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I. MODEL AND ELECTRONIC STRUCTURE

Our investigations are based on the attractive Hubbard model

H = −t
∑
⟨ij⟩,σ

c†i,σcj,σ +
∑
iσ

(Vi − µ)niσ

− |U |
∑
n

[nn,↑ − ⟨nn,↑⟩] [nn,↓ − ⟨nn,↓⟩] (1)

with on-site interaction −|U | between charge fluctuations and we restrict to hopping between

nearest neighbor sites Ri, Rj indicated by ⟨ij⟩. For the local potential Vi we consider a

checkerboard geometry with alternating 4×4 plaquettes within which Vi alternates between

the values Vi = 0 and Vi = −V0.

The primitive vectors of the superlattice are r⃗1 = (8a, 0) and r⃗2 = (4a, 4a) which gives

rise to the reduced Brillouin zone indicated in Fig. 1. The reciprocal lattice is generated by

the vectors b⃗1 =
π
4a
(1,−1) and b⃗2 =

π
2a
(0, 1). In the following we set the lattice constant to

a = 1. Upon mean-field decoupling the Fourier transformed hamiltonian Eq. (1) reads

H =
∑
k,n

′ (εk+Qn − µ)
[
c†k,↑(n)ck,↑(n) + c†−k,↓(n)c−k,↓(n)

]
+

∑
k,n,m

′
[
VQmc

†
k,↑(n+m)ck,↑(n) + h.c.

]
+

∑
k,n,m

′
[
∆Qmc

†
k,↑(n+m)c†−k,↓(n) + h.c.

]
(2)

where the primed sum runs over k-points of the reduced BZ, ck,↑(n) ≡ ck+Qn,↑, c−k,↓(n) ≡

c−k−Qn,↓ and Qn refers to the reciprocal lattice vectors generated by b⃗1,2. The Fourier

transformed potential is VQm = 1
N

∑
n Vne

iQmRn and similarly the order parameter is defined

as ∆Qm = 1
N

∑
n ∆ne

iQmRn with ∆n = −|U |⟨cn,↓cn,↑⟩.

In the normal state (∆Qm = 0) the hamiltonian Eq. (2) can be diagonalized via

ck,↑(n) =
∑
p

Φk,n,↑(p)ak,p,↑ (3)

c−k,↓(n) =
∑
p

Φ−k,n,↓(p)a−k,p,↓ (4)

where the index p refers to the band with energy Ep,σ(k).
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FIG. 1. Reduced Brillouin zone and reciprocal lattice vectors for the considered superpotential

consisting of 4× 4 plaquettes.

In the basis states defined via Eqs. (3,4) the hamiltonian reads

H =
∑
k,p

′
[
Ep,↑(k)a

†
k,p,↑ak,p,↑ − Ep,↓(−k)a−k,p,↓a

†
−k,p,↓

]
+

∑
k,p,p′

′
[
B∗

k(p
′, p)a†k,p,↑a

†
−k,p,↓ + h.c.

]
(5)

withB∗
k(p

′, p) =
∑

n,m∆QnΦ
∗
k,n+m,↑(p)Φ

∗
−k,m,↓(p

′). It can be diagonalized viaHdiag = T̂−1ĤT̂

where the diagonalized hamiltonian has the structure

{Hdiag} =

 −Ωp< 0

0 Ωp>

 (6)

where the index p<(>) refers to the set of negative (positive) energies. The order parameter

can be self-consistently calculated from

∆∗
Qn

= −|U |⟨c−k,↓(n+m)ck,↑(m)⟩

= −|U |
∑

k,m,j,j′
p<,p>

′ Φ−k,n+m,↓(j)Φk,m,↑(j
′)

×
[
T ∗
N+j,p<TN+j′,p<(1− f(Ωp<))

+ T ∗
N+j,p>TN+j′,p>f(Ωp>)

]
(7)

and f(ω) denotes the Fermi distribution. A similar expression can be derived for the charge

density which is then used to self-consistently adjust the chemical potential.
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II. CONSIDERATION OF IMPURITIES: REAL SPACE APPROACH

The hamiltonian Eq. (1) is supplemented with an impurity potential V =
∑

nσ Innnσ

where the In are drawn from a flat distribution with −I0 ≤ In ≤ I0.

The resulting hamiltonian is then solved on finite lattices in mean-field using the

Bogoljubov-de Gennes (BdG) transformation

ciσ =
∑
k

[
ui(k)γk,σ − σv∗i (k)γ

†
k,−σ

]
which yields the eigenvalue equations

ωkun(k) =
∑

j tnjuj(k) + [In + Vn − µ]un(k)

+ ∆nvn(k) (8)

ωkvn(k) = −
∑

j tnjvj(k)− [In + Vn − µ]un(k)

+ ∆∗
nun(k) , (9)

where again the Vn refer to the superpotential at site Rn.

From the eigenvalue problem Eqs. (8,9) one can iteratively determine the BdG ampli-

tudes ui(k), vi(k) which allow for the self-consistent evaluation of local densities and order

parameters.

III. CURRENT CORRELATIONS

The evaluation of the superfluid stiffness in the main paper is based on the current-current

correlation function

χαβ
nm(ĵ

α
n , ĵm) = −i

∫
dteiωt⟨T ĵβn(t)ĵm(0)⟩ (10)

where ĵαn corresponds to the paramagnetic current operator on the link Rn, Rn + eα with

α = x, y, i.e.

ĵαn = it
∑
σ

[
c†n+α,σcn,σ − c†n,σcn+α,σ

]
. (11)

Using the transformations from the previous subsection the current-current correlation

function can be represented in the following form

χαβ(ω) =
1

N

∑
k,r,t,n,m
p<,p>

′
Cα

r,t(k, p<, p>)C
β,∗
m,n(k, p<, p>) (12)

×
[

1

ω − Ωp> − Ωp< − iη
− 1

ω + Ωp> + Ωp< − iη

]
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where the matrix elements of the current operator are given by

Cα
r,t(k, p<, p>) = −2t

∑
n

sin(kα +Qα
n) (13)

×
[
Φ∗

k,n,↑(r)Φk,n,↑(t)T
∗
r,p<Tt,p>

+ Φ∗
−k,n,↓(r)Φ−k,n,↓(t)T

∗
N+t,p<TN+r,p>

]
.

The expression for the stiffness given in Eq. (3) of the main paper includes the kinetic

energy in direction α which is given by

⟨tα⟩ ≡
1

N

∑
k,s,t
p<,p>

′
ταs,t(k, p<, p>) (14)

ταs,t(k, p<, p>) = −2t
∑
n

′
cos(kα +Qα

n) (15)

×
[
Φ∗

k,n,↑(s)Φk,n,↑(t)T
∗
s,p<Tt,p<

+ Φ∗
−k,n,↓(s)Φ−k,n,↓(t)T

∗
N+t,p>TN+s,p>

]
.

IV. INCLUSION OF FLUCTUATIONS IN THE EVALUATION OF THE CUR-

RENT CORRELATION FUNCTION

For larger values of the interaction |U |/t ≳ 1 phase relaxation processes increasingly

renormalize the stiffness. These can be included by dressing the current-current correlations

with pair and charge fluctuations

δ∆i ≡ ci↓ci↑ − ⟨ci↓ci↑⟩0

δn†
i ≡

∑
σ

(
c†iσciσ − ⟨c†iσciσ⟩0

)
δ∆†

i ≡ c†i↑ci↓ − ⟨c†i↑ci↓⟩0

for which the corresponding correlation functions can be defined similar to Eq. (10). Here

and in the following a nought sub- or superscript denotes evaluation in the BdG ground

state.

Defining also the matrix of local interactions V between pair and charge fluctuations the

resummation

χ =
[
1− χ0V

]−1

χ0 (16)

allows to compute the dynamical amplitude Ai ≡ (δ∆i + δ∆†
i )/

√
2 and phase Φi ≡ (δ∆i −

δ∆†
i )/

√
2 correlations.
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Vertex corrections to the bare current-current correlation function χ0
nm(j

α
n , j

β
m) can be

obtained by defining Λα
nm = χ0(jαn , Âm) and Λ

α

nm = χ0(Ân, j
α
m) which couple the current jαm

between sites Rm and Rm+α to the pair and charge fluctuations. The full (gauge invariant)

current correlation function is then obtained from

χnm(j
α
n , j

β
m) = χ0

nm(j
α
n , j

β
m) + Λα

nmVmkΛ
β

km

+ Λα
nmVmkχklVlsΛ

β

sm

= χ0
nm(j

α
n , j

β
m)

+ Λα
nmVmk

[
1− χ0V

]−1

kl
Λ

β

lm

≡ χBCS
nm (jαn , j

β
m) + χRPA

nm (jαn , j
β
m) . (17)

In momentum space the correlation functions for the vertices are explicitely given by

χ0(j(0), δ∆†
−Qn

) =
∑

k,m,m′

s,t,s′,t′

Φ∗
k+Qm′−Qn

,↑(s
′)Φ∗

−k−Qm′ ,↓(t
′)

×

{
Ck,m

s,t (p<, p>)T
∗
s′,p>

TN+t′,p<

ω − Ωp< − Ωp> + iη
+

(Ck,m
t,s )∗(p<, p>)T

∗
s′,p<

TN+t′,p>

ω + Ωp< + Ωp> − iη

}
χ0(j(0), δ∆Qn) =

∑
k,m,m′

s,t,s′,t′

Φ−k−Qm′+Qn,↓(s
′)Φk+Qm′ ,↑(t

′)

×

{
Ck,m

s,t (p<, p>)T
∗
N+s′,p>

Tt′,p<

ω − Ωp< − Ωp> + iη
−

(Ck,m
t,s )∗(p<, p>)T

∗
N+s′,p<

Tt′,p>

ω + Ωp< + Ωp> − iη

}

χ0(j(0), δρ−Qn) =
∑

k,m,m′

s,t,s′,t′

{
Ck,m

s,t (p<, p>)R
k,m′

2,s′,t′(p<, p>)

ω − Ωp< − Ωp> + iη
−

(Ck,m
t,s )∗(p<, p>)R

k,m′

1,s′,t′

ω + Ωp< + Ωp> − iη

}

with

Rk,m′

1,s′,t′ = Φ∗
k+Qm′−Qn,↑(s

′)Φk+Qm′ ,↑(t
′)T ∗

s′,p<Tt′,p> − Φ∗
−k−Qm′−Qn,↓(s

′)Φ−k−Qm′ ,↓(t
′)TN+s′,p>T

∗
N+t′,p<

Rk,m′

2,s′,t′ = Φ∗
k+Qm′−Qn,↑(s

′)Φk+Qm′ ,↑(t
′)T ∗

s′,p>Tt′,p< − Φ∗
−k−Qm′−Qn,↓(s

′)Φ−k−Qm′ ,↓(t
′)TN+s′,p<T

∗
N+t′,p> .
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Similarly, the correlation functions between the fluctuations read as

χ0(δ∆†
Qn

, δ∆†
−Qn′ ) =

∑
k,m,m′

{
T ∗
n+m,p<TN+m,p>T

∗
−n′+m′,p>

TN+m′,p<

ω − Ωp< − Ωp> + iη
−

T ∗
−n′+m′,p<

TN+m′,p>T
∗
n+m,p>TN+m,p<

ω + Ωp< + Ωp> − iη

}
χ0(δ∆†

Qn
, δ∆Qn′ ) =

∑
k,m,m′

{
T ∗
n+m,p<TN+m,p>T

∗
N−n′+m′,p>

Tm′,p<

ω − Ωp< − Ωp> + iη
−

T ∗
N−n′+m′,p<

Tm′,p>T
∗
n+m,p>TN+m,p<

ω + Ωp< + Ωp> − iη

}
χ0(δ∆−Qn , δ∆Qn′ ) =

∑
k,m,m′

{
T ∗
N+n+m,p<

Tm,p>T
∗
N−n′+m′,p>

Tm′,p<

ω − Ωp< − Ωp> + iη
−

T ∗
N−n′+m′,p<

Tm′,p>T
∗
N+n+m,p>

Tm,p<

ω + Ωp< + Ωp> − iη

}

χ0(δ∆†
Qn

, δρ−Qn′ ) =
∑

k,m,m′

{
T ∗
n+m,p<TN+m,p>

(
T ∗
m′−n′,p>

Tm′,p< − T ∗
N+m′,p>

TN+m′+n′,p<

)
ω − Ωp< − Ωp> + iη

−
T ∗
n+m,p>TN+m,p<

(
T ∗
m′−n′,p<

Tm′,p> − T ∗
N+m′,p<

TN+m′+n′,p>

)
ω + Ωp< + Ωp> − iη

}

χ0(δ∆−Qn , δρ−Qn′ ) =
∑

k,m,m′

{
T ∗
N+n+m,p<

Tm,p>

(
T ∗
m′−n′,p>

Tm′,p< − T ∗
N+m′,p>

TN+m′+n′,p<

)
ω − Ωp< − Ωp> + iη

−
T ∗
N−n+m,p>

Tm,p<

(
T ∗
m′−n′,p<

Tm′,p> − T ∗
N+m′,p<

TN+m′+n′,p>

)
ω + Ωp< + Ωp> − iη

}

Inserting these correlation functions into Eq. (17) defines the RPA kernel from Eq. (4) of

the main paper.

As discussed in the main text, inclusion of charge and phase fluctuations restores gauge

invariance by taking into account phase relaxation processes.

Fig. 2 shows the BCS currents for an applied vector potential along the x-direction and in

the presence of the superpotential. This figure should be compared with the corresponding

gauge invariant result, shown in Fig. 2 of the main paper. Clearly, the BCS currents don’t

obey charge conservation which can be most clearly seen at the edges of the SC regions

For example, at sites (4, 6 and (4, 7) the incoming currents are significantly larger than the

outgoing ones and therefore violate Kirchhoff’s law.

In Fig. 3 we report the interaction dependence of the stiffness, both for BCS and

BCS+RPA, for a smaller value V0/t = 2 of the superpotential than reported in the main

paper in Fig. 3. Also in this case one observes an increase of Ds with increasing |U |/t, how-

ever, the curves extrapolate to a finite charge stiffness at |U |/t = 0. Moreover, the positive

interband term Dgeom
r ̸=m (black curve) now continuously increases with |U |/t and constitutes

a fraction of ∼ 40% to the total stiffness at |U |/t = 3.
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FIG. 2. BCS SC current distribution for a vector potential applied along the x-direction. The local

gaps are shown as grey background. U/t = 2, V0/t = 4, Charge concentration nel = 0.5.

FIG. 3. Interaction dependence of the stiffness Ds,totfor superpotential values V0/t = 0 (blue) and

V0/t = 2 (red, squares) separated into the diamagnetic (mostly intraband) (Ddia
s ) and paramagnetic

(mostly interband) (Dpara
s ) contribution. Also shown is the geometric contribution for r ̸= m

(black) which positively contributes to the stiffness. Lines in the foreground (full symbols) and in

the background (open symbols) refer to the RPA (BCS) result, respectively. For |U |/t = 0 the

charge stiffness Dc is shown by full circles while Ds vanishes in this limit. charge concentration:

p = 0.5.
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V. DETERMINATION OF kF l

In order to estimate the value for the scattering rate in the disordered system, we calculate

the normal state optical conductivity without superpotential but disorder potential I0/t =

0.5 and I0/t = 1.0 from an average over 10 disorder configurations, cf. Fig. 4. This result

is then fitted by a standard Drude form

σ(ω) =
σ0

1 + ω2τ 2
(18)

which for I0/t = 0.5 yields σ0 ≈ 11 and τ = 15[1/t]. In case of I0/t = 1.0 one obtains

σ0 = 2.5 and τ ≈ 3.8[1/t].

FIG. 4. Drude fit (lines) to the numerical (symbols) normal state optical conductivity without

superpotential but disorder I0/t = 0.5 (black), I0/t = 1.0 (blue) and density nel = 0.5. The

numerical σ(ω) is obtained from an average over 10 disorder configurations.

From the bare bandstructure one can average Fermi momentum and Fermi velocity for

given chemical potential at nel = 0.5. This yields kF ≈ 1.78[1/a] and vF ≈ 1.51[ta], so that

we obtain for the disorder parameter kF l = kFvF τ ≈ 40 in case of I0/t = 0.5 and kF l = 10

for I0/t = 1.0.
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VI. SUM RULE AND SPECTRAL WEIGHT TRANSFER

The optical conductivities in normal (σNL) and superconducting (σSC)system follow from

the current correlation function and read

σNL(ω) = πDcδ(ω) +
Imχxx(ω)

ω
(19)

σSC(ω) = πDsδ(ω) +
Imχxx(ω)

ω
(20)

where both obey the f-sum rule∫ ∞

0

dωσNL/SC(ω) = −π

2
⟨tNL/SC

x ⟩ . (21)

From these relations one can construct the identity

Ds =
2

π

∫ ∞

0+
dω [σNL(ω)− σSC(ω)]

+ ⟨tNL
x ⟩ − ⟨tSCx ⟩+Dc (22)

where the integral excludes the contribution of the δ-functions.

FIG. 5. Main panel: Difference in interband optical spectral weight between normal and supercon-

ducting state. The blue solid line corresponds to the integrated spectral weight which determines

the interband contribution to Ds. b) Normal state band structure close to the Fermi energy. Ar-

rows indicate the lowest relevant interband excitations in the main panel. c) Interband optical

conductivity for normal and superconducting state. Parameters: V0/t = 4, |U |/t = 2, nel = 0.5.
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Fig. 5 reports the spectral weight transfer for a superpotential V0/t = 4 where the second

line of Eq. (22) gives only a minor contribution to the stiffness (⟨tNL
x ⟩−⟨tSCx ⟩+Dc ≈ −0.0075)

which therefore is essentially determined by the interband spectral weight transfer. The

interband optical conductivities in the normal and superconducting state are shown in Fig.

5b. Due to the opening of the gap the optical weight is generally shifted to higher energies

in the SC state where the difference to the normal state decreases with increasing energy.

As a result the most pronounced difference, which is reported in the main panel, originates

from interband excitations up to energies of the order ∼ t. These are indicated in panel b)

which shows the low energy band structure for V0/t = 4 along diagonal and horizontal cuts

accross the reduced Brillouin zone.

VII. ORIGIN OF SPECTRAL WEIGHT TRANSFER

FIG. 6. a) Normal state optical conductivity from Drude theory (red) and in the superconducting

state from Mattis-Bardeen theory (black). The area under the difference curve(blue, dashed) yields

the superfluid stiffness. b) Dependence of Ds on the SC gap. c) Optical conductivity for a specific

excitation in the presence of a superpotential in the normal (red) and SC state (blue) as explained

in the text.

The physics for the optical weight transfer in the presence of a superpotential bears some

resemblance with the situation in strongly disordered superconductors. Fig. 6 shows σ(ω) as

obtained from Mattis-Bardeen (MB) theory [1] at zero temperature. Absorption in the SC

starts above the energy of the spectral gap 2∆ and approaches the normal state conductivity
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(red) for large energies. For weak coupling the difference of kinetic energies between SC and

normal state can be neglected and for a Drude -like normal conductivity Dc = 0 in the

sum rule Eq. (22). Therefore, the superfluid stiffness is determined from the integrated

difference σNL(ω) − σSC(ω) which naturally scales with the spectral gap 2∆, cf. Fig. 6b.

Since ∆ increases with the interaction this is similar to what is observed in Fig. 3 in the

main paper in the presence of a superpotential. In fact, in MB theory absorption is induced

by the violation of momentum conservation due to the scattering from impurities while here

the scattering from the superpotential causes the paramagnetic absorption processes. The

spectral weight transfer can be understood from the modification of the band structure due

to the scattering from the superpotential and the SC gap. Consider two states close to

the Fermi surface which can be connected by one of the reciprocal lattice vectors Qn. The

resulting new states have energies ENL
k = ±

√
(εk − µ)2 + V 2

Qn
which leads to a peak in the

optical conductivity at ω = 2ENL
k (assuming that µ stays approximately the same). In

the presence of SC the energies are modified to ENL
k = ±

√
(εk − µ)2 + V 2

Qn
+∆2

sc, cf. Fig.

6c, thus yielding a spectral weight transfer as observed in Fig. (5). In this case we find

∆SC = ∆Qn=0 ≈ 0.2t which is compatible with the separation of excitations in σNL − σSC

for the transition #2.
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