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1 Introduction

The emergence of Large Language Models (LLMs)! has marked a transformative milestone in Artificial Intelligence
(AI), fundamentally reshaping machine learning capabilities, especially in Natural Language Processing (NLP). This
field demonstrated unprecedented conversational abilities and sparked widespread adoption of Al-powered language
technologies across industries and research domains. The foundation of these LLMs relies on supervised and self-
supervised pretraining on vast text corpora. However, these paradigms are insufficient for creating Al systems that
reliably align with human values and preferences. They optimize for statistical patterns, often resulting in outputs that
are factually incorrect, harmful, or misaligned with user intentions [6, 74].

To advance the performance of LLMs, researchers have investigated the integration of Reinforcement Learning
(RL) techniques with LLMs, such as Reinforcement Learning with Human Feedback (RLHF) [129]. This integration
leverages RL’s learning paradigm that has already demonstrated remarkable success in sequential decision-making tasks.
Rooted in behavioral psychology and optimal control theory, RL enables agents to learn optimal behaviors through
trial-and-error interactions with their environment [162]. Unlike traditional supervised learning with static datasets,
RL’s capacity for dynamic interaction and iterative improvement through feedback loops offers a natural framework
for incorporating human preferences, safety constraints, and task-specific objectives in LLMs’ behavior. The synergy
between LLMs’ representational capacity and RL’s goal-directed learning represents a fundamental advancement
in creating Al systems that can understand, generate human-like text, and optimize behavior according to complex
objectives beyond simple pattern matching. At their intersection, RL4LLM fine-tuning refers to research that applies RL
techniques for fine-tuning LLM parameters to further improve performance on NLP tasks [135].

Although we are witnessing increasing adoption of RL4LLM fine-tuning approaches, a comprehensive understanding
of their methodological details and RLALLM synergies is still lacking. In [180], the authors primarily examine mature,
proprietary LLM systems like InstructGPT, GPT-4, Claude 3, and DeepSeek-R1, cataloging their architectural choices and
training methodologies. While comprehensive in documenting state-of-the-art models, it focuses on established systems
rather than dissecting underlying methodological innovations. Another work [220] narrows its scope to RL applications
for enhancing reasoning capabilities in complex logical tasks, particularly mathematics and coding. It emphasizes
reasoning-specific RL techniques, training data requirements, and the path toward artificial superintelligence through
scaled reasoning. In [99], the authors take a lifecycle-oriented approach, comprehensively covering RL applications
throughout the entire LLM development pipeline from pre-training through post-training and inference stages. It
provides temporal breadth by documenting RL’s role across different developmental phases.

In contrast, our work targets the academic research community by systematically investigating methodological
innovations within RL4LLM fine-tuning. Rather than cataloging proprietary models, focusing on specific applications,
or surveying entire development lifecycles, we organize novel approaches by method domains and innovations to
understand how and why different techniques work, enabling researchers to comprehend how specific technical choices
within fine-tuning methodologies drive improvements in model capabilities. We synthesize findings from 230 papers
(2022 to September 2025) to provide an in-depth understanding of current approaches, methodological innovations,
limitations, and future work in RL4LLM fine-tuning research, serving as a foundational reference that shapes both
academic research and industrial implementation strategies.

As the main focus for analyzing the methodological innovations of recent RL4LLM fine-tuning research, we categorize

this research into three method domains: Optimization Algorithm as the core RL update rule, Training Framework for the

!For consistency with contemporary literature, we use "LLM" throughout this paper to refer to language models of all scales.
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orchestration of the training process, and Reward Modeling for modeling how to learn and represent preferences and

feedback in LLMs. We analyze the methods and address their nuanced details through the following research questions:

e RQ1. How do the three method domains in RL4LLM fine-tuning differ in their application focus, addressed
challenges, and method properties? We identify and categorize recent RL4LLM fine-tuning works into method
domains, examining application tasks and target challenges across these categories. The method properties are
quantified to understand the reproducibility, computational complexity, and human effort.

e RQ2. What are the core methodological innovations within each method domain, and what patterns
emerge in their technical contributions and practical applicability? We systematically categorize methods by
their innovations and analyze their methodological details, deriving patterns of distinct RL4ALLM fine-tuning methods
and examining how synergies between RL optimization and LLM capabilities contribute to overall effectiveness.

¢ RQ3. What are the primary limitations across RL4ALLM fine-tuning methods and what future work do
researchers propose to address these limitations? Through systematic analysis of limitations and future directions
across the literature, we identify unresolved challenges, methodological gaps, and underexplored areas within each
domain. We map these limitations and their proposed solutions with methodological innovations, providing a

roadmap for future RL4LLM fine-tuning research.

We first elaborate on the RL4LLM fine-tuning concept in Section 2, followed by outlining our search and data
extraction strategies for this systematic literature review. For the analysis results, Section 3.1 addresses RQ1 through an
overview analysis of method domains, challenges, applications, and properties. We then analyze innovations in each
method domain regarding RQ2 in Section 3.2, examining methodological details and patterns. Section 3.3 discusses RQ3
by summarizing limitations and future directions identified in the review. Finally, Section 4 synthesizes these findings

and presents our perspective on RL4LLM fine-tuning development.

2 Research Methodology

In this section, we first introduce the foundational knowledge of RL4LLM fine-tuning grounded in the RL/LLM
taxonomy [135]. We then describe our rigorous search strategy and structured data extraction process, conducted as a

systematic literature review following PRISMA guidelines [118].

2.1 RL4LLM Fine-Tuning

In the RL/LLM taxonomy [135], authors introduce it by systematically categorizing the intersection of these two
components into three distinct classes: RLALLM, LLM4RL, and RL+LLM, as illustrated in Figure 1. RL4LLM encompasses
studies where RL techniques are strategically leveraged to enhance the performance of LLMs on tasks fundamentally
related to NLP. This approach treats the LLM as the primary agent that benefits from RL-based optimization. In LLM4RL,
the relationship is inverted: an LLM serves as an auxiliary component that assists in training an RL model designed to
perform tasks that are not inherently related to NLP, such as robotics control or game playing. Finally, in RL+LLM, both
components operate within a unified planning framework as collaborative agents, where an LLM and an RL agent work
in tandem without either component directly contributing to the training or fine-tuning of the other, maintaining their
distinct roles while benefiting from their combined capabilities.

Building on the RL4LLM taxonomy, where the authors distinguish between fine-tuning (directly modifying LLM
parameters) and prompt optimization (iteratively refining prompts without parameter changes), this work focuses

specifically on the RL4LLM fine-tuning subcategory. While the original taxonomy subdivides fine-tuning based on
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Fig. 1. RL/LLM taxonomy tree [135]. Our literature review focuses on RLALLM fine-tuning.

feedback source, we adopt an alternative categorization approach and further refine the fine-tuning category by

organizing methods according to specific method domains to better understand methodological innovations.

2.2 Search Strategy

Our search strategy includes four steps to refine the scope, as shown in Figure 2: identification from literature databases,
preliminary screening, detailed eligibility assessment, and inclusion for data extraction.

Identification. We utilized Scopus? as our primary literature database due to its extensive, curated collection of
high-quality, peer-reviewed scholarly content. To identify relevant publications, we constructed a search string requiring
the terms "LLM" OR "language model" to appear in conjunction with "RL" OR "reinforcement learning"” within the title,
abstract, author keywords, or indexed keywords. We posited that papers developing RLALLM methods at the intersection
of these fields would explicitly mention these core concepts. Our use of the term "LLM" warrants clarification. While
language models indicate a broad category encompassing various architectures like n-grams, RNNs, and LSTMs, LLMs
are specifically modern variants defined by large scale and emergent abilities. However, contemporary literature
frequently applies "LLM" to models of all sizes. For consistency, we use "LLM" throughout this paper to refer to language
models of all scales. Additionally, we deliberately excluded broader related terms such as "NLP", "transformer", "reward
model", and "reward function" from our search string, as these terms are frequently used in contexts unrelated to

RL-LLM synergies and would unnecessarily broaden our literature scope. The search string is presented below:

( TITLE-ABS-KEY ( "LLM" ) OR TITLE-ABS-KEY ( "language model" ) )

AND ( TITLE-ABS-KEY ( "RL" ) OR TITLE-ABS-KEY ( "reinforcement learning" ) )

AND PUBYEAR > 2021 AND PUBYEAR < 2026 AND ( LIMIT-TO ( SUBJAREA , "COMP" ) )

AND ( LIMIT-TO ( DOCTYPE , "cp" ) OR LIMIT-TO ( DOCTYPE , "ar" ) ) AND

( LIMIT-TO ( SRCTYPE , "j" ) OR LIMIT-TO ( SRCTYPE , "p" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) )

Besides the core search terms, we applied several filters to refine the results: the temporal scope was set from 2022

through September 2025 (the search was conducted on September 24, 2025); the subject area was limited to Computer

Zhttps://www.scopus.com
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Fig. 2. Flow chart of the article search process with four stages adapted from PRISMA guidelines [118].

Science; the language was restricted to English; and the document types were confined to conference papers and
articles from conference proceedings and journals. These constraints ensure domain relevance and focus on substantive,
peer-reviewed research at the intersection of RL and LLMs. This initial search yielded 1433 papers.

Screening. The screening was conducted through systematic analysis of abstracts to efficiently evaluate each work’s
core contributions. This process consisted of three sequential stages: (1) an initial relevance screening, where we
excluded 294 papers that mentioned RL and LLMs only as background context rather than focusing on their synergistic
development; (2) a taxonomy-based classification using the RL/LLM taxonomy [135], which categorized remaining
papers into RL4LLM (735), LLM4RL (235), and RL+LLM (169) domains, after which papers from the latter two categories
were filtered out; (3) a focus on methodological developments, where we filtered out 421 papers concerning applications,
surveys, benchmarks, or empirical analyses to concentrate exclusively on research advancing RL techniques within
RL4LLM. Upon completing this screening, a final set of 314 papers was retained for in-depth eligibility assessment.
Eligibility. In the eligibility phase, we acquire all accessible papers. Then we conduct full-text reading by co-authors
and LLMs, identifying fine-tuning and non-fine-tuning methods, which include inference-time techniques, prompt
engineering, fine-tuning of auxiliary models, etc. Additionally, the eligibility assessment also filtered out underexplored

works for irrelevant, non-RL4LLM, and non-methodological content, further covering gaps missed in the screening



phase. To ensure soundness for answering our three research questions, we also conducted an eligibility assessment

following systematic review guidelines [73]. Each paper was evaluated against three predefined criteria:

e Does the paper describe its RLALLM methodology, including associated challenges, applications, and properties?
e Does the method deliver impactful results that address the stated challenges and applications?

e Does the paper discuss or imply methodological limitations and future research directions?

The full-text review led to the exclusion of 84 papers that failed to pass the assessments, yielding a final corpus of 230

papers included for data extraction and synthesis of findings.

2.3 Data Extraction Strategy

Ten co-authors were involved in the data extraction process, with the 230 papers distributed evenly for each to review
23 papers without overlap. Co-authors brought diverse expertise from healthcare, data security, software engineering,
computer vision, and machine learning, ensuring a multi-disciplinary perspective. Data was extracted from full text
using a structured protocol (Table 1). To address potential inconsistencies from this multi-reviewer setup, we employed
a hybrid validation approach: 1) LLM-assisted extraction to generate automated answers, 2) manual extraction by
co-authors, and 3) conflict resolution by the main author, who reviewed both versions to resolve discrepancies. This

method systematically enhanced the precision and consistency of review outcomes while reducing manual effort.

Table 1. Data extraction protocol for RLALLM fine-tuning literature.

Research Questions | Topics Question Type | Questions
A.1 Key Contributions Descriptive What are the primary findings and main contributions of
this work?
;l%tl}.“l){;scent A.2 Application Tasks Descriptive To which specific tasks or application domains is the
Overview method applied?
A.3 Addressed Challenges Descriptive What specific challenges in RLALLM does this work aim to
solve?
A.4 Reproducibility Multi-Choice To what extent are the proposed methods and experimental
results reproducible? (high/medium/low)
A.5 Computational Complexity | Multi-Choice What is the computational resource usage of the proposed
methods? (high/medium/low)
A.6 Human Effort Multi-Choice What amount of human effort is required to implement the
proposed methods? (high/medium/low)
B.1 Method Summary Descriptive Summarize the core methodology proposed in the paper
RQ2. and highlight the innovations.
. B.2 RL Formulation Descriptive Which RL algorithms are used, and how is the MDP (state,
Methodological . 5
Innovations ' _ actlf)n, reward) formulated? '
B.3 LLM Foundation Descriptive Which base LLM(s) are used, and what are their key char-
acteristics (e.g., size, type)?
B.4 Integration Process Descriptive What is the detailed process for integrating the RL and
LLM components?
B.5 Synergies Descriptive What synergies or advantages does the RLALLM integration
provide?
B.6 Experimental Results Descriptive What are the empirical results of the proposed method, and
how effectively does it address the stated challenges?
RQ3. C.1 Limitations Descriptive What limitations of the proposed method do the authors
Limitations and acknowledge?
Future Directions C.2 Future Directions Descriptive What future research directions does the paper suggest?
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For the LLM-assisted extraction, we employed the Claude Sonnet 4> model as the extraction tool. This hybrid approach
aligns with emerging trends in academic research methodology, as demonstrated by [145] in their investigation of
LLM-assisted review processes. Their research revealed that numerous contemporary research projects increasingly
utilize LLMs for automated review workflows. By leveraging LLMs, we efficiently captured the core content of each
article while combining the results with human-curated review documentation to ensure accuracy and consistency.

The final data extraction results are available in the GitHub repository*.

3 Results

In this section, we analyze the extracted results from the data extraction process and organize our analysis around three
key aspects of the 230 RLALLM fine-tuning papers: (RQ1) recent methods overview, (RQ2) methodological innovations,
and (RQ3) limitations and future directions. Section 3.1 addresses RQ1 by presenting an overview of the distribution of
papers across three primary method domains: Optimization Algorithm, Training Framework, and Reward Modeling.
We characterize papers in each domain according to their application tasks, addressed challenges, and key method
properties, including reproducibility, computational complexity, and human effort requirements. Section 3.2 addresses
RQ2 by providing detailed analyses for each method domain. We break down the methods into three-level hierarchies
to provide a clear understanding and analyze the patterns of the RL4LLM fine-tuning methodological innovations. In
Section 3.3, we focus on RQ3 and use the limitations and future directions recorded in data extraction to synthesize

promising research directions, highlighting valuable avenues for advancement in each method domain.

3.1 Recent Methods Overview (RQ1)

How do the three method domains in RL4LLM fine-tuning differ in their application focus, addressed challenges,
and method properties? We analyze the first block of extracted information (RQ1) A.1-A.6 as shown in Table 1, including
key contributions, application tasks, addressed challenges, as well as reproducibility, computational complexity, and
human effort, to provide an overview of recent methods.

Method Domains. Based on the A.1 Key Contributions, we categorize the 230 papers into three method domains:
Optimization Algorithm (80 papers), Training Framework (61 papers), and Reward Modeling (89 papers). The close
distribution across these domains indicates a balanced research focus in the RL4LLM fine-tuning method development.
Application Tasks. We analyze the extracted information from A.2 Application Tasks to examine the distribution of

NLP applications across the three method domains. Since many papers address multiple tasks, we count each paper’s

task occurences

contribution to every task it addresses as ¢ ,
domain total

allowing papers to be counted multiple times across different
task categories. The 11 application tasks include: Text Classification (sentiment analysis, topic categorization), Structured
Information Extraction (relation and event extraction, sequence labeling), Reasoning and Inference (natural language
inference, commonsense reasoning), Question Answering (extractive and generative QA), Summarization (abstractive and
extractive), Dialogue Systems (chatbots, conversational AI), Open-ended Generation (creative writing, story generation,
text continuation), Machine Translation, Text Paraphrasing (style transfer, controlled text rewriting), Code Generation
(program synthesis from natural language), and Multimodal Tasks (vision-language, speech-text integration).
Regarding the distribution of application tasks across method domains, we observe distinct patterns in Figure 3
that reflect the application preferences of different methods. Natural language understanding tasks are predominantly

addressed by Training Frameworks, with 8.20% of works involving Text Classification and 34.43% involving Reasoning

Shttps://www.anthropic.com/claude/sonnet
*https://github.com/engineerkong/SLR-RL4LLM-Fine-Tuning-Methods.git
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Fig. 3. Distribution of application tasks across RL4LLM fine-tuning method domains.

and Inference, followed by Reward Modeling and Optimization Algorithm. Notably, Information Extraction receives
minimal attention across all domains. Natural language generation tasks have much higher occurrences overall. Question
Answering appears in 24.72% of Reward Modeling works, followed by Training Framework (22.95%) and Optimization
Algorithm (17.50%). In Summarization and Dialogue Systems, Optimization Algorithms show impressive presence,
appearing in 36.25% of their works for Summarization and 47.50% for Dialogue Systems, significantly exceeding Reward
Modeling and Training Framework. Open-Ended Generation receives modest coverage across all domains, with Training
Framework showing the least presence. Machine Translation is limited, with only Optimization Algorithm and Reward
Modeling showing applications. Text Paraphrasing receives moderate coverage across method domains, ranging from
11.25% to 14.75%. Code Generation appears most frequently in Training Framework works, while Multimodal Tasks
receive low coverage across all domains. These analyses indicate that different application tasks are targeted across
different method domains, with each domain exhibiting distinct patterns in its task applications.

Addressed Challenges. The scope of addressed challenges is more diverse than application tasks, with papers typically
addressing multiple challenges simultaneously (often 3 or more). Based on extracted information from A.3 Addressed
Challenges, we categorize the primary challenges into 12 domains: Output Quality focuses on improving generation
quality and task-specific performance, including inconsistency and alignment tax. Computational Efficiency encompasses
training time, convergence speed, and resource utilization. Data Efficiency addresses various data requirements (where
"data" in RL4LLM primarily refers to reward and human or Al feedback), sample efficiency, annotation costs, and
credit assignment. Training Stability covers hyperparameter sensitivity, mode collapse, convergence issues, catastrophic
forgetting, and exploration-exploitation trade-offs. Scalability and Generalization examines the ability to scale across

models and generalize to different tasks and domains, including distribution shift. Safety and Bias includes toxicity,
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Fig. 4. Distribution of addressed challenges across RL4LLM fine-tuning method domains.

privacy, fairness, and harmful content prevention. Overoptimization addresses reward hacking, overfitting, and KL-
regularization strategies. MDP Specification involves challenges in formulating state, action, and reward spaces. Multi-
Objective Optimization focuses on balancing conflicting objectives and rewards such as helpfulness and safety. Preference
Limitations encompasses diverse and inconsistent human preferences, noisy feedback, misalignment between learned
and true preferences, and drawbacks of preference models. Customization addresses user-specific adaptation. Knowledge

Gaps covers factual limitations, hallucinations, external knowledge integration requirements, and interpretability
challenge occurrences

challenges. Similarly, we analyze the proportion of papers addressing each challenge as ——; =——= "

As demonstrated in Figure 4, the distribution of addressed challenges reveals distinct patterns across the three
method domains. Output Quality is addressed extensively by Training Framework (39.34% of works) but minimally by
Optimization Algorithm (18.74%). Conversely, Computational Efficiency is heavily prioritized by Optimization Algorithm
(35% of works), creating a substantial gap compared to Training Framework (18.04%) and Reward Modeling (only 3.37%).
Data Efficiency receives considerable attention across all domains, with Training Framework leading at 42.62%. Training
Stability is predominantly addressed by Optimization Algorithm, with an outstanding 45% of works focusing on this
challenge, while the other two domains address it in only around 20% of their works. For Scalability and Generalization,
Training Framework and Reward Modeling show similar attention levels, while Optimization Algorithm addresses these
challenges at roughly half the rate. Safety and Bias concerns are uniquely emphasized by Reward Modeling (21.35% of
works), with minimal attention from other domains. Overoptimization is most frequently addressed by Reward Modeling
and Optimization Algorithm, with relatively lower focus in Training Framework. MDP Specification receives limited
attention overall, with Optimization Algorithm showing the highest proportion at 12.5%. Multi-Objective Optimization is
not widely addressed except for an impressive 24.72% in Reward Modeling. Preference Limitations are broadly addressed
across domains, with Reward Modeling leading at 33.71%. Customization remains relatively unaddressed across all

domains, while Knowledge Gaps show low attention from Optimization Algorithm but higher focus from the other two
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Fig. 5. Analysis of the RLALLM fine-tuning method properties.

domains (approximately 15% each). These results explicitly illustrate the varying emphasis different method domains
place on addressing current challenges, highlighting their complementary strengths and focus areas.

Method properties Finally, we analyze the extracted properties of RL4LLM fine-tuning methods according to the
extracted information A.4 Reproducibility, A.5 Computational Complexity and A.6 Human Effort, as demonstrated in
Figure 5. These properties are measured on a three-level scale: High, Medium, and Low.

Reproducibility depends on two factors: (1) resource availability, including code, models, and datasets, as well as open
accessibility to evaluation models (proprietary models like GPT require paid access); and (2) implementation details,
including descriptions of experimental settings, random seeds, and hyperparameter tuning procedures. This metric
reflects how open and verifiable the reported results of RL4ALLM fine-tuning methods are. Note that computational
resources and human evaluation costs required for reproduction are not considered in this assessment. The distribution
patterns across method domains are nearly identical, with 33-40% of papers achieving high reproducibility (satisfying
both factors), while the remaining 60-67% achieve medium reproducibility (satisfying only one factor). Only very few
papers exhibit low reproducibility across all domains. Notably, according to the extracted information, approximately
half of the papers do not provide open access to their code, models, or datasets, or rely on proprietary resources,
highlighting the need for greater transparency and openness in RLALLM research publication practices.

Since RL fine-tuning is inherently computationally intensive, we assess Computational Complexity based on computa-
tional resource usage and the complexity of RLALLM procedures, models, and dataset sizes. We categorize the complexity
as follows: High complexity involves extremely long training times (many days), intensive resource requirements,
and heavy or multi-stage fine-tuning procedures; Medium complexity involves moderate training times (hours to
days), moderate resource usage, and standard fine-tuning tasks; Low complexity involves minimal training time, low
computational resource requirements, and lightweight fine-tuning procedures. According to the extracted information,
Training Framework methods exhibit the highest computational complexity, with 33% rated as high and only 10%
as low, likely due to their iterative and hierarchical training procedures. Reward Modeling follows with the second
highest computational complexity, reflecting the substantial computational effort required for modeling preferences

and training reward models. Optimization Algorithm methods demonstrate the lowest computational complexity, with
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only 11% high, 66% medium, and 22% low, likely because many algorithmic innovations specifically aim to reduce
computational costs and require less extensive computational overhead.

We also assess Human Effort, which depends on the extent of human involvement in annotations, evaluations,
domain expertise requirements, and manual setup and configuration for development. We categorize human effort
as follows: High involves extensive human participation with many annotators curating large-scale datasets and
conducting comprehensive evaluations; Medium involves moderate human involvement, such as a few people working
to annotate smaller datasets, evaluate results, or conduct some domain investigation and setup; Low involves minimal
or no additional human effort beyond the authors’ research, development, and experimentation work. The RL4ALLM
fine-tuning papers we collected generally require medium-to-low human effort, with only a few papers requiring
high effort. Optimization Algorithm methods exhibit the highest human effort requirements, with 52% of papers at
medium level, likely due to extensive manual setup and configuration for algorithmic development. Training Framework
methods demonstrate the lowest human effort requirements, with only 30% medium and 69% low, showing a clear
inverse pattern with their computational complexity. Reward Modeling methods show moderate human effort with 46%
at medium level, reflecting the substantial human annotation and evaluation effort needed for preference alignment.

RQ1: How do the three method domains in RL4LLM fine-tuning differ in their application focus, addressed challenges,

and method properties?

Summary for RQ1: These three method domains exhibit distinct patterns across all analyzed dimensions. In terms
of application focus, Optimization Algorithms primarily target summarization and dialogue systems, Training Frame-
works emphasize understanding tasks such as reasoning and text classification, while Reward Modeling demonstrates
comprehensive distribution across various tasks. Regarding addressed challenges, Optimization Algorithms emphasize
computational efficiency and training stability, Training Frameworks focus on output quality and data efficiency, while
Reward Modeling methods prioritize reward-oriented challenges such as multi-objective optimization and preference
limitations. For method properties, all domains achieve moderate-to-high reproducibility, though improvements in research
openness remain needed. Optimization Algorithms demonstrate the lowest computational complexity but the highest
human effort requirements, Training Frameworks exhibit the highest computational complexity but the lowest human
effort, while Reward Modeling shows moderate levels for both properties. These patterns clearly indicate specialized

developmental aims for distinct approaches to RL4LLM fine-tuning.

3.2 Methodological Innovations (RQ2)

RQ2. What are the core methodological innovations within each method domain, and what patterns emerge in
their technical contributions and practical applicability? We analyze the extracted information B.1-B.6 in Table 1
by carefully examining the information and categorizing the methods using a top-down approach to create a three-level

methodology hierarchy as presented in Tables 2, 3, and 4.

3.2.1 Optimization Algorithm. These algorithm-oriented methods can be categorized according to their underlying RL
algorithms into: 1) Policy Gradient and Actor-Critic, 2) Direct Policy Optimization, 3) Value-Based Learning, 4) Game
Theory, and 5) Distributional Matching algorithms. We then analyze each category by identifying innovations.

Policy Gradient and Actor-Critic. These algorithms optimize LLMs by framing output as sequential decision-making,
where the policy (LLM) selects tokens to maximize cumulative reward from human preference models or task-specific
metrics. Policy Gradient methods directly optimize policy parameters using gradient ascent on expected rewards, with

REINFORCE as the foundational algorithm. Actor-Critic architectures enhance this through dual components: the
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Table 2. Review of Optimization Algorithm innovations for RLALLM fine-tuning.

Optimization Algo-
rithm

Innovation

Reference Papers

Policy Gradient and
Actor-Critic

PPO-Based Actor-Critic

Pure Policy Gradient

Alternative Actor-Critic Variants
Hybrid RL Formulations

RLHF [129], MA-RLHF [14], BSPO [29], PyTester [163], CPPO [216],
ReMax [93], DfPO [62], Safe RLHF [28], APA [79], MTPO [148],
POAD [183], GPT-Critic [63], STR [208], PIT [181]

BindGPT [231], ESRL [171], REBEL [43], CodeRL [80], RAINER [98],
NLPO [140], TrufLL [115], Elastic Reset [128]

TOLE [91], CRT [54], REFUEL [44]

CoPG [41], ZPG [222], A-LOL [4], LIRE [240], f-DPG [45]

Divergence Modifications
Enhanced Loss Functions

PO [57], £-DPO [169], CAN [60], VPO [13], DIL [198]
ChatTune-DPO[68], SamPO [107], MMPO [71], Length-regularized

Direct Policy DPO [132], ODPO [2], Mallows-DPO [20], D2PO [149], DPO [139],
Optimization VCB [114], AMP [221], RS-DPO [70], fDPO [119], ADPO [65],
RDO [179], QDPO [82]
Multi-Response Extensions MPPO [199], DMPO [152], MODPO [237]
Weight Modifications IW-DPO [105], WPO [235], GRPO [142]
Non-DPO Methods PRO [156], RRHF [214], BEPO [226], SELM [224], IPO-MD [10],
C-RLFT [172]
Value-Based Dire':ct Q-Learning Yariants ' Q-SFT [53], ILQL [155], SQL for Text Generation [47]
. Residual and Adaptive Q-Learning  Q-Adapter [92]
Learning Inverse Q-Learning Inverse-Q* [196], IQLearn [194]
Online Mirror Descent INPO [228], SPPO [192]
Game Theory Magnetic Mirror Descent MPO [175]
Nash Equilibrium NLHF [123]
Distributional Best-of-N vBoN [1], BOND [146], RSO [103], BoN-SFT [27]
. GFlowNet GDPO [77], Armotimized GFlowNets [56]
Matching

Importance Sampling BRAIN [130], EXO [64]

actor (policy network) selecting actions and the critic (value function) estimating expected rewards, reducing gradient
variance for stable learning. Proximal Policy Optimization (PPO) advances this paradigm by introducing clipping
mechanisms that constrain policy updates, preventing destabilizing changes while maintaining sample efficiency.
Evolution of these 30 methods for LLMs reveals significant innovations across four key algorithmic categories.
PPO-Based Actor-Critic innovations include Macro-Action RLHF (MA-RLHF) [14], which introduces temporal abstrac-
tion through token sequence grouping for enhanced credit assignment, and Behavior-Supported Policy Optimization
(BSPO) [29], which pioneers value regularization via behavior-supported Bellman operators to address reward overopti-
mization. Pure Policy Gradient innovations employ REINFORCE variants for specialized applications, exemplified by
BindGPT [231]’s molecular design framework, achieving 100X speedup through docking score optimization, and Efficient
Sampling-based Reinforcement Learning (ESRL) [171], which enhances sample efficiency through advanced sampling
strategies. Alternative Actor-Critic Variants explore novel architectures, particularly Curiosity-driven Red-Teaming
(CRT) [54], which employs intrinsic motivation for systematic safety vulnerability discovery through exploration-based
policies. Hybrid RL Formulations establish new theoretical foundations by combining RL with other paradigms. Con-
trastive Policy Gradient (CoPG) [41] bridges supervised learning stability with RL optimization through contrastive
objectives, while Zeroth-order Policy Gradient (ZPG) [222] eliminates gradient computation via derivative-free opti-
mization. These approaches represent emerging trends addressing fundamental challenges in stability, efficiency, and

safety across diverse LLM training scenarios.
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Direct Policy Optimization. This subclass represents a paradigm shift in RLHF by reducing explicit reward model
training. Direct Policy Optimization methods directly optimize LLM policies using preference data, with Direct Preference
Optimization (DPO) serving as the foundational algorithm. DPO leverages the Bradley-Terry model to reformulate
the RL objective as a classification problem, employing a loss function based on the log-sigmoid of the scaled reward
difference between preferred and rejected responses. This approach bypasses explicit reward model training while
preserving the theoretical rigor of preference-based optimization. Some DPO variants also employ reward models,
seeking to combine the stability and interpretability of explicit reward signals with DPO’s efficiency. Our analysis
categorizes the 32 works into five major innovation directions.

Divergence Modifications directly modify the fundamental divergence constraint, exemplified by y?-Preference
Optimization (yPO) [57], which substitutes DPO’s reverse KL divergence with chi-squared divergence for reduced
overoptimization. Enhanced Loss Functions augment the standard objective with additional regularization, such as
ChatTune-DPO [68], which incorporates contrastive penalties and entropy regularization to prevent mode collapse in
low-resource scenarios. Multi-Response Extensions generalize pairwise frameworks to handle multiple responses, as seen
in Multi Pair-wise Preference Optimization (MPPO) [199], which processes N+1 responses using the geometric mean of
token likelihoods and achieves significant MT-Bench improvements. Weight Modifications address distribution shifts
through adaptive reweighting, exemplified by IW-DPO [105], which estimates density ratios for test distribution opti-
mization. Non-DPO Methods explore alternative frameworks beyond Bradley-Terry models, such as Preference Ranking
Optimization (PRO) [156], which implements ranking-based preference learning with active query selection, achieving
comparable alignment with 50% fewer human evaluations. These innovations advance Direct Policy Optimization from
simple pairwise optimizers to sophisticated frameworks handling real-world deployment challenges.

Value-Based Learning. These algorithms focus on estimating the optimal value function, which represents the
maximum expected future reward an agent can achieve from any given state. Q-Learning learns the action-value
function (Q-function) to evaluate the quality of taking specific actions in particular states, with the agent’s policy
derived by selecting the action with the highest estimated value. Our analysis identifies 6 works in this domain.
Innovation unfolds primarily through Direct Q-Learning Variants, where methods like Q-SFT [53] reformulate classical
Q-learning as weighted cross-entropy losses, treating token probabilities as conservative value estimates and embedding
Bellman updates directly into supervised fine-tuning objectives. Residual and Adaptive Q-Learning approaches like
Q-Adapter [92] leverage residual Q-learning frameworks to learn incremental value function adjustments, establishing
direct correspondence between Q-functions and reward differences to enable preference learning without explicit
reward modeling. Inverse Q-Learning techniques, exemplified by IQLearn [194], reformulate inverse RL as maximum
likelihood estimation with temporal difference regularization, extracting reward functions from expert demonstrations
for subsequent value-based optimization. The literature reveals convergence towards hybrid approaches that embed
classical Q-learning principles within supervised learning frameworks, combining the temporal compositionality of
value-based RL with the training stability of supervised learning.

Game Theory. These algorithms model strategic interactions between rational decision-makers, with Nash Equilibrium
representing stable states where no player benefits from unilateral strategy changes. In LLM alignment, these methods
frame preference learning as strategic interactions between policies, seeking stable Nash solutions. Our literature review
contains 4 papers on innovations in this specific RL algorithm. Online Mirror Descent (OMD) generalizes gradient descent
using mirror maps and Bregman divergences for superior convergence on non-Euclidean geometries. Iterative Nash
Policy Optimization (INPO) [228] applies OMD with entropy regularization to symmetric two-player games, achieving

superior performance through direct optimization over preference datasets without expected win rate computation.
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Magnetic Mirror Descent extends OMD by introducing a magnetic term that periodically updates the reference policy
to guide convergence toward the original Nash equilibrium. Magnetic Preference Optimization (MPO) [175] adapts
this to RLHF as a two-player constant-sum game, achieving linear convergence rates that outperform standard mirror
descent. Nash-Equilibrium approaches, such as Nash Learning from Human Feedback (NLHF) [123], bypass scalar
rewards by learning pairwise preference models and computing Nash equilibria directly from comparisons, improving
expressivity and robustness compared to reward-based methods. These innovations reveal that current Game-Theoretic
LLM alignment research is dominated by mirror descent algorithms.

Distributional Matching. These methods reframe the core objective of RL4LLM, shifting from expected reward
maximization to explicit distributional alignment. Instead of pursuing scalar rewards, the goal is to train a policy 7y to
minimize divergence from a target distribution 7* that encodes desired behavioral traits. This target distribution is
typically derived through principled statistical algorithms such as Best-of-N, Generative Flow Networks (GFlowNets),
and Importance Sampling techniques. We identified 8 papers concerning innovations in Distributional Matching
methods. The Best-of-N paradigm constructs an empirical target distribution by sampling multiple responses from
a base model and selecting those with the highest rewards, then distilling this distribution into a single efficient
policy. Variational Best-of-N (vBoN) [1] formalizes this by fine-tuning an LLM to minimize reverse KL divergence to
the analytically derived BoN distribution, preserving high-reward characteristics while eliminating inference-time
sampling costs. GFlowNets enable diverse generation by sampling sequences with probability proportional to given
rewards. Methods like GFlowNet Direct Preference Optimization (GDPO) [77] adapt this for offline alignment, deriving
token-wise rewards from pairwise preference data and integrating them into GFlowNet’s detailed balance objective to
enhance output diversity. Importance Sampling techniques address intractable distribution matching through Monte
Carlo estimation. Bayesian Reward-conditioned Amortized Inference (BRAIN) [130] uses Bayesian inference to define a
target reward-conditioned posterior and introduces a self-normalized baseline in its gradient estimator, significantly
reducing variance and improving performance. These methods demonstrate movement toward principled distribution

matching with emphasis on theoretical guarantees, diversity preservation, and computational efficiency.

3.22  Training Framework. Training Framework approaches have core innovations in fundamental architectural designs.
According to different architectures, we can categorize the works into four categories: 1) Sequential Pipeline, 2) Iterative
Refinement, 3) Hierarchical Architecture, and 4) Online Adaptive Framework. Subsequently, we provide a comprehensive
analysis of each category, exploring more granular innovation types within each framework, identifying patterns in
Training Framework methods, and revealing insights into RL4LLM fine-tuning architectural design principles.
Sequential Pipeline. These methods decompose the monolithic process of model training and inference into distinct,
specialized stages. Our analysis examines 12 research papers on Sequential Pipeline frameworks, focusing on how RL is
integrated into multi-stage training and inference pipelines.

Sequential Pipeline Frameworks can be categorized into three distinct types based on their architectural patterns
and functional objectives. Data-Centric Pipelines systematically improve data quality and then model performance
through sequential stages, exemplified by the Reasoning Distillation Framework [144], which generates synthetic
explanations, performs knowledge distillation, and applies RL refinement for knowledge transfer to smaller models,
and WizardMath [110], which evolves mathematical problems, trains reward models, and optimizes through PPO to
enhance mathematical reasoning. Modular Component Integration develops independent components and systematically
integrates them into cohesive systems, demonstrated by Oreo [90], which trains modular context reconstruction

components via SFT, integrates them through contrastive learning, and refines the complete pipeline using RL to align
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Table 3. Review of Training Framework innovations for RLALLM fine-tuning.

Training Frame-
work

Innovation

Reference Papers

Sequential Pipeline

Data-Centric Pipelines

Modular Component Integration
Capability Development Pipelines

Reasoning Distillation Framework [144], WizardMath [110],
RewriteLM [153], Teams-RL [46]

Oreo [90], RLAF [126]

UCP [184], PCT [112], ALMoST [72], BAMBINO-LM [151], HTL [89],
DPPPO [185]

Iterative Refinement

Data-Centric Refinement
Multi-Agent Iterative Systems
Internal Self-Refinement
External Feedback Refinement
Exploration-Based Refinement
Process-Level Refinement

ILR [210], DICE [18], RAFT [33]
Reflect-RL [234], AutolF [32], SPAG [26], WizardArena [109]
SCoRe [76], RLC [131], RISE [137], HIR [225]

LeReT [55], ReST-MCTS* [215], StepCoder [35], AutoPRM [24]
COPO [5], PRS [209], R? [195], SpannerSampling [42], Quark [108]
SVPO [19], ALT [104], ReFT [167]

Parallel Frameworks

FedRLHF [38], CORY [111], FedBis [186]

Hierarchical Multi-Level Frameworks ArCHer [236], KEHRL [84], MOS [189], LDPP [51]
Architecture Hybrid Integration UPO [3], SPO [86], DEFT [239], HyPO [157], RLVF [158], STG [67]
Modular Extension Frameworks PPDPP [31], TWOSOME [164]
Online Adaptive Real-time Feedback CORGI [7], DRESS [23], APL [122], Online Strategic Feedback [49],
SOTOPIA-7 [178]
Framework

Dynamic Knowledge Integration
Continuous Learning Systems

RID [39], IM-RAG [202], PRewrite [75], SECOND THOUGHTS [101]
Asynchronous RLHF [127], Group-Invariant Policy [230]

context processing with generator preferences. Capability Development Pipelines build foundational abilities, align them
with preferences, and specialize for deployment scenarios. UCP [184] establishes multi-task coding foundations through
joint fine-tuning, aligns via SimPO-based RL, and specializes through self-infilling inference mechanisms, while the
seminal RLHF approach [129] builds instruction-following foundations via SFT, aligns with human preferences through
reward modeling, and specializes via PPO optimization. These sequential approaches demonstrate the effectiveness of
staged development in achieving complex RL4LLM objectives through systematic progression.
Iterative Refinement. These frameworks progressively improve through cyclic feedback loops rather than sequential
training, leveraging RL to create self-improving systems that enhance performance through various feedback mecha-
nisms. Many frameworks operate in online settings where models learn from their own generated data while optimizing
across multiple dimensions simultaneously. We evaluate 23 methods and categorize them into six categories.
Data-Centric Refinement treats training data as refinable artifacts, with ILR [210] revolutionizing RLHF by redirecting
comparison feedback from model optimization to dataset improvement through cross-labeling. Multi-Agent Iterative
Systems create collaborative refinement through multiple components, with Reflect-RL [234] implementing two-player
refinement where reflection models guide policy improvements, and AutolF [32] enabling self-play through execution
feedback verification. Internal Self-Refinement enables self-awareness through sequential processing, with SCoRe [76]
implementing inference-level self-correction cycles. External Feedback Refinement leverages external systems for
improvement, with LeReT [55] implementing multi-hop retrieval refinement and StepCoder [35] utilizing compiler
feedback. Exploration-Based Refinement systematically explores uncertain prompt-response regions, as COPO [5]
integrates count-based exploration with Upper Confidence Bound bonuses for comprehensive preference data coverage.
Process-Level Refinement implements granular reasoning refinement, with SVPO [19] generating step-level preferences
and training explicit value models for reasoning step evaluation. These frameworks represent a shift from static training

paradigms to self-improving systems that evolve through structured feedback loops.
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Hierarchical Architecture. These frameworks address scalability, efficiency, and performance challenges through
sophisticated system design, fundamentally transforming how RL training is orchestrated by distributing computational
load across parallel processes or combining distinct methodological approaches. With 15 papers in our collection, we
analyze these frameworks by examining their innovations in four distinct strategies.

Parallel Frameworks leverage distributed computing to enable simultaneous training across multiple agents or clients,
decomposing RL4LLM processes into concurrent sub-processes with coordinated communication. FedRLHF [38] dis-
tributes RLHF across federated clients that contribute specialized local knowledge while benefiting from global model
improvements, while CORY [111] employs a dual-agent architecture where pioneer and observer agents train simultane-
ously with complementary access. Multi-Level Frameworks decompose complex problems into multiple abstraction levels,
enabling tractable optimization by separating concerns across temporal or conceptual scales. ArCHer [236] decomposes
RL into utterance-level strategic decisions and token-level implementation, each optimized with complementary algo-
rithms, while KEHRL [84] separates knowledge enhancement into entity detection and triple selection levels optimized
through coordinated processes. Hybrid Integration paradigms combine heterogeneous training paradigms within unified
frameworks. UPO [3] integrates preference optimization methods (KTO, DPO) with offline RL for auxiliary objectives,
while HyPO [157] combines offline preference learning with online policy sampling to harness both data efficiency
and adaptability benefits. Modular Extension Frameworks employ RL components as external modules that guide LLM
capabilities without modifying core language model training. PPDPP [31] employs a pre-trained RoOBERTa model as an
external policy planner that predicts dialogue strategies for agents. These frameworks demonstrate how architectural
decomposition and parallel coordination effectively address scalability and complexity in RL4LLM fine-tuning.
Online Adaptive Framework. Moving beyond static architectures, Online Adaptive frameworks introduce real-time
learning, transforming LLMs from static models into adaptive agents. Through RL, they conduct continuous in-situ
model updates, enabling simultaneous optimization for objectives like accuracy and safety based on live feedback. We
categorize 11 instantiations into three subcategories based on their adaptation mechanisms.

Real-time Feedback enables models to receive and act upon feedback within single interaction sessions, with CORGI [7]
exemplifying online adaptation by learning to improve responses iteratively rather than requiring retraining. Dy-
namic Knowledge Integration incorporates real-time decision-making during generation, with adaptive choices about
knowledge retrieval, prompt optimization, or response strategies. RID [39] demonstrates this through real-time knowl-
edge integration by making retrieval decisions dynamically during generation, enabling adaptive responses based on
contextual information needs through rationale-aware explanation generation, dynamic switching, and explanation
distillation modules. Continuous Learning Systems represent the most advanced form, enabling parameter updates
during deployment without interrupting service. Asynchronous RLHF [127] addresses computational bottlenecks by
decoupling inference and training phases, enabling online learning where models continuously adapt based on real-time
interactions without interrupting user service, though this remains challenging and underexplored. These methods

collectively push toward Online Adaptive Frameworks that evolve with user interactions.

3.2.3 Reward Modeling. In RLALLM, Reward Modeling is a specific reward-oriented approach to improve LLMs. The
innovation techniques can be structured based on their distinct reward modeling and design methodologies into five
primary categories: 1) Reward Model Architecture, 2) Reward Granularity and Density, 3) Reward Bias Calibration,
4) Synthetic Preferences Generation, and 5) Compositional Rewards methods. We subsequently conduct a detailed

examination of each category, investigating more nuanced innovation variants within each approach.
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Table 4. Review of Reward Modeling innovations for RLALLM fine-tuning.

Reward Modeling Innovation Reference Papers
Parameter Sharing Architectures P-ShareLoRA [100], WARM [141]
Reward Model Mixture-of-Experts Architectures ArmoRM [174], DMoERM [138], MoRE [124], MaxMin-RLHF [15],
. PoE-based Reward Modeling [150]
Architecture

Multi-Head Architectures

Memory-Augmented Architectures
External Component Integration

Constractive Goal-Conditioned Learning [125], GRM [207],
ODIN [21]

Proto-RM [219], RLKF [94]

Themis [88], GazeReward [106], InfoRM [116]

Reward Granularity
and Density

Token-Level Dense Rewards
Step-Level Process Rewards

Multi-Granular Rewards
Dense Reward Enhancement

Seq2seq RM [233], RELC [12], RLMEC [25], TLCR [211], ABC [16],
Token-Level Reward Modeling [200], FINE-GRAINED RLHF [193]
GraphPRM  [134], PAV [147], ER-PRM [217], MATH-
SHEPHERD [177], GLoRe [50], SENSEI [102]

FGATF [66], Implicit Toxicity Framework [182]

KRLS [212]

Reward Bias
Calibration

Post-hoc Bias Correction
Confidence-based Calibration

Distributional Methods

RC-Mean/RC-LWR [61], CAA [197], Reward Dropout [81]
PPO-M/PPO-C [83], CALS [58], RCfD [143], Fact-RLHF [160],
IDS [238], ADVPO [227], SaySelf [201], CONQORD [165]

BIRL [9], IDS-based RLHF [136], LSAM [168], DPL [154],
ENTFA [11], R3M [8], CVaR [17], DRO [52]

Synthetic Preferences

Cross-Modal Synthesis
Self-Evolutionary Loops
Task-Performance Feedback

RoVRM [170], MACAROON [190]
SER [59], UGDA [159], ALOE [191]
RLPF [187], RaFe [113], ExpCTR [213]

Generation Contrastive Automatic Labeling RLCD [205], RLCF [34], Contrastive Reward Modeling [22]
Knowledge-Guided Synthesis OCEAN [188], DogeRM [97], ML-IRL [87], MupPCQA [203]
Hybrid Multi-Component Synthesis  SALMON [161], Self-motivated Learning [40], DeMem [69]
Dynamic Weighting Optimization =~ Multi-style Rewards [30], Fast RL [85], DYNAOPT [117], DPA [173],

Compositional Constrained RLHF [120]

Rewards Hierarchical Decomposition ALARM (78], Semi-structured Explanation Rewards [48]

Structure Reward Engineering

Domain-Specific Decomposition

VeriSeek [176], Constraint-aware KBQA [204], RBRs [121],
PCRM [232]

LLM2ER-EQR [206], FLAME [96], RELAX-based MDS [133],
BackMATH [223], SYRELM [36], RLLR [95], TRUSTWORTHY-
ALIGNMENT ([229], HuatuoGPT [218], Reinforce-Detoxify [37],
Moral Intrinsic Rewards [166]

Reward Model Architecture. This domain refers to the structural design, component organization, and computational
arrangement of reward models, encompassing neural network architecture, parameter organization schemes, multi-
component designs, and structural modifications that enable effective preference learning and reward prediction. We
analyze 15 papers with relevant architectural innovations.

Parameter Sharing Architectures like P-ShareLoRA [100] introduce parameter sharing schemes where each user’s
reward function parameters are structured as ®; = ™ + A@;, with A®; = BW;. This architecture shares matrix B
across users while maintaining personalized W; matrices, creating a hierarchical parameter organization that balances
shared knowledge and personalization. Mixture-of-Experts Architectures introduce dynamic routing mechanisms that
allow specialized processing paths based on input characteristics. DMoERM [138] exemplifies this through a dual-layer
MoE architecture: an outer sparse MoE layer routing inputs to task-specific experts using frozen pre-trained routers, and
an inner dense MoE layer decomposing tasks into capability dimensions with trainable routers. Multi-Head Architectures
address the trade-off between specialization and generalization through dual-component designs. GRM [207] implements

both a reward head that minimizes standard reward loss for preference prediction and an LM head that minimizes
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token prediction loss to maintain language understanding, with shared hidden states enabling knowledge transfer
between objectives. Memory-Augmented Architectures introduce dynamic adaptation capabilities through prototypical
learning mechanisms, as demonstrated by Proto-RM [219], which incorporates encoding layers, dynamic prototype
banks, and episodic memory refinement mechanisms enabling rapid adaptation to new preference patterns. External
Component Integration methods like Themis [88] extend reward architecture beyond self-contained models by integrating
external computational components through structured reasoning chains, representing a paradigm shift toward hybrid
architectures that combine internal learned representations with external knowledge sources and tool capabilities.
These architectural innovations demonstrate the evolution from monolithic reward models toward modular, adaptive
systems that can handle diverse preference patterns and complex tasks.

Reward Granularity and Density. This domain refers to the temporal and spatial resolution at which rewards
are assigned during learning. Granularity describes the temporal resolution of reward assignment, including token-
level, step-level, and sequence-level approaches. Density describes the frequency and richness of reward signals,
encompassing dense, sparse, and process rewards. The synergy between granularity and density enables more effective
credit assignment, reducing the temporal credit assignment problem in long-sequence generation tasks. We analyze 16
recent papers and categorize their innovations into four types.

Token-Level Dense Rewards apply dense reward signals at the token generation level, enabling fine-grained credit

assignment for each vocabulary decision. TLCR [211] introduces a token-level continuous reward mechanism that
assigns real-valued rewards to each generated token based on human preferences, employing a specialized reward
model that learns to predict token-level quality scores for dense supervision throughout generation. Step-Level Process
Rewards decompose complex reasoning tasks into logical steps with specialized reward models that evaluate reasoning
process quality rather than just final outcomes. GraphPRM [134] introduces automated step-level annotation for graph
reasoning through task-oriented trajectories that translate algorithm execution into natural language steps, using Monte
Carlo Tree Search for diverse path generation and training Process Reward Models to evaluate step-wise correctness.
Multi-Granular Rewards simultaneously apply rewards at multiple granularity levels, creating hierarchical reward
structures that capture both local and global quality aspects. FGAIF [66] implements a three-tier approach: (1) Al-based
feedback collection using ChatGPT for atomic fact extraction and LLaVA for image consistency verification, (2) training
specialized reward models for object existence, attribute accuracy, and relational correctness, and (3) RL optimization
using combined multi-granular rewards. Dense Reward Enhancement enhances traditional reward modeling through
auxiliary dense signals and specialized training procedures, such as KRLS, which improves dialog generation through
reinforced keyword learning by incorporating dense rewards based on keyword relevance and dialog success metrics.
These innovations collectively address the fundamental challenge of precise credit assignment in complex tasks, moving
beyond sparse outcome-based rewards toward comprehensive process supervision.
Reward Bias Calibration. Reward models often exhibit systematic biases that misalign their predictions with
true human preferences. These biases manifest as overconfidence in incorrect predictions, preferences for superficial
characteristics like response length, and distributional misalignment between predicted and actual reward values. The
core principle involves decomposing biased reward signals into true reward components and systematic bias terms,
then applying corrective measures to improve alignment.

Our review of 19 papers reveals three primary approaches: Post-Hoc Bias Correction methods detect and remove bias
after reward model training through mathematical decomposition and statistical correction, exemplified by [61] which
decomposes biased rewards into true rewards plus bias terms using RC-Mean (estimating bias via local average rewards

within neighborhoods) and RC-LWR (employing Locally Weighted Regression for robust bias estimation that adapts to
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local data density). Confidence-Based Calibration leverages confidence scores and overconfidence detection to calibrate
reward predictions during or after training, as demonstrated by PPO-M/PPO-C [83], where PPO-M calibrates reward
models by augmenting training data with confidence-query prompts to prefer high confidence for correct responses,
while PPO-C adjusts reward scores during PPO training using exponential moving averages and confidence-based
calibration. Distributional Methods employ Bayesian inference, distributional modeling, and uncertainty quantification
to handle reward model uncertainty and bias, such as the BIRL approach [9] that formulates LLM alignment as Bayesian
Inverse Reinforcement Learning by learning posterior reward distributions p(R|D) through variational inference. These
strategies enable more reliable reward modeling that captures human judgment beyond surface-level characteristics.
Synthetic Preferences Generation. This refers to automatically generated preference signals that serve as alternatives
or supplements to expensive human annotations, addressing the fundamental bottleneck in RLHF: the scarcity and
cost of human preference data. The field has evolved beyond simple data augmentation to sophisticated methods that
leverage diverse signal sources, iterative improvement, and cross-domain knowledge transfer.

We analyze 18 papers across six key innovation categories: Cross-Modal Synthesis leverages abundant preference data

from one modality to improve reward models in data-scarce modalities, exemplified by RoVRM [170], which proposes
multi-phase training to leverage textual preference abundance while maintaining multimodal capabilities for vision-
language models. Self-Evolutionary Loops enable iterative self-improvement where reward models generate their own
training data through progressive refinement cycles, as demonstrated by SER [59], which implements a curriculum-like
self-improvement system with adaptive data filtering to achieve significant performance improvements over seed models.
Task-Performance Feedback derives preference signals directly from downstream task performance rather than human
annotations, with RLPF [187] using a frozen LLM to predict future user activities from generated summaries, where
prediction accuracy serves as the reward signal, eliminating the need for human preference annotations. Contrastive
Automatic Labeling automatically generates preference pairs through contrastive prompting or structural differences,
as in RLCD [205]. Knowledge-Guided Synthesis employs external structured knowledge or domain expertise to guide
preference generation, with OCEAN [188] leveraging knowledge graphs to create structured reasoning preferences.
Hybrid Multi-Component Synthesis approaches like SALMON [161] combine multiple synthetic preference generation
strategies, creating unified frameworks that can adapt to arbitrary human-defined principles without retraining while
leveraging synthetic data to bootstrap initial preference understanding. These methods address human annotation
scalability while maintaining alignment quality through automated feedback mechanisms.
Compositional Rewards. The systematic decomposition and combination of reward functions address the multi-
faceted nature of LLM alignment. Unlike monolithic reward models that provide single scalar feedback, Compositional
Reward systems break down desired behaviors into multiple components and combine them through various composition
strategies. We categorize 21 papers into four primary methodological strategies.

Dynamic Weighting Optimization dynamically composes multiple reward functions with adaptive weighting mecha-
nisms that adjust during training. Fast RL [85] treats reward composition as a max-min optimization problem, using
mirror descent estimation to dynamically update weights in a weighted sum of multiple rewards, achieving superior
performance across multiple metrics with improved stability compared to fixed weighting schemes. Hierarchical Decom-
position decomposes complex reward functions into hierarchical structures with conditional activation. ALARM [78]
decomposes reward modeling into two sub-tasks: (1) following holistic rewards until generation quality exceeds a
threshold, then (2) combining holistic rewards with specific fine-grained rewards, creating a structure where general
quality is prioritized before specific aspects are refined. Structure Reward Engineering explicitly encodes structural, syn-

tactic, or rule-based constraints as compositional reward components. In VeriSeek [176], the reward function explicitly
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decomposes code quality into syntactic validity, parseability, and structural similarity components. Domain-Specific
Decomposition decomposes domain-specific quality metrics into multiple specialized reward components tailored to
specific applications. LLM2ER-EQR [206] decomposes explanation quality into specialized components, including
relevance, informativeness, persuasiveness, and user preference alignment, with each component measured through
domain-specific metrics and combined into a composite reward function for PPO training. The field demonstrates a shift
toward sophisticated reward engineering that moves beyond scalar rewards to better align with nuanced requirements.
RQ2: What are the core methodological innovations within each method domain, and what patterns emerge in their

technical contributions and practical applicability?

Summary for RQ2: The methodological innovations reveal distinct patterns across the three domains. Optimization Algo-
rithms demonstrate how advanced methods build upon foundational algorithms like PPO and DPO, which serve as platforms
for systematic enhancement and specialization, alongside development of other algorithms contributing to RL4LLM fine-
tuning. Training Frameworks exhibit progressive patterns: modular decomposition, iterative self-improvement, hierarchical
scalability, and real-time adaptation, reflecting a shift from predetermined frameworks to flexible, responsive architectures.
Reward Modeling shows sophisticated patterns across the reward learning ecosystem, with innovations demonstrating holistic
enhancement strategies that simultaneously address architectural design, signal quality, bias mitigation, data efficiency,
and compositional complexity, shifting from monolithic reward functions toward multi-dimensional, engineered systems.

These patterns collectively indicate the field’s maturation toward principled and robust RL4LLM fine-tuning methodologies.

3.3 Limitations and Future Directions (RQ3)

RQ3. What are the primary limitations across RL4LLM fine-tuning methods and what future work do re-
searchers propose to address these limitations? Through systematic analysis of the extracted information for C.1
Limitations and C.2 Future Directions in Table 1, we comprehensively identify unresolved challenges, methodological
gaps, and underexplored areas within each domain. This analysis maps the methodological innovations to their key
limitations, providing a roadmap for future RL4LLM fine-tuning research.

Optimization Algorithm. These methods exhibit limitations including computational overhead, reward model

dependency, and optimization complexity, as illustrated in Figure 6. Key limitations and future directions by category:
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e Data Issues encompasses critical challenges where distribution shift in Policy Gradient and Actor-Critic leads to offline
degradation and instability with larger models [79, 128], while Value-Based Learning exhibit limited online adaptation,
with offline RL methodologies showing constrained transferability to online environments and only modest single-
turn interaction improvements [194]. Research proposes four solution pathways: Improving Distributional Robustness
through enhanced offline learning and alternative distance metrics [44, 79], Bridging Offline-Online Learning Gaps via
real-time optimization adaptations [53], Expanding LLM Action Spaces for enhanced online learning capabilities [194],
and Establishing Dynamic Adaptation Paradigms that transition from static preference datasets to online training
where reward models co-evolve with policies, incorporating uncertainty estimates and enabling multi-step inference
chains for multi-task generalization [27, 64, 77, 103].

o Sample Efficiency affects Policy Gradient and Actor-Critic methods, making them suffer from high polynomial
sample complexity and 1.3X online sampling overhead [93, 222], while Game Theory algorithms lack theoretical
assurances for finite-sample dynamics, relying on asymptotic foundations [228]. Distributional Matching methods
exhibit biased log F estimation through sampling and noisy quantile estimation with limited samples, generating
systematic Distributional Matching errors [1, 77, 146]. To address these issues, research proposes Accelerating Sample
Efficiency through lookahead decoding and systematic prompt selection [45, 93, 222], and Formulating Finite-Sample
Theoretical Construction to provide tangible performance boundaries [228].

o Reward Model Dependency affects multiple algorithm types with distinct vulnerabilities. Policy Gradient and Actor-
Critic methods experience evaluation-optimization coupling requiring high-quality preference models [29, 41, 240],
while Direct Policy Optimization methods show performance tightly coupled to reward model fidelity with over-
optimization spawning "cheat patterns" [114, 119, 139, 179, 214]. Value-Based Learning algorithms become critically
tied to reward function quality, introducing deployment fragility [47], and Distributional Matching performance
fundamentally hinges on reward model fidelity for mode-seeking behaviors [1, 64, 103]. Research addresses these
dependencies through Enhancing Reward Modeling via multi-objective frameworks and diversified Al feedback [41,
140, 240], Pursuing Reward Model-Free Paradigms using synthetic data generation [156, 214], and Incorporating
IRL-Extracted Rewards into unified frameworks [47, 194].

o Optimization Complexity encompasses three challenges. Overoptimization tendency causes performance degradation
when training beyond 40k samples in Policy Gradient and Actor-Critic methods [93, 128, 140] and reward hacking
in Distributional Matching methods despite regularization [64]. Hyperparameter sensitivity affects Direct Policy
Optimization requiring meticulous calibration without principled frameworks [57, 149, 224] and Game Theory
methods relying on precise parameter tuning [175]. Convergence determination in Game Theory methods creates
obstacles in establishing equilibrium states [175]. Research addresses these challenges through Autonomous Policy
Adjustment that self-regulate reference policies and eliminate manual hyperparameter manipulation [175, 228],
Exploration Innovations using adaptive divergence selection and off-policy integration [45, 115, 128], and Convergence
Detection Enhancement for Nash Equilibrium identification [175].

o Computational Overhead affects multiple algorithm types. Policy Gradient and Actor-Critic methods require 3x
space and 2X time versus standard fine-tuning [80, 140, 208], while Direct Policy Optimization methods demand
GPU memory with approaches unvalidated beyond 7B parameters plus reward model training costs [65, 70, 107,
119, 179, 214]. Value-Based Learning requires double computational time versus supervised learning due to multiple
transformer requirements [155], and Distributional Matching involves preprocessing costs scaling with sample size,
extensive sample generation, and replay buffer maintenance [1, 27, 56, 103]. Research addresses these through Scaling

Breakthroughs for larger architectures [70, 119, 179], Streamlining Computational Architectures by reducing transformer
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dependencies [155], Computational Efficiency exploiting prompt similarity and learned approximations [1, 103], and
Advancing Architectural Scaling beyond parameter constraints toward structured reasoning [27, 56, 64].

o Theoretical Gaps in Direct Policy Optimization methods arise as foundational DPO frameworks depend on Bradley-
Terry preference models and break down under distributional shifts with broader or partially overlapping test
distributions [57, 105]. Research addresses these through Data-Driven Parameter Tuning methodologies that eliminate
manual exploration while proposing theoretical extensions beyond Bradley-Terry limitations [57], and Broadening

Theoretical Foundations to accommodate dynamic distributional shifts [105].

Training Framework. These methods have extensive remaining limitations, including computational overhead in
frameworks, persistent performance issues, and other specific limitations as illustrated in Figure 7. In the following, we

elaborate on these limitations and future research directions by category in detail.

o Performance Issues manifest across three operational contexts. Sequential alignment flows exhibit ~ 5% knowledge task
degradation versus closed-source models due to alignment tax through pipeline stages, creating proprietary model
dependency without systematic adversarial robustness testing [72, 90, 112, 184]. Online Adaptive frameworks suffer
dual deterioration: off-policy learning degrades beyond 16 mini-batches creating continuous learning instability [127],
while elevated inference latency impairs real-time responsiveness [202]. Iterative Refinement systems plateau after
2-3 iterations as model confidence and improvement gains deteriorate [18, 137, 210]. Future research addresses these
through Adaptive Sequential Flow Management using dynamic token budgets and progress-based RL for denser
reward signals [46, 90], Asynchronous RLHF enabling concurrent learning with advanced off-policy buffering [127],
and Real-Time Retrieval Architectures minimizing latency via improved Progress Tracker designs and RLHF-trained
neural reward models [137, 202].

o Computational Overhead manifests across all architectural paradigms. Sequential Pipelines are limited by 4K token
contexts and single GPU training, preventing exploration of larger batches needed for pipeline depth. Resource
constraints leave larger architectures unexplored [89, 144]. Iterative Refinement demands greater resources than
single-pass methods, constraining practical iteration counts [137, 167]. Hierarchical Architectures increase training
time by ~ 20% through alternating hierarchy-level updates requiring multiple forward passes [164, 189]. Online
Adaptive frameworks require complete parameter re-initialization at each step, rendering adaptation computationally

prohibitive for deployment [122]. Future research pursues Pipeline Scaling and Robustness testing complete frameworks
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on 34B/70B models while strengthening adversarial robustness [89, 90], Trajectory-Based Learning Optimization
incorporating online RL into iterative self-training for reduced computational requirements [26], Hierarchical
Efficiency reducing training overhead while preserving multi-level capabilities [189], and Online Learning Integration
transitioning from costly re-initialization toward fine-tuning approaches leveraging recent data streams [122, 178].

o Optimization Complexity exhibits three key limitations. Hierarchical Architectures require experimental weight
tuning between auxiliary and preference objectives with only moderate correlation between weights and evaluation
metrics [3]. Iterative Refinement necessitates separate training phases rather than unified processes, restricting
methods to 2-turn self-correction cycles [76, 137]. Current iterative systems optimize individual steps independently
rather than complete trajectories, yielding suboptimal cumulative enhancements [55]. Future research pursues
Adaptive Architecture Exploration across adapter designs for hierarchical tasks [67], Unified Iterative Training merg-
ing multi-stage refinement into seamless frameworks beyond current cycle barriers [18, 76], and Joint Trajectory
Optimization of complete refinement sequences replacing greedy improvements [42, 55].

o Training Stability manifests in Online Adaptive frameworks that require KL coefficient adjustments across tasks,
introducing instability during continuous learning [7]. Iterative Refinement frameworks depend on models’ inherent
self-refinement capabilities, which prove insufficient for complex reasoning [209, 225]. Future research pursues
Enhancing Self-Improvement Mechanisms for Iterative Refinement beyond current approaches [209].

o Coordination Failures manifest in Sequential Pipelines that suffer domain-dependent RL effects where stages de-
cline in simpler domains through overfitting, while the algorithm demonstrates highly unstable behavior during
multi-stage fine-tuning, causing output degeneration and policy breakdown [46, 112, 144]. Hierarchical Architectures
face dual challenges: hierarchical client grouping in FedBiscuit demands additional communication overhead while
single selector approaches remain vulnerable to reward hacking [186]. Future research targets End-to-End Pipeline
Coordination through unified sequential training and weakly-supervised alignment across retriever-to-generator
pipelines [144, 184], Federated Coordination Optimization reducing communication overhead in hierarchical struc-
tures [186], Multi-Feedback Aggregation enabling hierarchical learning from diverse sources via sophisticated weight
mechanisms [158], and Ensemble Integration employing multiple LLM agents with complementary strengths [31].

o Interpretability Gaps arise from Hierarchical Architectures where latent policies lack natural language interpretability,
creating obstacles for understanding multi-level strategies [51]. Future research pursues Adaptive Multi-Level Systems

through hierarchical explainability, enhancing interpretability across levels [51].

Reward Modeling. The reward-oriented methods encompass 9 extensive limitations. The connections between

methods and limitations are shown in Figure 8. We analyze them below:

e Data Issues - Reward Modeling faces significant data-related challenges, particularly in Reward Granularity and
Density methods where static reward models during policy training create distribution shifts between training and
target distributions [177, 211]. These approaches also suffer from annotation noise, as automatic process supervision
introduces false positives, especially with larger sampling values [177]. Solutions target multiple aspects: Expanding
Preference Simulation beyond binary labels toward fine-grained multi-output rankings [205], Implementing Iterative
Training paradigms for joint reward-policy evolution to address distribution shifts [177, 211], and Establishing Hybrid
Annotation systems merging human expertise with automated processes for robust supervision [177]. Researchers also
pursue Developing Robust Autonomous Methods for learning status identification and self-labeled data filtering [59],
Exploring Uncertainty-Guided Selection using last-layer embeddings for active data selection [227], and Implementing

Federated Learning approaches to unite reward models from disparate private datasets through weight averaging [141].
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o Architectural Complexity - Multiple design challenges plague Reward Model Architecture methods. Weight averaging
approaches fail to harness diversity from heterogeneous architectures and cannot incorporate prediction disagreement
for uncertainty estimation [141]. Complex frameworks like MoRE suffer elevated inference times due to adapter
switching overhead. Tool-integrated architectures require significantly more training epochs to master invocations [88,
124]. Additionally, Reward Granularity and Density methods create tokenizer dependencies requiring identical
tokenizers between reward and generative models [16]. To tackle these challenges, researchers pursue Advancing
Cross-Architecture Integration through hybrid systems and sophisticated routers [124, 141]. Other efforts focus on
Enhancing Component Integration for precise goal state derivation and Q-value disentanglement [125]. Additionally,
Strengthening Tool Integration aims to improve adaptive invocation mechanisms [88, 106], while Developing Cross-
Tokenizer Mapping explores alternative attribution methods [16].

e Computational Overhead - Reward Modeling methods impose substantial computational burdens across multiple
dimensions. Advanced Reward Model Architectures, particularly MoE implementations, demand approximately 8x
longer training periods, while multi-user architectures require maintaining multiple specialized models [15, 138].
Reward Granularity and Density methods dramatically increase GPU memory consumption and inference time
through multiple reward model queries for fine-grained feedback [193]. Similarly, Reward Bias Calibration’s ensemble-
based preference estimation substantially elevates costs over single-model approaches [168]. PPO computational
costs in Synthetic Preferences Generation prohibit comprehensive iterative experiments with LLM-in-the-loop
approaches [59]. Compositional Rewards face the most severe constraints that multi-style approaches cannot explore
beyond elementary combinations due to computational barriers, requiring elusive high-quality discriminators for
data-scarce attributes, while multi-component gradient systems lack convergence guarantees [30, 120]. Solutions
target Optimizing Efficiency by reducing 8X MoE overhead and streamlining MoRE frameworks [124, 138], alongside
Achieving Efficient Inference through speculative decoding [193].

o Attribution Constraints - Reward Modeling methods struggle with comprehensive attribution across multiple dimen-
sions. Reward Bias Calibration methods target individual characteristic biases rather than addressing multiple biases
concurrently, limiting effectiveness in complex scenarios with intersecting biases [61]. Separately, Reward Granularity
and Density approaches face distinct constraints. Attention-based methods remain restricted to positive-only token

contributions while relying on questionable assumptions that attention mechanisms provide meaningful feature
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attribution [16]. To address these limitations, researchers propose Advancing Multi-Characteristic Calibration systems
for simultaneously handling multiple reward biases [61].

o Scalability Limitations - Reward Modeling methods also face scalability constraints across multiple dimensions.
Synthetic Preferences Generation methods remain restricted to binary preference labels and specific task types, lacking
nuanced modeling capabilities for scenarios [22, 205]. Compositional Rewards encounter constraints that reward
decomposition methodologies cannot scale beyond moderate-scale models without billion-parameter validation,
concentrating on narrow domains with ambiguous generalization potential. Multi-skill compositional alignment
encompasses only rudimentary skill sets despite instructions demanding multiple capabilities [96, 117]. Research
addresses these issues through Amplifying Scalability Extensions by implementing Compositional Rewards across
billion-parameter models with diverse RL algorithms [117, 173] and Orchestrating Comprehensive Multi-Skill Modeling
capable of handling multiple alignment capabilities per query [96].

e Manual Dependencies - Approaches suffer from extensive manual interventions that limit autonomy and scalability.
Reward Model Architecture methods require predefined domain labels for routing decisions and manual capability
dimension specifications for different tasks, preventing adaptive learning [124, 138]. Compositional Rewards face man-
ual overhead: multi-objective approaches mandate task-specific hyperparameter calibration and manual constraint
specification rather than autonomous learning. This dependence makes constraint range determination problematic
while reducing generalization across diverse scenarios [232]. Researchers propose Developing Automated Discovery
systems to replace manual capability definitions with intelligent discovery mechanisms [138], Revolutionizing Auto-
mated Constraint Learning to eliminate manual specification requirements [232], and Developing Adaptive Calibration
mechanisms for automatic determination of calibration strength without manual hyperparameter tuning [61].

o Multi-Objective Conflict - Compositional Reward systems face inherent conflicts when integrating multiple reward
signals, which degrade overall performance. As systems employ more reward models, they experience increasingly
conflicting optimization signals, with three-reward configurations demonstrating deteriorated performance compared
to two-reward setups. Performance typically declines after several epochs due to over-optimization effects, and
multi-objective systems risk generating harmful content when component models exhibit biases or recognition
failures [85, 173]. Solutions include Advancing Multi-Objective Learning to combine preference dimensions for com-
prehensive guidance by developing unified preference models that can handle multiple criteria simultaneously [211],
Architecting Saddle-Point Convergence methods for multi-component systems that achieve stable equilibrium across
competing objectives [120], Materializing Robust Multi-Objective Frameworks for managing beyond dual objectives
while preserving reward-evaluator alignment through adaptive weighting mechanisms [173], and Pioneering Conflict
Resolution Mechanisms through theoretical frameworks capable of identifying superfluous rewards and dynamically
pruning redundant signals [85]. Future research focuses on developing hierarchical preference architectures and
meta-learning approaches that automatically balance multiple reward components.

o Methodological Reliability - The Reward Bias Calibration approaches face fundamental challenges in their underlying
assumptions. These methods depend on accurate confidence estimation, which becomes problematic with sparse
or low-quality data that fails to provide sufficient samples in each forecast bin [58]. Reward models may also
inadequately satisfy requirements for serving as unbiased instrumental variables, potentially introducing additional
biases rather than eliminating them [197]. Solutions include Leveraging Self-Improvement approaches that utilize
aligned confidence as supervisory signals [165] and Implementing Unbiased Reward Modeling methods ensuring

reward models satisfy instrumental variable requirements [197].
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o Theoretical Gaps - Current Reward Modeling methods suffer from insufficient theoretical foundations. Reward
Bias Calibration methods necessitate strong assumptions including independence, sufficient density, and Lipschitz
continuity, requiring manual calibration constant tuning when these assumptions fail [61]. Synthetic Preferences
Generation approaches face different weaknesses by relying on empirical thresholds for data filtering strategies
while lacking rigorous theoretical grounding for these critical design choices [59]. Researchers propose Establishing

Closed-Source Adaptation techniques for extending calibration benefits beyond open-source models [165].

RQ3: What are the primary limitations across RL4LLM fine-tuning methods and what future work do researchers propose
to address these limitations?

Summary for RQ3: Current RL4LLM fine-tuning methods reveal systematic limitations across three primary domains
while proposing diverse solution pathways. Computational overhead emerges as the universal constraint, affecting all
method domains and highlighting a fundamental trade-off between task performance enhancement and computational
efficiency. In Optimization Algorithms, methods encounter other frequently occurring limitations, including reward model
dependency, sample efficiency, and optimization complexity, with future work addressing these algorithmic challenges.
Training Frameworks present distinct limitations such as performance issues, coordination failures, training stability, and
optimization complexity, highlighting that Training Framework research remains exploratory. Reward Modeling exhibits
multiple reward-specific limitations, including manual dependencies, multi-objective conflicts, and scalability constraints,
indicating substantial potential for RL4LLM fine-tuning improvement. The analysis reveals that while methods share some

limitations, they pursue distinct solution strategies, indicating both the complexity of RL4LLM optimization and the active

evolution toward more robust methodologies.

4 Conclusion

In this comprehensive literature review, we focus on RL4LLM fine-tuning methods, where RL techniques are systemati-
cally applied to enhance LLM capabilities through parameter fine-tuning, specifically analyzing their methodological
details. We categorize methods into three domains: Optimization Algorithm, Training Framework, and Reward Modeling,
with further three-level hierarchies for subtle details. We examine 230 recent papers from 2022 to September 2025 using
our research methodology to search relevant papers and extract important information. We establish research questions
addressing 1) recent methods overview, 2) methodological innovations, and 3) limitations and future directions for
in-depth analysis of RL4LLM fine-tuning methods.

Our findings reveal distinct patterns by method domain across target applications, challenges, and properties.
Optimization Algorithm methods build upon foundational algorithms with mathematical enhancements and notably
share remaining limitations: computational overhead, reward model dependency, optimization complexity, and sample
efficiency. Training Frameworks can be divided into four main core frameworks, indicating a shift from predetermined
to flexible and responsive architectures, promising for RL4LLM fine-tuning. These works target challenges in output
quality and data efficiency while also having remaining limitations, including performance issues, coordination failures,
training stability, and computational overhead. As a reward-oriented method domain, Reward Modeling has innovations
that span different perspectives on architectural design, signal quality, bias mitigation, data efficiency, and compositional
complexity, while highlighting extensive remaining limitations regarding reward-specific constraints. RL4LLM fine-
tuning demonstrates significant progress through these various methods, while substantial limitations remain across all
domains. Through systematic analysis of these methods and their innovations, this literature review provides researchers

with essential guidance for advancing RL4LLM fine-tuning and identifying breakthrough research opportunities.
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