R2) obtained by applying Langmuir, Freundlich, Toth, and Sips isotherm models to the CO2 adsorption data of SiA–PZI, SiA–A(24)–PZI, and SiA–V(4)–PZI at different temperatures.
	Samples
	Langmuir model
	Freundlich model
	Toth model
	Sips model

	
	qm
	B
	R2
	K
	n
	R2
	qm
	B
	n
	R2
	qm
	B
	n
	R2

	SiA–PZI-298K
	2.03
	306
	0.8952
	2.25
	8.08
	0.9382
	2.85
	162810
	0.23
	0.9797
	/
	/
	/
	/

	SiA–PZI-323K
	2.29
	442
	0.9418
	2.51
	9.65
	0.8853
	2.60
	18588
	0.35
	0.9882
	/
	/
	/
	/

	SiA–PZI-343K
	1.95
	118
	0.9578
	2.15
	6.07
	0.9606
	2.53
	2023
	0.34
	0.9994
	2.33
	57
	0.47
	0.9983

	SiA–A(24)–PZI-298K
	2.67
	313
	0.8816
	2.96
	8.04
	0.9355
	3.82
	211888
	0.22
	0.9740
	3.43
	118
	0.33
	0.9656

	SiA–A(24)–PZI-323K
	2.40
	372
	0.9399
	2.63
	9.10
	0.9024
	2.81
	22115
	0.32
	0.9846
	/
	/
	/
	/

	SiA–A(24)–PZI-343K
	2.44
	130
	0.9377
	2.71
	6.13
	0.9721
	3.76
	12339
	0.25
	0.9985
	/
	/
	/
	/

	SiA–V(4)–PZI-298K
	2.04
	298
	0.8779
	2.26
	7.88
	0.9394
	3.02
	279341
	0.21
	0.9738
	/
	/
	/
	/

	SiA–V(4)–PZI-323K
	2.07
	373
	0.9452
	2.27
	9.09
	0.8994
	2.38
	13687
	0.35
	0.9908
	/
	/
	/
	/

	SiA–V(4)–PZI-343K
	2.33
	109
	0.9452
	2.59
	5.80
	0.9730
	3.50
	5134
	0.27
	0.9992
	3.04
	32
	0.42
	0.9980
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