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Large Language Models (LLMs) have been developed for a wide range of language-based tasks, while Reinforcement Learning (RL)

has been primarily applied to decision-making problems such as robotics, game theory, and control systems. Nowadays, these two

paradigms are integrated through di�erent synergies. In this literature review, we focus on RL4LLM �ne-tuning, where RL techniques

are systematically leveraged to �ne-tune LLMs and align them with various preferences. Our review provides a comprehensive analysis

of 230 recent publications, presenting a methodological taxonomy that organizes current research into three primary method domains:

Optimization Algorithm, concerning innovation in core RL update rules; Training Framework, regarding innovation in the orchestration

of the training process; and Reward Modeling, addressing how LLMs learn and represent preferences and feedback. Within these

primary domains, we further analyze methods and innovations through more granular categories to provide an in-depth summary of

RL4LLM �ne-tuning research. We address three research questions: 1) recent methods overview, 2) methodological innovations, and 3)

limitations and future directions. Our analysis comprehensively demonstrates the breadth and impact of recent RL4LLM �ne-tuning

research while highlighting valuable directions for future investigation.
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1 Introduction

The emergence of Large Language Models (LLMs)1 has marked a transformative milestone in Arti�cial Intelligence

(AI), fundamentally reshaping machine learning capabilities, especially in Natural Language Processing (NLP). This

�eld demonstrated unprecedented conversational abilities and sparked widespread adoption of AI-powered language

technologies across industries and research domains. The foundation of these LLMs relies on supervised and self-

supervised pretraining on vast text corpora. However, these paradigms are insu�cient for creating AI systems that

reliably align with human values and preferences. They optimize for statistical patterns, often resulting in outputs that

are factually incorrect, harmful, or misaligned with user intentions [6, 74].

To advance the performance of LLMs, researchers have investigated the integration of Reinforcement Learning

(RL) techniques with LLMs, such as Reinforcement Learning with Human Feedback (RLHF) [129]. This integration

leverages RL’s learning paradigm that has already demonstrated remarkable success in sequential decision-making tasks.

Rooted in behavioral psychology and optimal control theory, RL enables agents to learn optimal behaviors through

trial-and-error interactions with their environment [162]. Unlike traditional supervised learning with static datasets,

RL’s capacity for dynamic interaction and iterative improvement through feedback loops o�ers a natural framework

for incorporating human preferences, safety constraints, and task-speci�c objectives in LLMs’ behavior. The synergy

between LLMs’ representational capacity and RL’s goal-directed learning represents a fundamental advancement

in creating AI systems that can understand, generate human-like text, and optimize behavior according to complex

objectives beyond simple pattern matching. At their intersection, RL4LLM �ne-tuning refers to research that applies RL

techniques for �ne-tuning LLM parameters to further improve performance on NLP tasks [135].

Although we are witnessing increasing adoption of RL4LLM �ne-tuning approaches, a comprehensive understanding

of their methodological details and RL4LLM synergies is still lacking. In [180], the authors primarily examine mature,

proprietary LLM systems like InstructGPT, GPT-4, Claude 3, and DeepSeek-R1, cataloging their architectural choices and

training methodologies. While comprehensive in documenting state-of-the-art models, it focuses on established systems

rather than dissecting underlying methodological innovations. Another work [220] narrows its scope to RL applications

for enhancing reasoning capabilities in complex logical tasks, particularly mathematics and coding. It emphasizes

reasoning-speci�c RL techniques, training data requirements, and the path toward arti�cial superintelligence through

scaled reasoning. In [99], the authors take a lifecycle-oriented approach, comprehensively covering RL applications

throughout the entire LLM development pipeline from pre-training through post-training and inference stages. It

provides temporal breadth by documenting RL’s role across di�erent developmental phases.

In contrast, our work targets the academic research community by systematically investigating methodological

innovations within RL4LLM �ne-tuning. Rather than cataloging proprietary models, focusing on speci�c applications,

or surveying entire development lifecycles, we organize novel approaches by method domains and innovations to

understand how and why di�erent techniques work, enabling researchers to comprehend how speci�c technical choices

within �ne-tuning methodologies drive improvements in model capabilities. We synthesize �ndings from 230 papers

(2022 to September 2025) to provide an in-depth understanding of current approaches, methodological innovations,

limitations, and future work in RL4LLM �ne-tuning research, serving as a foundational reference that shapes both

academic research and industrial implementation strategies.

As the main focus for analyzing the methodological innovations of recent RL4LLM �ne-tuning research, we categorize

this research into three method domains: Optimization Algorithm as the core RL update rule, Training Framework for the

1For consistency with contemporary literature, we use "LLM" throughout this paper to refer to language models of all scales.
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orchestration of the training process, and Reward Modeling for modeling how to learn and represent preferences and

feedback in LLMs. We analyze the methods and address their nuanced details through the following research questions:

• RQ1. How do the three method domains in RL4LLM �ne-tuning di�er in their application focus, addressed

challenges, and method properties?We identify and categorize recent RL4LLM �ne-tuning works into method

domains, examining application tasks and target challenges across these categories. The method properties are

quanti�ed to understand the reproducibility, computational complexity, and human e�ort.

• RQ2. What are the core methodological innovations within each method domain, and what patterns

emerge in their technical contributions and practical applicability? We systematically categorize methods by

their innovations and analyze their methodological details, deriving patterns of distinct RL4LLM �ne-tuning methods

and examining how synergies between RL optimization and LLM capabilities contribute to overall e�ectiveness.

• RQ3. What are the primary limitations across RL4LLM �ne-tuning methods and what future work do

researchers propose to address these limitations? Through systematic analysis of limitations and future directions

across the literature, we identify unresolved challenges, methodological gaps, and underexplored areas within each

domain. We map these limitations and their proposed solutions with methodological innovations, providing a

roadmap for future RL4LLM �ne-tuning research.

We �rst elaborate on the RL4LLM �ne-tuning concept in Section 2, followed by outlining our search and data

extraction strategies for this systematic literature review. For the analysis results, Section 3.1 addresses RQ1 through an

overview analysis of method domains, challenges, applications, and properties. We then analyze innovations in each

method domain regarding RQ2 in Section 3.2, examining methodological details and patterns. Section 3.3 discusses RQ3

by summarizing limitations and future directions identi�ed in the review. Finally, Section 4 synthesizes these �ndings

and presents our perspective on RL4LLM �ne-tuning development.

2 Research Methodology

In this section, we �rst introduce the foundational knowledge of RL4LLM �ne-tuning grounded in the RL/LLM

taxonomy [135]. We then describe our rigorous search strategy and structured data extraction process, conducted as a

systematic literature review following PRISMA guidelines [118].

2.1 RL4LLM Fine-Tuning

In the RL/LLM taxonomy [135], authors introduce it by systematically categorizing the intersection of these two

components into three distinct classes: RL4LLM, LLM4RL, and RL+LLM, as illustrated in Figure 1. RL4LLM encompasses

studies where RL techniques are strategically leveraged to enhance the performance of LLMs on tasks fundamentally

related to NLP. This approach treats the LLM as the primary agent that bene�ts from RL-based optimization. In LLM4RL,

the relationship is inverted: an LLM serves as an auxiliary component that assists in training an RL model designed to

perform tasks that are not inherently related to NLP, such as robotics control or game playing. Finally, in RL+LLM, both

components operate within a uni�ed planning framework as collaborative agents, where an LLM and an RL agent work

in tandem without either component directly contributing to the training or �ne-tuning of the other, maintaining their

distinct roles while bene�ting from their combined capabilities.

Building on the RL4LLM taxonomy, where the authors distinguish between �ne-tuning (directly modifying LLM

parameters) and prompt optimization (iteratively re�ning prompts without parameter changes), this work focuses

speci�cally on the RL4LLM �ne-tuning subcategory. While the original taxonomy subdivides �ne-tuning based on
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Fig. 1. RL/LLM taxonomy tree [135]. Our literature review focuses on RL4LLM fine-tuning.

feedback source, we adopt an alternative categorization approach and further re�ne the �ne-tuning category by

organizing methods according to speci�c method domains to better understand methodological innovations.

2.2 Search Strategy

Our search strategy includes four steps to re�ne the scope, as shown in Figure 2: identi�cation from literature databases,

preliminary screening, detailed eligibility assessment, and inclusion for data extraction.

Identi�cation. We utilized Scopus2 as our primary literature database due to its extensive, curated collection of

high-quality, peer-reviewed scholarly content. To identify relevant publications, we constructed a search string requiring

the terms "LLM" OR "language model" to appear in conjunction with "RL" OR "reinforcement learning" within the title,

abstract, author keywords, or indexed keywords. We posited that papers developing RL4LLMmethods at the intersection

of these �elds would explicitly mention these core concepts. Our use of the term "LLM" warrants clari�cation. While

language models indicate a broad category encompassing various architectures like n-grams, RNNs, and LSTMs, LLMs

are speci�cally modern variants de�ned by large scale and emergent abilities. However, contemporary literature

frequently applies "LLM" to models of all sizes. For consistency, we use "LLM" throughout this paper to refer to language

models of all scales. Additionally, we deliberately excluded broader related terms such as "NLP", "transformer", "reward

model", and "reward function" from our search string, as these terms are frequently used in contexts unrelated to

RL-LLM synergies and would unnecessarily broaden our literature scope. The search string is presented below:

( TITLE-ABS-KEY ( "LLM" ) OR TITLE-ABS-KEY ( "language model" ) )

AND ( TITLE-ABS-KEY ( "RL" ) OR TITLE-ABS-KEY ( "reinforcement learning" ) )

AND PUBYEAR > 2021 AND PUBYEAR < 2026 AND ( LIMIT-TO ( SUBJAREA , "COMP" ) )

AND ( LIMIT-TO ( DOCTYPE , "cp" ) OR LIMIT-TO ( DOCTYPE , "ar" ) ) AND

( LIMIT-TO ( SRCTYPE , "j" ) OR LIMIT-TO ( SRCTYPE , "p" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) )

Besides the core search terms, we applied several �lters to re�ne the results: the temporal scope was set from 2022

through September 2025 (the search was conducted on September 24, 2025); the subject area was limited to Computer

2https://www.scopus.com
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Fig. 2. Flow chart of the article search process with four stages adapted from PRISMA guidelines [118].

Science; the language was restricted to English; and the document types were con�ned to conference papers and

articles from conference proceedings and journals. These constraints ensure domain relevance and focus on substantive,

peer-reviewed research at the intersection of RL and LLMs. This initial search yielded 1433 papers.

Screening. The screening was conducted through systematic analysis of abstracts to e�ciently evaluate each work’s

core contributions. This process consisted of three sequential stages: (1) an initial relevance screening, where we

excluded 294 papers that mentioned RL and LLMs only as background context rather than focusing on their synergistic

development; (2) a taxonomy-based classi�cation using the RL/LLM taxonomy [135], which categorized remaining

papers into RL4LLM (735), LLM4RL (235), and RL+LLM (169) domains, after which papers from the latter two categories

were �ltered out; (3) a focus on methodological developments, where we �ltered out 421 papers concerning applications,

surveys, benchmarks, or empirical analyses to concentrate exclusively on research advancing RL techniques within

RL4LLM. Upon completing this screening, a �nal set of 314 papers was retained for in-depth eligibility assessment.

Eligibility. In the eligibility phase, we acquire all accessible papers. Then we conduct full-text reading by co-authors

and LLMs, identifying �ne-tuning and non-�ne-tuning methods, which include inference-time techniques, prompt

engineering, �ne-tuning of auxiliary models, etc. Additionally, the eligibility assessment also �ltered out underexplored

works for irrelevant, non-RL4LLM, and non-methodological content, further covering gaps missed in the screening
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phase. To ensure soundness for answering our three research questions, we also conducted an eligibility assessment

following systematic review guidelines [73]. Each paper was evaluated against three prede�ned criteria:

• Does the paper describe its RL4LLM methodology, including associated challenges, applications, and properties?

• Does the method deliver impactful results that address the stated challenges and applications?

• Does the paper discuss or imply methodological limitations and future research directions?

The full-text review led to the exclusion of 84 papers that failed to pass the assessments, yielding a �nal corpus of 230

papers included for data extraction and synthesis of �ndings.

2.3 Data Extraction Strategy

Ten co-authors were involved in the data extraction process, with the 230 papers distributed evenly for each to review

23 papers without overlap. Co-authors brought diverse expertise from healthcare, data security, software engineering,

computer vision, and machine learning, ensuring a multi-disciplinary perspective. Data was extracted from full text

using a structured protocol (Table 1). To address potential inconsistencies from this multi-reviewer setup, we employed

a hybrid validation approach: 1) LLM-assisted extraction to generate automated answers, 2) manual extraction by

co-authors, and 3) con�ict resolution by the main author, who reviewed both versions to resolve discrepancies. This

method systematically enhanced the precision and consistency of review outcomes while reducing manual e�ort.

Table 1. Data extraction protocol for RL4LLM fine-tuning literature.

Research Questions Topics Question Type Questions

RQ1. Recent

Methods

Overview

A.1 Key Contributions Descriptive What are the primary �ndings and main contributions of
this work?

A.2 Application Tasks Descriptive To which speci�c tasks or application domains is the
method applied?

A.3 Addressed Challenges Descriptive What speci�c challenges in RL4LLM does this work aim to
solve?

A.4 Reproducibility Multi-Choice To what extent are the proposed methods and experimental
results reproducible? (high/medium/low)

A.5 Computational Complexity Multi-Choice What is the computational resource usage of the proposed
methods? (high/medium/low)

A.6 Human E�ort Multi-Choice What amount of human e�ort is required to implement the
proposed methods? (high/medium/low)

RQ2.

Methodological

Innovations

B.1 Method Summary Descriptive Summarize the core methodology proposed in the paper
and highlight the innovations.

B.2 RL Formulation Descriptive Which RL algorithms are used, and how is the MDP (state,
action, reward) formulated?

B.3 LLM Foundation Descriptive Which base LLM(s) are used, and what are their key char-
acteristics (e.g., size, type)?

B.4 Integration Process Descriptive What is the detailed process for integrating the RL and
LLM components?

B.5 Synergies Descriptive What synergies or advantages does the RL4LLM integration
provide?

B.6 Experimental Results Descriptive What are the empirical results of the proposed method, and
how e�ectively does it address the stated challenges?

RQ3.

Limitations and

Future Directions

C.1 Limitations Descriptive What limitations of the proposed method do the authors
acknowledge?

C.2 Future Directions Descriptive What future research directions does the paper suggest?
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For the LLM-assisted extraction, we employed the Claude Sonnet 43 model as the extraction tool. This hybrid approach

aligns with emerging trends in academic research methodology, as demonstrated by [145] in their investigation of

LLM-assisted review processes. Their research revealed that numerous contemporary research projects increasingly

utilize LLMs for automated review work�ows. By leveraging LLMs, we e�ciently captured the core content of each

article while combining the results with human-curated review documentation to ensure accuracy and consistency.

The �nal data extraction results are available in the GitHub repository4.

3 Results

In this section, we analyze the extracted results from the data extraction process and organize our analysis around three

key aspects of the 230 RL4LLM �ne-tuning papers: (RQ1) recent methods overview, (RQ2) methodological innovations,

and (RQ3) limitations and future directions. Section 3.1 addresses RQ1 by presenting an overview of the distribution of

papers across three primary method domains: Optimization Algorithm, Training Framework, and Reward Modeling.

We characterize papers in each domain according to their application tasks, addressed challenges, and key method

properties, including reproducibility, computational complexity, and human e�ort requirements. Section 3.2 addresses

RQ2 by providing detailed analyses for each method domain. We break down the methods into three-level hierarchies

to provide a clear understanding and analyze the patterns of the RL4LLM �ne-tuning methodological innovations. In

Section 3.3, we focus on RQ3 and use the limitations and future directions recorded in data extraction to synthesize

promising research directions, highlighting valuable avenues for advancement in each method domain.

3.1 Recent Methods Overview (RQ1)

How do the threemethod domains in RL4LLM�ne-tuning di�er in their application focus, addressed challenges,

andmethod properties?We analyze the �rst block of extracted information (RQ1)A.1-A.6 as shown in Table 1, including

key contributions, application tasks, addressed challenges, as well as reproducibility, computational complexity, and

human e�ort, to provide an overview of recent methods.

Method Domains. Based on the A.1 Key Contributions, we categorize the 230 papers into three method domains:

Optimization Algorithm (80 papers), Training Framework (61 papers), and Reward Modeling (89 papers). The close

distribution across these domains indicates a balanced research focus in the RL4LLM �ne-tuning method development.

Application Tasks. We analyze the extracted information from A.2 Application Tasks to examine the distribution of

NLP applications across the three method domains. Since many papers address multiple tasks, we count each paper’s

contribution to every task it addresses as task occurences
domain total , allowing papers to be counted multiple times across di�erent

task categories. The 11 application tasks include: Text Classi�cation (sentiment analysis, topic categorization), Structured

Information Extraction (relation and event extraction, sequence labeling), Reasoning and Inference (natural language

inference, commonsense reasoning), Question Answering (extractive and generative QA), Summarization (abstractive and

extractive), Dialogue Systems (chatbots, conversational AI), Open-ended Generation (creative writing, story generation,

text continuation), Machine Translation, Text Paraphrasing (style transfer, controlled text rewriting), Code Generation

(program synthesis from natural language), and Multimodal Tasks (vision-language, speech-text integration).

Regarding the distribution of application tasks across method domains, we observe distinct patterns in Figure 3

that re�ect the application preferences of di�erent methods. Natural language understanding tasks are predominantly

addressed by Training Frameworks, with 8.20% of works involving Text Classi�cation and 34.43% involving Reasoning

3https://www.anthropic.com/claude/sonnet
4https://github.com/engineerkong/SLR-RL4LLM-Fine-Tuning-Methods.git
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Fig. 3. Distribution of application tasks across RL4LLM fine-tuning method domains.

and Inference, followed by Reward Modeling and Optimization Algorithm. Notably, Information Extraction receives

minimal attention across all domains. Natural language generation tasks have much higher occurrences overall. Question

Answering appears in 24.72% of Reward Modeling works, followed by Training Framework (22.95%) and Optimization

Algorithm (17.50%). In Summarization and Dialogue Systems, Optimization Algorithms show impressive presence,

appearing in 36.25% of their works for Summarization and 47.50% for Dialogue Systems, signi�cantly exceeding Reward

Modeling and Training Framework. Open-Ended Generation receives modest coverage across all domains, with Training

Framework showing the least presence. Machine Translation is limited, with only Optimization Algorithm and Reward

Modeling showing applications. Text Paraphrasing receives moderate coverage across method domains, ranging from

11.25% to 14.75%. Code Generation appears most frequently in Training Framework works, while Multimodal Tasks

receive low coverage across all domains. These analyses indicate that di�erent application tasks are targeted across

di�erent method domains, with each domain exhibiting distinct patterns in its task applications.

Addressed Challenges. The scope of addressed challenges is more diverse than application tasks, with papers typically

addressing multiple challenges simultaneously (often 3 or more). Based on extracted information from A.3 Addressed

Challenges, we categorize the primary challenges into 12 domains: Output Quality focuses on improving generation

quality and task-speci�c performance, including inconsistency and alignment tax. Computational E�ciency encompasses

training time, convergence speed, and resource utilization. Data E�ciency addresses various data requirements (where

"data" in RL4LLM primarily refers to reward and human or AI feedback), sample e�ciency, annotation costs, and

credit assignment. Training Stability covers hyperparameter sensitivity, mode collapse, convergence issues, catastrophic

forgetting, and exploration-exploitation trade-o�s. Scalability and Generalization examines the ability to scale across

models and generalize to di�erent tasks and domains, including distribution shift. Safety and Bias includes toxicity,
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Fig. 4. Distribution of addressed challenges across RL4LLM fine-tuning method domains.

privacy, fairness, and harmful content prevention. Overoptimization addresses reward hacking, over�tting, and KL-

regularization strategies. MDP Speci�cation involves challenges in formulating state, action, and reward spaces. Multi-

Objective Optimization focuses on balancing con�icting objectives and rewards such as helpfulness and safety. Preference

Limitations encompasses diverse and inconsistent human preferences, noisy feedback, misalignment between learned

and true preferences, and drawbacks of preference models. Customization addresses user-speci�c adaptation. Knowledge

Gaps covers factual limitations, hallucinations, external knowledge integration requirements, and interpretability

challenges. Similarly, we analyze the proportion of papers addressing each challenge as challenge occurrences
domain total .

As demonstrated in Figure 4, the distribution of addressed challenges reveals distinct patterns across the three

method domains. Output Quality is addressed extensively by Training Framework (39.34% of works) but minimally by

Optimization Algorithm (18.74%). Conversely, Computational E�ciency is heavily prioritized by Optimization Algorithm

(35% of works), creating a substantial gap compared to Training Framework (18.04%) and Reward Modeling (only 3.37%).

Data E�ciency receives considerable attention across all domains, with Training Framework leading at 42.62%. Training

Stability is predominantly addressed by Optimization Algorithm, with an outstanding 45% of works focusing on this

challenge, while the other two domains address it in only around 20% of their works. For Scalability and Generalization,

Training Framework and Reward Modeling show similar attention levels, while Optimization Algorithm addresses these

challenges at roughly half the rate. Safety and Bias concerns are uniquely emphasized by Reward Modeling (21.35% of

works), with minimal attention from other domains. Overoptimization is most frequently addressed by Reward Modeling

and Optimization Algorithm, with relatively lower focus in Training Framework. MDP Speci�cation receives limited

attention overall, with Optimization Algorithm showing the highest proportion at 12.5%.Multi-Objective Optimization is

not widely addressed except for an impressive 24.72% in Reward Modeling. Preference Limitations are broadly addressed

across domains, with Reward Modeling leading at 33.71%. Customization remains relatively unaddressed across all

domains, while Knowledge Gaps show low attention from Optimization Algorithm but higher focus from the other two
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Fig. 5. Analysis of the RL4LLM fine-tuning method properties.

domains (approximately 15% each). These results explicitly illustrate the varying emphasis di�erent method domains

place on addressing current challenges, highlighting their complementary strengths and focus areas.

Method properties Finally, we analyze the extracted properties of RL4LLM �ne-tuning methods according to the

extracted information A.4 Reproducibility, A.5 Computational Complexity and A.6 Human E�ort, as demonstrated in

Figure 5. These properties are measured on a three-level scale: High, Medium, and Low.

Reproducibility depends on two factors: (1) resource availability, including code, models, and datasets, as well as open

accessibility to evaluation models (proprietary models like GPT require paid access); and (2) implementation details,

including descriptions of experimental settings, random seeds, and hyperparameter tuning procedures. This metric

re�ects how open and veri�able the reported results of RL4LLM �ne-tuning methods are. Note that computational

resources and human evaluation costs required for reproduction are not considered in this assessment. The distribution

patterns across method domains are nearly identical, with 33-40% of papers achieving high reproducibility (satisfying

both factors), while the remaining 60-67% achieve medium reproducibility (satisfying only one factor). Only very few

papers exhibit low reproducibility across all domains. Notably, according to the extracted information, approximately

half of the papers do not provide open access to their code, models, or datasets, or rely on proprietary resources,

highlighting the need for greater transparency and openness in RL4LLM research publication practices.

Since RL �ne-tuning is inherently computationally intensive, we assess Computational Complexity based on computa-

tional resource usage and the complexity of RL4LLM procedures, models, and dataset sizes. We categorize the complexity

as follows: High complexity involves extremely long training times (many days), intensive resource requirements,

and heavy or multi-stage �ne-tuning procedures; Medium complexity involves moderate training times (hours to

days), moderate resource usage, and standard �ne-tuning tasks; Low complexity involves minimal training time, low

computational resource requirements, and lightweight �ne-tuning procedures. According to the extracted information,

Training Framework methods exhibit the highest computational complexity, with 33% rated as high and only 10%

as low, likely due to their iterative and hierarchical training procedures. Reward Modeling follows with the second

highest computational complexity, re�ecting the substantial computational e�ort required for modeling preferences

and training reward models. Optimization Algorithm methods demonstrate the lowest computational complexity, with
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only 11% high, 66% medium, and 22% low, likely because many algorithmic innovations speci�cally aim to reduce

computational costs and require less extensive computational overhead.

We also assess Human E�ort, which depends on the extent of human involvement in annotations, evaluations,

domain expertise requirements, and manual setup and con�guration for development. We categorize human e�ort

as follows: High involves extensive human participation with many annotators curating large-scale datasets and

conducting comprehensive evaluations; Medium involves moderate human involvement, such as a few people working

to annotate smaller datasets, evaluate results, or conduct some domain investigation and setup; Low involves minimal

or no additional human e�ort beyond the authors’ research, development, and experimentation work. The RL4LLM

�ne-tuning papers we collected generally require medium-to-low human e�ort, with only a few papers requiring

high e�ort. Optimization Algorithm methods exhibit the highest human e�ort requirements, with 52% of papers at

medium level, likely due to extensive manual setup and con�guration for algorithmic development. Training Framework

methods demonstrate the lowest human e�ort requirements, with only 30% medium and 69% low, showing a clear

inverse pattern with their computational complexity. Reward Modeling methods show moderate human e�ort with 46%

at medium level, re�ecting the substantial human annotation and evaluation e�ort needed for preference alignment.

RQ1: How do the three method domains in RL4LLM �ne-tuning di�er in their application focus, addressed challenges,

and method properties?

Summary for RQ1: These three method domains exhibit distinct patterns across all analyzed dimensions. In terms

of application focus, Optimization Algorithms primarily target summarization and dialogue systems, Training Frame-

works emphasize understanding tasks such as reasoning and text classi�cation, while Reward Modeling demonstrates

comprehensive distribution across various tasks. Regarding addressed challenges, Optimization Algorithms emphasize

computational e�ciency and training stability, Training Frameworks focus on output quality and data e�ciency, while

Reward Modeling methods prioritize reward-oriented challenges such as multi-objective optimization and preference

limitations. For method properties, all domains achieve moderate-to-high reproducibility, though improvements in research

openness remain needed. Optimization Algorithms demonstrate the lowest computational complexity but the highest

human e�ort requirements, Training Frameworks exhibit the highest computational complexity but the lowest human

e�ort, while Reward Modeling shows moderate levels for both properties. These patterns clearly indicate specialized

developmental aims for distinct approaches to RL4LLM �ne-tuning.

3.2 Methodological Innovations (RQ2)

RQ2. What are the core methodological innovations within each method domain, and what pa�erns emerge in

their technical contributions and practical applicability? We analyze the extracted information B.1-B.6 in Table 1

by carefully examining the information and categorizing the methods using a top-down approach to create a three-level

methodology hierarchy as presented in Tables 2, 3, and 4.

3.2.1 Optimization Algorithm. These algorithm-oriented methods can be categorized according to their underlying RL

algorithms into: 1) Policy Gradient and Actor-Critic, 2) Direct Policy Optimization, 3) Value-Based Learning, 4) Game

Theory, and 5) Distributional Matching algorithms. We then analyze each category by identifying innovations.

Policy Gradient and Actor-Critic. These algorithms optimize LLMs by framing output as sequential decision-making,

where the policy (LLM) selects tokens to maximize cumulative reward from human preference models or task-speci�c

metrics. Policy Gradient methods directly optimize policy parameters using gradient ascent on expected rewards, with

REINFORCE as the foundational algorithm. Actor-Critic architectures enhance this through dual components: the
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Table 2. Review of Optimization Algorithm innovations for RL4LLM fine-tuning.

Optimization Algo-

rithm

Innovation Reference Papers

Policy Gradient and

Actor-Critic

PPO-Based Actor-Critic RLHF [129], MA-RLHF [14], BSPO [29], PyTester [163], CPPO [216],
ReMax [93], DfPO [62], Safe RLHF [28], APA [79], MTPO [148],
POAD [183], GPT-Critic [63], STR [208], PIT [181]

Pure Policy Gradient BindGPT [231], ESRL [171], REBEL [43], CodeRL [80], RAINER [98],
NLPO [140], TrufLL [115], Elastic Reset [128]

Alternative Actor-Critic Variants TOLE [91], CRT [54], REFUEL [44]
Hybrid RL Formulations CoPG [41], ZPG [222], A-LOL [4], LIRE [240], f-DPG [45]

Direct Policy

Optimization

Divergence Modi�cations jPO [57], f-DPO [169], CAN [60], VPO [13], DIL [198]
Enhanced Loss Functions ChatTune-DPO[68], SamPO [107], MMPO [71], Length-regularized

DPO [132], ODPO [2], Mallows-DPO [20], D2PO [149], DPO [139],
VCB [114], AMP [221], RS-DPO [70], fDPO [119], ADPO [65],
RDO [179], QDPO [82]

Multi-Response Extensions MPPO [199], DMPO [152], MODPO [237]
Weight Modi�cations IW-DPO [105], WPO [235], GRPO [142]
Non-DPO Methods PRO [156], RRHF [214], BFPO [226], SELM [224], IPO-MD [10],

C-RLFT [172]

Value-Based

Learning

Direct Q-Learning Variants Q-SFT [53], ILQL [155], SQL for Text Generation [47]
Residual and Adaptive Q-Learning Q-Adapter [92]
Inverse Q-Learning Inverse-Q* [196], IQLearn [194]

Game Theory

Online Mirror Descent INPO [228], SPPO [192]
Magnetic Mirror Descent MPO [175]
Nash Equilibrium NLHF [123]

Distributional

Matching

Best-of-N vBoN [1], BOND [146], RSO [103], BoN-SFT [27]
GFlowNet GDPO [77], Armotimized GFlowNets [56]
Importance Sampling BRAIN [130], EXO [64]

actor (policy network) selecting actions and the critic (value function) estimating expected rewards, reducing gradient

variance for stable learning. Proximal Policy Optimization (PPO) advances this paradigm by introducing clipping

mechanisms that constrain policy updates, preventing destabilizing changes while maintaining sample e�ciency.

Evolution of these 30 methods for LLMs reveals signi�cant innovations across four key algorithmic categories.

PPO-Based Actor-Critic innovations include Macro-Action RLHF (MA-RLHF) [14], which introduces temporal abstrac-

tion through token sequence grouping for enhanced credit assignment, and Behavior-Supported Policy Optimization

(BSPO) [29], which pioneers value regularization via behavior-supported Bellman operators to address reward overopti-

mization. Pure Policy Gradient innovations employ REINFORCE variants for specialized applications, exempli�ed by

BindGPT [231]’s molecular design framework, achieving 100× speedup through docking score optimization, and E�cient

Sampling-based Reinforcement Learning (ESRL) [171], which enhances sample e�ciency through advanced sampling

strategies. Alternative Actor-Critic Variants explore novel architectures, particularly Curiosity-driven Red-Teaming

(CRT) [54], which employs intrinsic motivation for systematic safety vulnerability discovery through exploration-based

policies. Hybrid RL Formulations establish new theoretical foundations by combining RL with other paradigms. Con-

trastive Policy Gradient (CoPG) [41] bridges supervised learning stability with RL optimization through contrastive

objectives, while Zeroth-order Policy Gradient (ZPG) [222] eliminates gradient computation via derivative-free opti-

mization. These approaches represent emerging trends addressing fundamental challenges in stability, e�ciency, and

safety across diverse LLM training scenarios.
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Direct Policy Optimization. This subclass represents a paradigm shift in RLHF by reducing explicit reward model

training. Direct Policy Optimizationmethods directly optimize LLMpolicies using preference data, with Direct Preference

Optimization (DPO) serving as the foundational algorithm. DPO leverages the Bradley-Terry model to reformulate

the RL objective as a classi�cation problem, employing a loss function based on the log-sigmoid of the scaled reward

di�erence between preferred and rejected responses. This approach bypasses explicit reward model training while

preserving the theoretical rigor of preference-based optimization. Some DPO variants also employ reward models,

seeking to combine the stability and interpretability of explicit reward signals with DPO’s e�ciency. Our analysis

categorizes the 32 works into �ve major innovation directions.

Divergence Modi�cations directly modify the fundamental divergence constraint, exempli�ed by j2-Preference

Optimization (jPO) [57], which substitutes DPO’s reverse KL divergence with chi-squared divergence for reduced

overoptimization. Enhanced Loss Functions augment the standard objective with additional regularization, such as

ChatTune-DPO [68], which incorporates contrastive penalties and entropy regularization to prevent mode collapse in

low-resource scenarios.Multi-Response Extensions generalize pairwise frameworks to handle multiple responses, as seen

in Multi Pair-wise Preference Optimization (MPPO) [199], which processes N+1 responses using the geometric mean of

token likelihoods and achieves signi�cant MT-Bench improvements.Weight Modi�cations address distribution shifts

through adaptive reweighting, exempli�ed by IW-DPO [105], which estimates density ratios for test distribution opti-

mization. Non-DPO Methods explore alternative frameworks beyond Bradley-Terry models, such as Preference Ranking

Optimization (PRO) [156], which implements ranking-based preference learning with active query selection, achieving

comparable alignment with 50% fewer human evaluations. These innovations advance Direct Policy Optimization from

simple pairwise optimizers to sophisticated frameworks handling real-world deployment challenges.

Value-Based Learning. These algorithms focus on estimating the optimal value function, which represents the

maximum expected future reward an agent can achieve from any given state. Q-Learning learns the action-value

function (Q-function) to evaluate the quality of taking speci�c actions in particular states, with the agent’s policy

derived by selecting the action with the highest estimated value. Our analysis identi�es 6 works in this domain.

Innovation unfolds primarily through Direct Q-Learning Variants, where methods like Q-SFT [53] reformulate classical

Q-learning as weighted cross-entropy losses, treating token probabilities as conservative value estimates and embedding

Bellman updates directly into supervised �ne-tuning objectives. Residual and Adaptive Q-Learning approaches like

Q-Adapter [92] leverage residual Q-learning frameworks to learn incremental value function adjustments, establishing

direct correspondence between Q-functions and reward di�erences to enable preference learning without explicit

reward modeling. Inverse Q-Learning techniques, exempli�ed by IQLearn [194], reformulate inverse RL as maximum

likelihood estimation with temporal di�erence regularization, extracting reward functions from expert demonstrations

for subsequent value-based optimization. The literature reveals convergence towards hybrid approaches that embed

classical Q-learning principles within supervised learning frameworks, combining the temporal compositionality of

value-based RL with the training stability of supervised learning.

Game Theory. These algorithms model strategic interactions between rational decision-makers, with Nash Equilibrium

representing stable states where no player bene�ts from unilateral strategy changes. In LLM alignment, these methods

frame preference learning as strategic interactions between policies, seeking stable Nash solutions. Our literature review

contains 4 papers on innovations in this speci�c RL algorithm. Online Mirror Descent (OMD) generalizes gradient descent

using mirror maps and Bregman divergences for superior convergence on non-Euclidean geometries. Iterative Nash

Policy Optimization (INPO) [228] applies OMD with entropy regularization to symmetric two-player games, achieving

superior performance through direct optimization over preference datasets without expected win rate computation.
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Magnetic Mirror Descent extends OMD by introducing a magnetic term that periodically updates the reference policy

to guide convergence toward the original Nash equilibrium. Magnetic Preference Optimization (MPO) [175] adapts

this to RLHF as a two-player constant-sum game, achieving linear convergence rates that outperform standard mirror

descent. Nash-Equilibrium approaches, such as Nash Learning from Human Feedback (NLHF) [123], bypass scalar

rewards by learning pairwise preference models and computing Nash equilibria directly from comparisons, improving

expressivity and robustness compared to reward-based methods. These innovations reveal that current Game-Theoretic

LLM alignment research is dominated by mirror descent algorithms.

Distributional Matching. These methods reframe the core objective of RL4LLM, shifting from expected reward

maximization to explicit distributional alignment. Instead of pursuing scalar rewards, the goal is to train a policy c\ to

minimize divergence from a target distribution c∗ that encodes desired behavioral traits. This target distribution is

typically derived through principled statistical algorithms such as Best-of-N, Generative Flow Networks (GFlowNets),

and Importance Sampling techniques. We identi�ed 8 papers concerning innovations in Distributional Matching

methods. The Best-of-N paradigm constructs an empirical target distribution by sampling multiple responses from

a base model and selecting those with the highest rewards, then distilling this distribution into a single e�cient

policy. Variational Best-of-N (vBoN) [1] formalizes this by �ne-tuning an LLM to minimize reverse KL divergence to

the analytically derived BoN distribution, preserving high-reward characteristics while eliminating inference-time

sampling costs. GFlowNets enable diverse generation by sampling sequences with probability proportional to given

rewards. Methods like GFlowNet Direct Preference Optimization (GDPO) [77] adapt this for o�ine alignment, deriving

token-wise rewards from pairwise preference data and integrating them into GFlowNet’s detailed balance objective to

enhance output diversity. Importance Sampling techniques address intractable distribution matching through Monte

Carlo estimation. Bayesian Reward-conditioned Amortized Inference (BRAIN) [130] uses Bayesian inference to de�ne a

target reward-conditioned posterior and introduces a self-normalized baseline in its gradient estimator, signi�cantly

reducing variance and improving performance. These methods demonstrate movement toward principled distribution

matching with emphasis on theoretical guarantees, diversity preservation, and computational e�ciency.

3.2.2 Training Framework. Training Framework approaches have core innovations in fundamental architectural designs.

According to di�erent architectures, we can categorize the works into four categories: 1) Sequential Pipeline, 2) Iterative

Re�nement, 3) Hierarchical Architecture, and 4) Online Adaptive Framework. Subsequently, we provide a comprehensive

analysis of each category, exploring more granular innovation types within each framework, identifying patterns in

Training Framework methods, and revealing insights into RL4LLM �ne-tuning architectural design principles.

Sequential Pipeline. These methods decompose the monolithic process of model training and inference into distinct,

specialized stages. Our analysis examines 12 research papers on Sequential Pipeline frameworks, focusing on how RL is

integrated into multi-stage training and inference pipelines.

Sequential Pipeline Frameworks can be categorized into three distinct types based on their architectural patterns

and functional objectives. Data-Centric Pipelines systematically improve data quality and then model performance

through sequential stages, exempli�ed by the Reasoning Distillation Framework [144], which generates synthetic

explanations, performs knowledge distillation, and applies RL re�nement for knowledge transfer to smaller models,

and WizardMath [110], which evolves mathematical problems, trains reward models, and optimizes through PPO to

enhance mathematical reasoning.Modular Component Integration develops independent components and systematically

integrates them into cohesive systems, demonstrated by Oreo [90], which trains modular context reconstruction

components via SFT, integrates them through contrastive learning, and re�nes the complete pipeline using RL to align
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Table 3. Review of Training Framework innovations for RL4LLM fine-tuning.

Training Frame-

work

Innovation Reference Papers

Sequential Pipeline
Data-Centric Pipelines Reasoning Distillation Framework [144], WizardMath [110],

RewriteLM [153], Teams-RL [46]
Modular Component Integration Oreo [90], RLAF [126]
Capability Development Pipelines UCP [184], PCT [112], ALMoST [72], BAMBINO-LM [151], HTL [89],

DPPPO [185]

Iterative Re�nement

Data-Centric Re�nement ILR [210], DICE [18], RAFT [33]
Multi-Agent Iterative Systems Re�ect-RL [234], AutoIF [32], SPAG [26], WizardArena [109]
Internal Self-Re�nement SCoRe [76], RLC [131], RISE [137], HIR [225]
External Feedback Re�nement LeReT [55], ReST-MCTS* [215], StepCoder [35], AutoPRM [24]
Exploration-Based Re�nement COPO [5], PRS [209], R3 [195], SpannerSampling [42], Quark [108]
Process-Level Re�nement SVPO [19], ALT [104], ReFT [167]

Hierarchical

Architecture

Parallel Frameworks FedRLHF [38], CORY [111], FedBis [186]
Multi-Level Frameworks ArCHer [236], KEHRL [84], MOS [189], LDPP [51]
Hybrid Integration UPO [3], SPO [86], DEFT [239], HyPO [157], RLVF [158], STG [67]
Modular Extension Frameworks PPDPP [31], TWOSOME [164]

Online Adaptive

Framework

Real-time Feedback CORGI [7], DRESS [23], APL [122], Online Strategic Feedback [49],
SOTOPIA-c [178]

Dynamic Knowledge Integration RID [39], IM-RAG [202], PRewrite [75], SECOND THOUGHTS [101]
Continuous Learning Systems Asynchronous RLHF [127], Group-Invariant Policy [230]

context processing with generator preferences. Capability Development Pipelines build foundational abilities, align them

with preferences, and specialize for deployment scenarios. UCP [184] establishes multi-task coding foundations through

joint �ne-tuning, aligns via SimPO-based RL, and specializes through self-in�lling inference mechanisms, while the

seminal RLHF approach [129] builds instruction-following foundations via SFT, aligns with human preferences through

reward modeling, and specializes via PPO optimization. These sequential approaches demonstrate the e�ectiveness of

staged development in achieving complex RL4LLM objectives through systematic progression.

Iterative Re�nement. These frameworks progressively improve through cyclic feedback loops rather than sequential

training, leveraging RL to create self-improving systems that enhance performance through various feedback mecha-

nisms. Many frameworks operate in online settings where models learn from their own generated data while optimizing

across multiple dimensions simultaneously. We evaluate 23 methods and categorize them into six categories.

Data-Centric Re�nement treats training data as re�nable artifacts, with ILR [210] revolutionizing RLHF by redirecting

comparison feedback from model optimization to dataset improvement through cross-labeling. Multi-Agent Iterative

Systems create collaborative re�nement through multiple components, with Re�ect-RL [234] implementing two-player

re�nement where re�ection models guide policy improvements, and AutoIF [32] enabling self-play through execution

feedback veri�cation. Internal Self-Re�nement enables self-awareness through sequential processing, with SCoRe [76]

implementing inference-level self-correction cycles. External Feedback Re�nement leverages external systems for

improvement, with LeReT [55] implementing multi-hop retrieval re�nement and StepCoder [35] utilizing compiler

feedback. Exploration-Based Re�nement systematically explores uncertain prompt-response regions, as COPO [5]

integrates count-based exploration with Upper Con�dence Bound bonuses for comprehensive preference data coverage.

Process-Level Re�nement implements granular reasoning re�nement, with SVPO [19] generating step-level preferences

and training explicit value models for reasoning step evaluation. These frameworks represent a shift from static training

paradigms to self-improving systems that evolve through structured feedback loops.
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Hierarchical Architecture. These frameworks address scalability, e�ciency, and performance challenges through

sophisticated system design, fundamentally transforming how RL training is orchestrated by distributing computational

load across parallel processes or combining distinct methodological approaches. With 15 papers in our collection, we

analyze these frameworks by examining their innovations in four distinct strategies.

Parallel Frameworks leverage distributed computing to enable simultaneous training across multiple agents or clients,

decomposing RL4LLM processes into concurrent sub-processes with coordinated communication. FedRLHF [38] dis-

tributes RLHF across federated clients that contribute specialized local knowledge while bene�ting from global model

improvements, while CORY [111] employs a dual-agent architecture where pioneer and observer agents train simultane-

ously with complementary access.Multi-Level Frameworks decompose complex problems into multiple abstraction levels,

enabling tractable optimization by separating concerns across temporal or conceptual scales. ArCHer [236] decomposes

RL into utterance-level strategic decisions and token-level implementation, each optimized with complementary algo-

rithms, while KEHRL [84] separates knowledge enhancement into entity detection and triple selection levels optimized

through coordinated processes. Hybrid Integration paradigms combine heterogeneous training paradigms within uni�ed

frameworks. UPO [3] integrates preference optimization methods (KTO, DPO) with o�ine RL for auxiliary objectives,

while HyPO [157] combines o�ine preference learning with online policy sampling to harness both data e�ciency

and adaptability bene�ts. Modular Extension Frameworks employ RL components as external modules that guide LLM

capabilities without modifying core language model training. PPDPP [31] employs a pre-trained RoBERTa model as an

external policy planner that predicts dialogue strategies for agents. These frameworks demonstrate how architectural

decomposition and parallel coordination e�ectively address scalability and complexity in RL4LLM �ne-tuning.

Online Adaptive Framework. Moving beyond static architectures, Online Adaptive frameworks introduce real-time

learning, transforming LLMs from static models into adaptive agents. Through RL, they conduct continuous in-situ

model updates, enabling simultaneous optimization for objectives like accuracy and safety based on live feedback. We

categorize 11 instantiations into three subcategories based on their adaptation mechanisms.

Real-time Feedback enables models to receive and act upon feedback within single interaction sessions, with CORGI [7]

exemplifying online adaptation by learning to improve responses iteratively rather than requiring retraining. Dy-

namic Knowledge Integration incorporates real-time decision-making during generation, with adaptive choices about

knowledge retrieval, prompt optimization, or response strategies. RID [39] demonstrates this through real-time knowl-

edge integration by making retrieval decisions dynamically during generation, enabling adaptive responses based on

contextual information needs through rationale-aware explanation generation, dynamic switching, and explanation

distillation modules. Continuous Learning Systems represent the most advanced form, enabling parameter updates

during deployment without interrupting service. Asynchronous RLHF [127] addresses computational bottlenecks by

decoupling inference and training phases, enabling online learning where models continuously adapt based on real-time

interactions without interrupting user service, though this remains challenging and underexplored. These methods

collectively push toward Online Adaptive Frameworks that evolve with user interactions.

3.2.3 Reward Modeling. In RL4LLM, Reward Modeling is a speci�c reward-oriented approach to improve LLMs. The

innovation techniques can be structured based on their distinct reward modeling and design methodologies into �ve

primary categories: 1) Reward Model Architecture, 2) Reward Granularity and Density, 3) Reward Bias Calibration,

4) Synthetic Preferences Generation, and 5) Compositional Rewards methods. We subsequently conduct a detailed

examination of each category, investigating more nuanced innovation variants within each approach.
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Table 4. Review of Reward Modeling innovations for RL4LLM fine-tuning.

Reward Modeling Innovation Reference Papers

Reward Model

Architecture

Parameter Sharing Architectures P-ShareLoRA [100], WARM [141]
Mixture-of-Experts Architectures ArmoRM [174], DMoERM [138], MoRE [124], MaxMin-RLHF [15],

PoE-based Reward Modeling [150]
Multi-Head Architectures Constractive Goal-Conditioned Learning [125], GRM [207],

ODIN [21]
Memory-Augmented Architectures Proto-RM [219], RLKF [94]
External Component Integration Themis [88], GazeReward [106], InfoRM [116]

Reward Granularity

and Density

Token-Level Dense Rewards Seq2seq RM [233], RELC [12], RLMEC [25], TLCR [211], ABC [16],
Token-Level Reward Modeling [200], FINE-GRAINED RLHF [193]

Step-Level Process Rewards GraphPRM [134], PAV [147], ER-PRM [217], MATH-
SHEPHERD [177], GLoRe [50], SENSEI [102]

Multi-Granular Rewards FGAIF [66], Implicit Toxicity Framework [182]
Dense Reward Enhancement KRLS [212]

Reward Bias

Calibration

Post-hoc Bias Correction RC-Mean/RC-LWR [61], CAA [197], Reward Dropout [81]
Con�dence-based Calibration PPO-M/PPO-C [83], CALS [58], RCfD [143], Fact-RLHF [160],

IDS [238], ADVPO [227], SaySelf [201], CONQORD [165]
Distributional Methods BIRL [9], IDS-based RLHF [136], LSAM [168], DPL [154],

ENTFA [11], R3M [8], CVaR [17], DRO [52]

Synthetic Preferences

Generation

Cross-Modal Synthesis RoVRM [170], MACAROON [190]
Self-Evolutionary Loops SER [59], UGDA [159], ALOE [191]
Task-Performance Feedback RLPF [187], RaFe [113], ExpCTR [213]
Contrastive Automatic Labeling RLCD [205], RLCF [34], Contrastive Reward Modeling [22]
Knowledge-Guided Synthesis OCEAN [188], DogeRM [97], ML-IRL [87], MupPCQA [203]
HybridMulti-Component Synthesis SALMON [161], Self-motivated Learning [40], DeMem [69]

Compositional

Rewards

Dynamic Weighting Optimization Multi-style Rewards [30], Fast RL [85], DYNAOPT [117], DPA [173],
Constrained RLHF [120]

Hierarchical Decomposition ALARM [78], Semi-structured Explanation Rewards [48]
Structure Reward Engineering VeriSeek [176], Constraint-aware KBQA [204], RBRs [121],

PCRM [232]
Domain-Speci�c Decomposition LLM2ER-EQR [206], FLAME [96], RELAX-based MDS [133],

BackMATH [223], SYRELM [36], RLLR [95], TRUSTWORTHY-
ALIGNMENT [229], HuatuoGPT [218], Reinforce-Detoxify [37],
Moral Intrinsic Rewards [166]

RewardModel Architecture. This domain refers to the structural design, component organization, and computational

arrangement of reward models, encompassing neural network architecture, parameter organization schemes, multi-

component designs, and structural modi�cations that enable e�ective preference learning and reward prediction. We

analyze 15 papers with relevant architectural innovations.

Parameter Sharing Architectures like P-ShareLoRA [100] introduce parameter sharing schemes where each user’s

reward function parameters are structured as Θ8 = Θ
8=8C + ΔΘ8 , with ΔΘ8 = �,8 . This architecture shares matrix �

across users while maintaining personalized,8 matrices, creating a hierarchical parameter organization that balances

shared knowledge and personalization. Mixture-of-Experts Architectures introduce dynamic routing mechanisms that

allow specialized processing paths based on input characteristics. DMoERM [138] exempli�es this through a dual-layer

MoE architecture: an outer sparse MoE layer routing inputs to task-speci�c experts using frozen pre-trained routers, and

an inner dense MoE layer decomposing tasks into capability dimensions with trainable routers.Multi-Head Architectures

address the trade-o� between specialization and generalization through dual-component designs. GRM [207] implements

both a reward head that minimizes standard reward loss for preference prediction and an LM head that minimizes
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token prediction loss to maintain language understanding, with shared hidden states enabling knowledge transfer

between objectives. Memory-Augmented Architectures introduce dynamic adaptation capabilities through prototypical

learning mechanisms, as demonstrated by Proto-RM [219], which incorporates encoding layers, dynamic prototype

banks, and episodic memory re�nement mechanisms enabling rapid adaptation to new preference patterns. External

Component Integrationmethods like Themis [88] extend reward architecture beyond self-containedmodels by integrating

external computational components through structured reasoning chains, representing a paradigm shift toward hybrid

architectures that combine internal learned representations with external knowledge sources and tool capabilities.

These architectural innovations demonstrate the evolution from monolithic reward models toward modular, adaptive

systems that can handle diverse preference patterns and complex tasks.

Reward Granularity and Density. This domain refers to the temporal and spatial resolution at which rewards

are assigned during learning. Granularity describes the temporal resolution of reward assignment, including token-

level, step-level, and sequence-level approaches. Density describes the frequency and richness of reward signals,

encompassing dense, sparse, and process rewards. The synergy between granularity and density enables more e�ective

credit assignment, reducing the temporal credit assignment problem in long-sequence generation tasks. We analyze 16

recent papers and categorize their innovations into four types.

Token-Level Dense Rewards apply dense reward signals at the token generation level, enabling �ne-grained credit

assignment for each vocabulary decision. TLCR [211] introduces a token-level continuous reward mechanism that

assigns real-valued rewards to each generated token based on human preferences, employing a specialized reward

model that learns to predict token-level quality scores for dense supervision throughout generation. Step-Level Process

Rewards decompose complex reasoning tasks into logical steps with specialized reward models that evaluate reasoning

process quality rather than just �nal outcomes. GraphPRM [134] introduces automated step-level annotation for graph

reasoning through task-oriented trajectories that translate algorithm execution into natural language steps, using Monte

Carlo Tree Search for diverse path generation and training Process Reward Models to evaluate step-wise correctness.

Multi-Granular Rewards simultaneously apply rewards at multiple granularity levels, creating hierarchical reward

structures that capture both local and global quality aspects. FGAIF [66] implements a three-tier approach: (1) AI-based

feedback collection using ChatGPT for atomic fact extraction and LLaVA for image consistency veri�cation, (2) training

specialized reward models for object existence, attribute accuracy, and relational correctness, and (3) RL optimization

using combined multi-granular rewards. Dense Reward Enhancement enhances traditional reward modeling through

auxiliary dense signals and specialized training procedures, such as KRLS, which improves dialog generation through

reinforced keyword learning by incorporating dense rewards based on keyword relevance and dialog success metrics.

These innovations collectively address the fundamental challenge of precise credit assignment in complex tasks, moving

beyond sparse outcome-based rewards toward comprehensive process supervision.

Reward Bias Calibration. Reward models often exhibit systematic biases that misalign their predictions with

true human preferences. These biases manifest as overcon�dence in incorrect predictions, preferences for super�cial

characteristics like response length, and distributional misalignment between predicted and actual reward values. The

core principle involves decomposing biased reward signals into true reward components and systematic bias terms,

then applying corrective measures to improve alignment.

Our review of 19 papers reveals three primary approaches: Post-Hoc Bias Correction methods detect and remove bias

after reward model training through mathematical decomposition and statistical correction, exempli�ed by [61] which

decomposes biased rewards into true rewards plus bias terms using RC-Mean (estimating bias via local average rewards

within neighborhoods) and RC-LWR (employing Locally Weighted Regression for robust bias estimation that adapts to
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local data density). Con�dence-Based Calibration leverages con�dence scores and overcon�dence detection to calibrate

reward predictions during or after training, as demonstrated by PPO-M/PPO-C [83], where PPO-M calibrates reward

models by augmenting training data with con�dence-query prompts to prefer high con�dence for correct responses,

while PPO-C adjusts reward scores during PPO training using exponential moving averages and con�dence-based

calibration. Distributional Methods employ Bayesian inference, distributional modeling, and uncertainty quanti�cation

to handle reward model uncertainty and bias, such as the BIRL approach [9] that formulates LLM alignment as Bayesian

Inverse Reinforcement Learning by learning posterior reward distributions ? (' |�) through variational inference. These

strategies enable more reliable reward modeling that captures human judgment beyond surface-level characteristics.

Synthetic Preferences Generation. This refers to automatically generated preference signals that serve as alternatives

or supplements to expensive human annotations, addressing the fundamental bottleneck in RLHF: the scarcity and

cost of human preference data. The �eld has evolved beyond simple data augmentation to sophisticated methods that

leverage diverse signal sources, iterative improvement, and cross-domain knowledge transfer.

We analyze 18 papers across six key innovation categories: Cross-Modal Synthesis leverages abundant preference data

from one modality to improve reward models in data-scarce modalities, exempli�ed by RoVRM [170], which proposes

multi-phase training to leverage textual preference abundance while maintaining multimodal capabilities for vision-

language models. Self-Evolutionary Loops enable iterative self-improvement where reward models generate their own

training data through progressive re�nement cycles, as demonstrated by SER [59], which implements a curriculum-like

self-improvement systemwith adaptive data �ltering to achieve signi�cant performance improvements over seed models.

Task-Performance Feedback derives preference signals directly from downstream task performance rather than human

annotations, with RLPF [187] using a frozen LLM to predict future user activities from generated summaries, where

prediction accuracy serves as the reward signal, eliminating the need for human preference annotations. Contrastive

Automatic Labeling automatically generates preference pairs through contrastive prompting or structural di�erences,

as in RLCD [205]. Knowledge-Guided Synthesis employs external structured knowledge or domain expertise to guide

preference generation, with OCEAN [188] leveraging knowledge graphs to create structured reasoning preferences.

Hybrid Multi-Component Synthesis approaches like SALMON [161] combine multiple synthetic preference generation

strategies, creating uni�ed frameworks that can adapt to arbitrary human-de�ned principles without retraining while

leveraging synthetic data to bootstrap initial preference understanding. These methods address human annotation

scalability while maintaining alignment quality through automated feedback mechanisms.

Compositional Rewards. The systematic decomposition and combination of reward functions address the multi-

faceted nature of LLM alignment. Unlike monolithic reward models that provide single scalar feedback, Compositional

Reward systems break down desired behaviors intomultiple components and combine them through various composition

strategies. We categorize 21 papers into four primary methodological strategies.

Dynamic Weighting Optimization dynamically composes multiple reward functions with adaptive weighting mecha-

nisms that adjust during training. Fast RL [85] treats reward composition as a max-min optimization problem, using

mirror descent estimation to dynamically update weights in a weighted sum of multiple rewards, achieving superior

performance across multiple metrics with improved stability compared to �xed weighting schemes. Hierarchical Decom-

position decomposes complex reward functions into hierarchical structures with conditional activation. ALARM [78]

decomposes reward modeling into two sub-tasks: (1) following holistic rewards until generation quality exceeds a

threshold, then (2) combining holistic rewards with speci�c �ne-grained rewards, creating a structure where general

quality is prioritized before speci�c aspects are re�ned. Structure Reward Engineering explicitly encodes structural, syn-

tactic, or rule-based constraints as compositional reward components. In VeriSeek [176], the reward function explicitly
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Fig. 6. Optimization Algorithm limitations: Sankey diagram showing distribution across five method categories.

decomposes code quality into syntactic validity, parseability, and structural similarity components. Domain-Speci�c

Decomposition decomposes domain-speci�c quality metrics into multiple specialized reward components tailored to

speci�c applications. LLM2ER-EQR [206] decomposes explanation quality into specialized components, including

relevance, informativeness, persuasiveness, and user preference alignment, with each component measured through

domain-speci�c metrics and combined into a composite reward function for PPO training. The �eld demonstrates a shift

toward sophisticated reward engineering that moves beyond scalar rewards to better align with nuanced requirements.

RQ2: What are the core methodological innovations within each method domain, and what patterns emerge in their

technical contributions and practical applicability?

Summary for RQ2: The methodological innovations reveal distinct patterns across the three domains. Optimization Algo-

rithms demonstrate how advanced methods build upon foundational algorithms like PPO and DPO, which serve as platforms

for systematic enhancement and specialization, alongside development of other algorithms contributing to RL4LLM �ne-

tuning. Training Frameworks exhibit progressive patterns: modular decomposition, iterative self-improvement, hierarchical

scalability, and real-time adaptation, re�ecting a shift from predetermined frameworks to �exible, responsive architectures.

Reward Modeling shows sophisticated patterns across the reward learning ecosystem, with innovations demonstrating holistic

enhancement strategies that simultaneously address architectural design, signal quality, bias mitigation, data e�ciency,

and compositional complexity, shifting from monolithic reward functions toward multi-dimensional, engineered systems.

These patterns collectively indicate the �eld’s maturation toward principled and robust RL4LLM �ne-tuning methodologies.

3.3 Limitations and Future Directions (RQ3)

RQ3. What are the primary limitations across RL4LLM �ne-tuning methods and what future work do re-

searchers propose to address these limitations? Through systematic analysis of the extracted information for C.1

Limitations and C.2 Future Directions in Table 1, we comprehensively identify unresolved challenges, methodological

gaps, and underexplored areas within each domain. This analysis maps the methodological innovations to their key

limitations, providing a roadmap for future RL4LLM �ne-tuning research.

Optimization Algorithm. These methods exhibit limitations including computational overhead, reward model

dependency, and optimization complexity, as illustrated in Figure 6. Key limitations and future directions by category:
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• Data Issues encompasses critical challenges where distribution shift in Policy Gradient and Actor-Critic leads to o�ine

degradation and instability with larger models [79, 128], while Value-Based Learning exhibit limited online adaptation,

with o�ine RL methodologies showing constrained transferability to online environments and only modest single-

turn interaction improvements [194]. Research proposes four solution pathways: Improving Distributional Robustness

through enhanced o�ine learning and alternative distance metrics [44, 79], Bridging O�ine-Online Learning Gaps via

real-time optimization adaptations [53], Expanding LLM Action Spaces for enhanced online learning capabilities [194],

and Establishing Dynamic Adaptation Paradigms that transition from static preference datasets to online training

where reward models co-evolve with policies, incorporating uncertainty estimates and enabling multi-step inference

chains for multi-task generalization [27, 64, 77, 103].

• Sample E�ciency a�ects Policy Gradient and Actor-Critic methods, making them su�er from high polynomial

sample complexity and 1.3× online sampling overhead [93, 222], while Game Theory algorithms lack theoretical

assurances for �nite-sample dynamics, relying on asymptotic foundations [228]. Distributional Matching methods

exhibit biased log F estimation through sampling and noisy quantile estimation with limited samples, generating

systematic Distributional Matching errors [1, 77, 146]. To address these issues, research proposes Accelerating Sample

E�ciency through lookahead decoding and systematic prompt selection [45, 93, 222], and Formulating Finite-Sample

Theoretical Construction to provide tangible performance boundaries [228].

• Reward Model Dependency a�ects multiple algorithm types with distinct vulnerabilities. Policy Gradient and Actor-

Critic methods experience evaluation-optimization coupling requiring high-quality preference models [29, 41, 240],

while Direct Policy Optimization methods show performance tightly coupled to reward model �delity with over-

optimization spawning "cheat patterns" [114, 119, 139, 179, 214]. Value-Based Learning algorithms become critically

tied to reward function quality, introducing deployment fragility [47], and Distributional Matching performance

fundamentally hinges on reward model �delity for mode-seeking behaviors [1, 64, 103]. Research addresses these

dependencies through Enhancing Reward Modeling via multi-objective frameworks and diversi�ed AI feedback [41,

140, 240], Pursuing Reward Model-Free Paradigms using synthetic data generation [156, 214], and Incorporating

IRL-Extracted Rewards into uni�ed frameworks [47, 194].

• Optimization Complexity encompasses three challenges. Overoptimization tendency causes performance degradation

when training beyond 40k samples in Policy Gradient and Actor-Critic methods [93, 128, 140] and reward hacking

in Distributional Matching methods despite regularization [64]. Hyperparameter sensitivity a�ects Direct Policy

Optimization requiring meticulous calibration without principled frameworks [57, 149, 224] and Game Theory

methods relying on precise parameter tuning [175]. Convergence determination in Game Theory methods creates

obstacles in establishing equilibrium states [175]. Research addresses these challenges through Autonomous Policy

Adjustment that self-regulate reference policies and eliminate manual hyperparameter manipulation [175, 228],

Exploration Innovations using adaptive divergence selection and o�-policy integration [45, 115, 128], and Convergence

Detection Enhancement for Nash Equilibrium identi�cation [175].

• Computational Overhead a�ects multiple algorithm types. Policy Gradient and Actor-Critic methods require 3×

space and 2× time versus standard �ne-tuning [80, 140, 208], while Direct Policy Optimization methods demand

GPU memory with approaches unvalidated beyond 7B parameters plus reward model training costs [65, 70, 107,

119, 179, 214]. Value-Based Learning requires double computational time versus supervised learning due to multiple

transformer requirements [155], and Distributional Matching involves preprocessing costs scaling with sample size,

extensive sample generation, and replay bu�er maintenance [1, 27, 56, 103]. Research addresses these through Scaling

Breakthroughs for larger architectures [70, 119, 179], Streamlining Computational Architectures by reducing transformer
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Fig. 7. Training Framework limitations: Sankey diagram showing distribution across four method categories.

dependencies [155], Computational E�ciency exploiting prompt similarity and learned approximations [1, 103], and

Advancing Architectural Scaling beyond parameter constraints toward structured reasoning [27, 56, 64].

• Theoretical Gaps in Direct Policy Optimization methods arise as foundational DPO frameworks depend on Bradley-

Terry preference models and break down under distributional shifts with broader or partially overlapping test

distributions [57, 105]. Research addresses these through Data-Driven Parameter Tuning methodologies that eliminate

manual exploration while proposing theoretical extensions beyond Bradley-Terry limitations [57], and Broadening

Theoretical Foundations to accommodate dynamic distributional shifts [105].

Training Framework. These methods have extensive remaining limitations, including computational overhead in

frameworks, persistent performance issues, and other speci�c limitations as illustrated in Figure 7. In the following, we

elaborate on these limitations and future research directions by category in detail.

• Performance Issuesmanifest across three operational contexts. Sequential alignment �ows exhibit∼ 5% knowledge task

degradation versus closed-source models due to alignment tax through pipeline stages, creating proprietary model

dependency without systematic adversarial robustness testing [72, 90, 112, 184]. Online Adaptive frameworks su�er

dual deterioration: o�-policy learning degrades beyond 16 mini-batches creating continuous learning instability [127],

while elevated inference latency impairs real-time responsiveness [202]. Iterative Re�nement systems plateau after

2-3 iterations as model con�dence and improvement gains deteriorate [18, 137, 210]. Future research addresses these

through Adaptive Sequential Flow Management using dynamic token budgets and progress-based RL for denser

reward signals [46, 90], Asynchronous RLHF enabling concurrent learning with advanced o�-policy bu�ering [127],

and Real-Time Retrieval Architectures minimizing latency via improved Progress Tracker designs and RLHF-trained

neural reward models [137, 202].

• Computational Overhead manifests across all architectural paradigms. Sequential Pipelines are limited by 4K token

contexts and single GPU training, preventing exploration of larger batches needed for pipeline depth. Resource

constraints leave larger architectures unexplored [89, 144]. Iterative Re�nement demands greater resources than

single-pass methods, constraining practical iteration counts [137, 167]. Hierarchical Architectures increase training

time by ∼ 20% through alternating hierarchy-level updates requiring multiple forward passes [164, 189]. Online

Adaptive frameworks require complete parameter re-initialization at each step, rendering adaptation computationally

prohibitive for deployment [122]. Future research pursues Pipeline Scaling and Robustness testing complete frameworks
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on 34B/70B models while strengthening adversarial robustness [89, 90], Trajectory-Based Learning Optimization

incorporating online RL into iterative self-training for reduced computational requirements [26], Hierarchical

E�ciency reducing training overhead while preserving multi-level capabilities [189], and Online Learning Integration

transitioning from costly re-initialization toward �ne-tuning approaches leveraging recent data streams [122, 178].

• Optimization Complexity exhibits three key limitations. Hierarchical Architectures require experimental weight

tuning between auxiliary and preference objectives with only moderate correlation between weights and evaluation

metrics [3]. Iterative Re�nement necessitates separate training phases rather than uni�ed processes, restricting

methods to 2-turn self-correction cycles [76, 137]. Current iterative systems optimize individual steps independently

rather than complete trajectories, yielding suboptimal cumulative enhancements [55]. Future research pursues

Adaptive Architecture Exploration across adapter designs for hierarchical tasks [67], Uni�ed Iterative Training merg-

ing multi-stage re�nement into seamless frameworks beyond current cycle barriers [18, 76], and Joint Trajectory

Optimization of complete re�nement sequences replacing greedy improvements [42, 55].

• Training Stability manifests in Online Adaptive frameworks that require KL coe�cient adjustments across tasks,

introducing instability during continuous learning [7]. Iterative Re�nement frameworks depend on models’ inherent

self-re�nement capabilities, which prove insu�cient for complex reasoning [209, 225]. Future research pursues

Enhancing Self-Improvement Mechanisms for Iterative Re�nement beyond current approaches [209].

• Coordination Failures manifest in Sequential Pipelines that su�er domain-dependent RL e�ects where stages de-

cline in simpler domains through over�tting, while the algorithm demonstrates highly unstable behavior during

multi-stage �ne-tuning, causing output degeneration and policy breakdown [46, 112, 144]. Hierarchical Architectures

face dual challenges: hierarchical client grouping in FedBiscuit demands additional communication overhead while

single selector approaches remain vulnerable to reward hacking [186]. Future research targets End-to-End Pipeline

Coordination through uni�ed sequential training and weakly-supervised alignment across retriever-to-generator

pipelines [144, 184], Federated Coordination Optimization reducing communication overhead in hierarchical struc-

tures [186], Multi-Feedback Aggregation enabling hierarchical learning from diverse sources via sophisticated weight

mechanisms [158], and Ensemble Integration employing multiple LLM agents with complementary strengths [31].

• Interpretability Gaps arise from Hierarchical Architectures where latent policies lack natural language interpretability,

creating obstacles for understanding multi-level strategies [51]. Future research pursues Adaptive Multi-Level Systems

through hierarchical explainability, enhancing interpretability across levels [51].

Reward Modeling. The reward-oriented methods encompass 9 extensive limitations. The connections between

methods and limitations are shown in Figure 8. We analyze them below:

• Data Issues - Reward Modeling faces signi�cant data-related challenges, particularly in Reward Granularity and

Density methods where static reward models during policy training create distribution shifts between training and

target distributions [177, 211]. These approaches also su�er from annotation noise, as automatic process supervision

introduces false positives, especially with larger sampling values [177]. Solutions target multiple aspects: Expanding

Preference Simulation beyond binary labels toward �ne-grained multi-output rankings [205], Implementing Iterative

Training paradigms for joint reward-policy evolution to address distribution shifts [177, 211], and Establishing Hybrid

Annotation systems merging human expertise with automated processes for robust supervision [177]. Researchers also

pursue Developing Robust Autonomous Methods for learning status identi�cation and self-labeled data �ltering [59],

Exploring Uncertainty-Guided Selection using last-layer embeddings for active data selection [227], and Implementing

Federated Learning approaches to unite reward models from disparate private datasets through weight averaging [141].
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Fig. 8. Reward Modeling limitations: Sankey diagram showing distribution across five method categories.

• Architectural Complexity - Multiple design challenges plague Reward Model Architecture methods. Weight averaging

approaches fail to harness diversity from heterogeneous architectures and cannot incorporate prediction disagreement

for uncertainty estimation [141]. Complex frameworks like MoRE su�er elevated inference times due to adapter

switching overhead. Tool-integrated architectures require signi�cantlymore training epochs tomaster invocations [88,

124]. Additionally, Reward Granularity and Density methods create tokenizer dependencies requiring identical

tokenizers between reward and generative models [16]. To tackle these challenges, researchers pursue Advancing

Cross-Architecture Integration through hybrid systems and sophisticated routers [124, 141]. Other e�orts focus on

Enhancing Component Integration for precise goal state derivation and Q-value disentanglement [125]. Additionally,

Strengthening Tool Integration aims to improve adaptive invocation mechanisms [88, 106], while Developing Cross-

Tokenizer Mapping explores alternative attribution methods [16].

• Computational Overhead - Reward Modeling methods impose substantial computational burdens across multiple

dimensions. Advanced Reward Model Architectures, particularly MoE implementations, demand approximately 8×

longer training periods, while multi-user architectures require maintaining multiple specialized models [15, 138].

Reward Granularity and Density methods dramatically increase GPU memory consumption and inference time

through multiple reward model queries for �ne-grained feedback [193]. Similarly, Reward Bias Calibration’s ensemble-

based preference estimation substantially elevates costs over single-model approaches [168]. PPO computational

costs in Synthetic Preferences Generation prohibit comprehensive iterative experiments with LLM-in-the-loop

approaches [59]. Compositional Rewards face the most severe constraints that multi-style approaches cannot explore

beyond elementary combinations due to computational barriers, requiring elusive high-quality discriminators for

data-scarce attributes, while multi-component gradient systems lack convergence guarantees [30, 120]. Solutions

target Optimizing E�ciency by reducing 8× MoE overhead and streamlining MoRE frameworks [124, 138], alongside

Achieving E�cient Inference through speculative decoding [193].

• Attribution Constraints - Reward Modeling methods struggle with comprehensive attribution across multiple dimen-

sions. Reward Bias Calibration methods target individual characteristic biases rather than addressing multiple biases

concurrently, limiting e�ectiveness in complex scenarios with intersecting biases [61]. Separately, Reward Granularity

and Density approaches face distinct constraints. Attention-based methods remain restricted to positive-only token

contributions while relying on questionable assumptions that attention mechanisms provide meaningful feature
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attribution [16]. To address these limitations, researchers propose Advancing Multi-Characteristic Calibration systems

for simultaneously handling multiple reward biases [61].

• Scalability Limitations - Reward Modeling methods also face scalability constraints across multiple dimensions.

Synthetic Preferences Generationmethods remain restricted to binary preference labels and speci�c task types, lacking

nuanced modeling capabilities for scenarios [22, 205]. Compositional Rewards encounter constraints that reward

decomposition methodologies cannot scale beyond moderate-scale models without billion-parameter validation,

concentrating on narrow domains with ambiguous generalization potential. Multi-skill compositional alignment

encompasses only rudimentary skill sets despite instructions demanding multiple capabilities [96, 117]. Research

addresses these issues through Amplifying Scalability Extensions by implementing Compositional Rewards across

billion-parameter models with diverse RL algorithms [117, 173] and Orchestrating Comprehensive Multi-Skill Modeling

capable of handling multiple alignment capabilities per query [96].

• Manual Dependencies - Approaches su�er from extensive manual interventions that limit autonomy and scalability.

Reward Model Architecture methods require prede�ned domain labels for routing decisions and manual capability

dimension speci�cations for di�erent tasks, preventing adaptive learning [124, 138]. Compositional Rewards face man-

ual overhead: multi-objective approaches mandate task-speci�c hyperparameter calibration and manual constraint

speci�cation rather than autonomous learning. This dependence makes constraint range determination problematic

while reducing generalization across diverse scenarios [232]. Researchers propose Developing Automated Discovery

systems to replace manual capability de�nitions with intelligent discovery mechanisms [138], Revolutionizing Auto-

mated Constraint Learning to eliminate manual speci�cation requirements [232], and Developing Adaptive Calibration

mechanisms for automatic determination of calibration strength without manual hyperparameter tuning [61].

• Multi-Objective Con�ict - Compositional Reward systems face inherent con�icts when integrating multiple reward

signals, which degrade overall performance. As systems employ more reward models, they experience increasingly

con�icting optimization signals, with three-reward con�gurations demonstrating deteriorated performance compared

to two-reward setups. Performance typically declines after several epochs due to over-optimization e�ects, and

multi-objective systems risk generating harmful content when component models exhibit biases or recognition

failures [85, 173]. Solutions include Advancing Multi-Objective Learning to combine preference dimensions for com-

prehensive guidance by developing uni�ed preference models that can handle multiple criteria simultaneously [211],

Architecting Saddle-Point Convergence methods for multi-component systems that achieve stable equilibrium across

competing objectives [120], Materializing Robust Multi-Objective Frameworks for managing beyond dual objectives

while preserving reward-evaluator alignment through adaptive weighting mechanisms [173], and Pioneering Con�ict

Resolution Mechanisms through theoretical frameworks capable of identifying super�uous rewards and dynamically

pruning redundant signals [85]. Future research focuses on developing hierarchical preference architectures and

meta-learning approaches that automatically balance multiple reward components.

• Methodological Reliability - The Reward Bias Calibration approaches face fundamental challenges in their underlying

assumptions. These methods depend on accurate con�dence estimation, which becomes problematic with sparse

or low-quality data that fails to provide su�cient samples in each forecast bin [58]. Reward models may also

inadequately satisfy requirements for serving as unbiased instrumental variables, potentially introducing additional

biases rather than eliminating them [197]. Solutions include Leveraging Self-Improvement approaches that utilize

aligned con�dence as supervisory signals [165] and Implementing Unbiased Reward Modeling methods ensuring

reward models satisfy instrumental variable requirements [197].
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• Theoretical Gaps - Current Reward Modeling methods su�er from insu�cient theoretical foundations. Reward

Bias Calibration methods necessitate strong assumptions including independence, su�cient density, and Lipschitz

continuity, requiring manual calibration constant tuning when these assumptions fail [61]. Synthetic Preferences

Generation approaches face di�erent weaknesses by relying on empirical thresholds for data �ltering strategies

while lacking rigorous theoretical grounding for these critical design choices [59]. Researchers propose Establishing

Closed-Source Adaptation techniques for extending calibration bene�ts beyond open-source models [165].

RQ3: What are the primary limitations across RL4LLM �ne-tuning methods and what future work do researchers propose

to address these limitations?

Summary for RQ3: Current RL4LLM �ne-tuning methods reveal systematic limitations across three primary domains

while proposing diverse solution pathways. Computational overhead emerges as the universal constraint, a�ecting all

method domains and highlighting a fundamental trade-o� between task performance enhancement and computational

e�ciency. In Optimization Algorithms, methods encounter other frequently occurring limitations, including reward model

dependency, sample e�ciency, and optimization complexity, with future work addressing these algorithmic challenges.

Training Frameworks present distinct limitations such as performance issues, coordination failures, training stability, and

optimization complexity, highlighting that Training Framework research remains exploratory. Reward Modeling exhibits

multiple reward-speci�c limitations, including manual dependencies, multi-objective con�icts, and scalability constraints,

indicating substantial potential for RL4LLM �ne-tuning improvement. The analysis reveals that while methods share some

limitations, they pursue distinct solution strategies, indicating both the complexity of RL4LLM optimization and the active

evolution toward more robust methodologies.

4 Conclusion

In this comprehensive literature review, we focus on RL4LLM �ne-tuning methods, where RL techniques are systemati-

cally applied to enhance LLM capabilities through parameter �ne-tuning, speci�cally analyzing their methodological

details. We categorize methods into three domains: Optimization Algorithm, Training Framework, and Reward Modeling,

with further three-level hierarchies for subtle details. We examine 230 recent papers from 2022 to September 2025 using

our research methodology to search relevant papers and extract important information. We establish research questions

addressing 1) recent methods overview, 2) methodological innovations, and 3) limitations and future directions for

in-depth analysis of RL4LLM �ne-tuning methods.

Our �ndings reveal distinct patterns by method domain across target applications, challenges, and properties.

Optimization Algorithm methods build upon foundational algorithms with mathematical enhancements and notably

share remaining limitations: computational overhead, reward model dependency, optimization complexity, and sample

e�ciency. Training Frameworks can be divided into four main core frameworks, indicating a shift from predetermined

to �exible and responsive architectures, promising for RL4LLM �ne-tuning. These works target challenges in output

quality and data e�ciency while also having remaining limitations, including performance issues, coordination failures,

training stability, and computational overhead. As a reward-oriented method domain, Reward Modeling has innovations

that span di�erent perspectives on architectural design, signal quality, bias mitigation, data e�ciency, and compositional

complexity, while highlighting extensive remaining limitations regarding reward-speci�c constraints. RL4LLM �ne-

tuning demonstrates signi�cant progress through these various methods, while substantial limitations remain across all

domains. Through systematic analysis of these methods and their innovations, this literature review provides researchers

with essential guidance for advancing RL4LLM �ne-tuning and identifying breakthrough research opportunities.
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