

## Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

### Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size ( $n$ ) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided  
*Only common tests should be described solely by name; describe more complex techniques in the Methods section.*
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g.  $F$ ,  $t$ ,  $r$ ) with confidence intervals, effect sizes, degrees of freedom and  $P$  value noted  
*Give  $P$  values as exact values whenever suitable.*
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's  $d$ , Pearson's  $r$ ), indicating how they were calculated

*Our web collection on [statistics for biologists](#) contains articles on many of the points above.*

### Software and code

Policy information about [availability of computer code](#)

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection | In silico TF-DNA complexes were generated using the AlphaFold3 web server (2025.06.10 release).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Data analysis   | Our analysis pipeline of TF binding effects on UV damage formation and repair was made using custom Python 3.11 code (available at <a href="https://github.com/HanaWasserman/UV_damage_TFBS_analysis">https://github.com/HanaWasserman/UV_damage_TFBS_analysis</a> ) using BEDTools 2.13.0, Pandas 2.3.2, Numpy 1.26.1, Scipy 1.13.1, Scikit-learn 1.7.1, Statsmodels 0.14.0, Matplotlib 3.8.1, Seaborn 0.13.2, Logomaker 0.8, Mygene 3.2.2. TF-DNA complexes were analyzed with custom Python 3.11 and bash scripts, using X3DNA-DSSR v2.5.0 and PyMOL 3.1.0. UVDE-seq assay raw FASTQ files were aligned to the human genome assembly hg19 and converted to BAM files using bowtie 2-2.2.6 and SAMtools 1.10. Raw ATAC-seq assay sequencing data was processed using the ENCODE ATAC-seq pipeline 2.2.3 ( <a href="https://github.com/ENCODE-DCC/atac-seq-pipeline/tree/master">https://github.com/ENCODE-DCC/atac-seq-pipeline/tree/master</a> ) and aligned to the human reference genome assembly hg19. ATAC-seq peaks were converted to hg19 using University of California Santa Cruz Genome Browser LiftOver web server tool (accessed 2024). |

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.

## Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our [policy](#)

The data that support the findings in this study are available as Supplementary Tables, in Excel format. The UVDE-seq data generated for the study were deposited in the Gene Expression Omnibus (GEO) under accession number GSE297236. The ATAC-seq data generated for study the C1SAN/CSBWT cell line and peak calls were deposited in GEO under accession number GSE309644. For analysis of CPDs, we used a CPD-seq v2.0 dataset published by Duan et al. and deposited under GEOS accession GSE235483. TF binding site curation was done from previous published binding site calls by Vierstra J., et al: <https://doi.org/10.1038/s41586-020-2528-x>, found at [https://www.vierstra.org/resources/motif\\_clustering](https://www.vierstra.org/resources/motif_clustering). In vitro CPD damage formation measurements in varying sequence contexts were curated manually from a paper by Lu C., et al: <https://doi.org/10.1093/nar/gkab214>. Protein sequences used to generate the AlphaFold3 structures for TF-DNA complex structural analysis can be found from the UniProt Knowledgebase under IDs: P01100, P05412 (AP1); P14921-1 (ETS1); P23511-1, P25208, Q13952-1 (NFY); P20226 (TBP); Q9UJU2 (LEF1).

## Research involving human participants, their data, or biological material

Policy information about studies with [human participants or human data](#). See also policy information about [sex, gender \(identity/presentation\), and sexual orientation](#) and [race, ethnicity and racism](#).

|                                                                    |                                |
|--------------------------------------------------------------------|--------------------------------|
| Reporting on sex and gender                                        | <a href="#">Not applicable</a> |
| Reporting on race, ethnicity, or other socially relevant groupings | <a href="#">Not applicable</a> |
| Population characteristics                                         | <a href="#">Not applicable</a> |
| Recruitment                                                        | <a href="#">Not applicable</a> |
| Ethics oversight                                                   | <a href="#">Not applicable</a> |

Note that full information on the approval of the study protocol must also be provided in the manuscript.

## Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences  Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see [nature.com/documents/nr-reporting-summary-flat.pdf](https://nature.com/documents/nr-reporting-summary-flat.pdf)

## Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample size     | Analysis of TF binding effects on UV damage formation and repair was done for 225 TF motif clusters curated from Vierstra et al., <i>Nature</i> 2020. For structural analysis of AlphaFold3-predicted TF-DNA complexes, the top 20 unique TF binding site sequences (based on motif quality score) were analyzed per dipyrimidine position of interest. In total, 111 TF-DNA complexes were generated, covering 11 positions across 5 TFs. For ATAC-seq, 4 biological replicates were used for IDR analysis peak calling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Data exclusions | Vierstra et al. originally published 286 TF motif clusters. Four clusters were removed due to naming redundancy (of which the cluster that best represented human protein orthologs was kept), three clusters were removed due to low motif model specificity and two clusters were removed because they lacked a human ortholog TF in the motif model. Finally, as our limit of detection, we only analyzed TF motif clusters that had at least one position in their binding site with at least 30 aggregated UV lesions formed immediately after UV treatment. After this filtering, our analysis consisted of 225 motif clusters. In addition to intersecting the genome-wide TF motif cluster binding site calls with chromatin accessibility data, for each TF cluster, we excluded the bottom 50% of TF binding sites based on motif quality score (reported by Vierstra et al.) to enrich for actively TF binding sites. Binding sites for KLF/SP1 and CTCF clusters were further limited to the top 30% of binding sites due to the large number of genome-wide binding sites called for these clusters. |
| Replication     | Replication through orthogonal validation of results. Our <i>in vivo</i> CPD formation frequency measurements across tetranucleotide sequences correlated strongly (Pearson $r=0.88$ ) with previous <i>in vitro</i> experiments of CPD formation in free DNA published by Lu et al. ( <a href="https://doi.org/10.1093/nar/gkab214">https://doi.org/10.1093/nar/gkab214</a> ). To test the reproducibility of the results from our analytical Poisson model of CPD formation, we analyzed CPD formation in TF binding sites using an orthogonal simulation method which yielded very similar results (Pearson $R=0.84$ ). Both replication exercises were successful.                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|               |                                                                                                                                                                                                                                                                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Randomization | A case-control study that would necessitate randomization was not included in this manuscript. During bootstrap and permutation analyses, random sampling was done using pandas.DataFrame.sample implementation in conjunction with a pseudo-random seed generated using numpy.random.seed.       |
| Blinding      | Blinding was not relevant to our study as the majority of our analyses were on previously published data, and we conducted no additional experiments to comparing experimental conditions that would necessitate blinding. No animals or human research participants were involved in this study. |

## Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

| Materials & experimental systems    |                               | Methods                             |                        |
|-------------------------------------|-------------------------------|-------------------------------------|------------------------|
| n/a                                 | Involved in the study         | n/a                                 | Involved in the study  |
| <input checked="" type="checkbox"/> | Antibodies                    | <input checked="" type="checkbox"/> | ChIP-seq               |
| <input type="checkbox"/>            | Eukaryotic cell lines         | <input checked="" type="checkbox"/> | Flow cytometry         |
| <input checked="" type="checkbox"/> | Palaeontology and archaeology | <input checked="" type="checkbox"/> | MRI-based neuroimaging |
| <input checked="" type="checkbox"/> | Animals and other organisms   |                                     |                        |
| <input checked="" type="checkbox"/> | Clinical data                 |                                     |                        |
| <input checked="" type="checkbox"/> | Dual use research of concern  |                                     |                        |
| <input checked="" type="checkbox"/> | Plants                        |                                     |                        |

## Eukaryotic cell lines

Policy information about [cell lines](#) and [Sex and Gender in Research](#)

|                                                                      |                                                                                                                                                         |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell line source(s)                                                  | For both UVDE-seq and CPD-seq v2.0 experiments, human skin fibroblast cell lines were used (cell lines NHF1 and CSB/C1SAN <sup>WT</sup> , respectively) |
| Authentication                                                       | Authenticated with genome sequencing                                                                                                                    |
| Mycoplasma contamination                                             | Cells were not tested for Mycoplasma contamination                                                                                                      |
| Commonly misidentified lines<br>(See <a href="#">ICLAC</a> register) | None                                                                                                                                                    |

## Plants

|                       |                |
|-----------------------|----------------|
| Seed stocks           | Not applicable |
| Novel plant genotypes | Not applicable |
| Authentication        | Not applicable |