Supplementary Information
Superpotential enhanced superconductivity and robust stiffness

shaped by quantum geometry



I. MODEL AND ELECTRONIC STRUCTURE
Our investigations are based on the attractive Hubbard model
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with on-site interaction —|U| between charge fluctuations and we restrict to hopping between
nearest neighbor sites R;, R; indicated by (ij). For the local potential V; we consider a
checkerboard geometry with alternating 4 x 4 plaquettes within which V; alternates between
the values V; =0 and V; = — V4.

The primitive vectors of the superlattice are ™ = (8a,0) and 75 = (4a,4a) which gives
rise to the reduced Brillouin zone indicated in Fig. 1. The reciprocal lattice is generated by

the vectors by = 1-(1,~1) and by = 52(0,1). In the following we set the lattice constant to

a = 1. Upon mean-field decoupling the Fourier transformed hamiltonian Eq. (1) reads
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where the primed sum runs over k-points of the reduced BZ, ¢x1+(n) = ¢k, 1, -k (n) =
C_k—-Qn,, and @, refers to the reciprocal lattice vectors generated by 51,2. The Fourier
transformed potential is Vg, = % >on V,e'@mfn and similarly the order parameter is defined
as Ag,, = % 2, Dpe B with A, = —|U|(cn, Cnp)-

In the normal state (Ag,, = 0) the hamiltonian Eq. (2) can be diagonalized via

crp(n) = Cpns(p)arps (3)

() =D P pny(p)a i, (4)

where the index p refers to the band with energy E, (k).
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FIG. 1. Reduced Brillouin zone and reciprocal lattice vectors for the considered superpotential

consisting of 4 x 4 plaquettes.

In the basis states defined via Eqgs. (3,4) the hamiltonian reads
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with By (0, 0) = 320 m B0nPhnim 1 (P) P2 1 (P')- It can be diagonalized via Hyiqg = T-'HT
where the diagonalized hamiltonian has the structure
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where the index p (- refers to the set of negative (positive) energies. The order parameter
can be self-consistently calculated from
0 = —IU[{c—ks(n +m)cy1(m))
= U > @ hnimi () Prims (7)
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and f(w) denotes the Fermi distribution. A similar expression can be derived for the charge

density which is then used to self-consistently adjust the chemical potential.



II. CONSIDERATION OF IMPURITIES: REAL SPACE APPROACH

The hamiltonian Eq. (1) is supplemented with an impurity potential V' = %" 1,1,
where the I,, are drawn from a flat distribution with —I, < I,, < I.

The resulting hamiltonian is then solved on finite lattices in mean-field using the
Bogoljubov-de Gennes (BdG) transformation

Cig = Z [ui(k)%c,a - UU:(k)’YIZ,—a]

k
which yields the eigenvalue equations
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where again the V), refer to the superpotential at site R,.
From the eigenvalue problem Eqs. (8,9) one can iteratively determine the BdG ampli-
tudes u;(k),v;(k) which allow for the self-consistent evaluation of local densities and order

parameters.

III. CURRENT CORRELATIONS

The evaluation of the superfluid stiffness in the main paper is based on the current-current

correlation function

Xt m) = =i [T 0) (10)
where j’fj corresponds to the paramagnetic current operator on the link R,,, R, + e, with
a=ux,9, i.e.
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Using the transformations from the previous subsection the current-current correlation

function can be represented in the following form
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where the matrix elements of the current operator are given by
Cri(k,pe,ps) = —2t Z sin(k, + Q) (13)
X [@Z,n,ﬁ(r)q)k,n,T(t)T:kTt,p>
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The expression for the stiffness given in Eq. (3) of the main paper includes the kinetic

energy in direction o which is given by

1
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IV. INCLUSION OF FLUCTUATIONS IN THE EVALUATION OF THE CUR-
RENT CORRELATION FUNCTION

For larger values of the interaction |U|/t 2 1 phase relaxation processes increasingly
renormalize the stiffness. These can be included by dressing the current-current correlations

with pair and charge fluctuations

5A2 = CiiciT — <Ci¢CiT>0

onf = Z <C;‘fo—cicr - <C;-racw>0)

g
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for which the corresponding correlation functions can be defined similar to Eq. (10). Here
and in the following a nought sub- or superscript denotes evaluation in the BdG ground
state.
Defining also the matrix of local interactions V. between pair and charge fluctuations the

resummation

y=[1-av] (16)

allows to compute the dynamical amplitude 4; = (0A; + 6A!)/v/2 and phase ®; = (§A; —
6AT) /v/2 correlations.



Vertex corrections to the bare current-current correlation function x2 (j%,j2) can be

obtained by defining A® = x°(j*, A,,) and A",

= x(A,, j) which couple the current j&

between sites R,, and R,,., to the pair and charge fluctuations. The full (gauge invariant)

current correlation function is then obtained from
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In momentum space the correlation functions for the vertices are explicitely given by
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Similarly, the correlation functions between the fluctuations read as
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Inserting these correlation functions into Eq. (17) defines the RPA kernel from Eq. (4) of

the main paper.

As discussed in the main text, inclusion of charge and phase fluctuations restores gauge

invariance by taking into account phase relaxation processes.

Fig. 2 shows the BCS currents for an applied vector potential along the x-direction and in
the presence of the superpotential. This figure should be compared with the corresponding
gauge invariant result, shown in Fig. 2 of the main paper. Clearly, the BCS currents don’t
obey charge conservation which can be most clearly seen at the edges of the SC regions
For example, at sites (4,6 and (4,7) the incoming currents are significantly larger than the

outgoing ones and therefore violate Kirchhoff’s law.

In Fig. 3 we report the interaction dependence of the stiffness, both for BCS and
BCS+RPA, for a smaller value V;/t = 2 of the superpotential than reported in the main
paper in Fig. 3. Also in this case one observes an increase of D with increasing |U|/t, how-
ever, the curves extrapolate to a finite charge stiffness at |U|/t = 0. Moreover, the positive
interband term D77 (black curve) now continuously increases with |U|[/t and constitutes

a fraction of ~ 40% to the total stiffness at |U|/t = 3.
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FIG. 2. BCS SC current distribution for a vector potential applied along the x-direction. The local

gaps are shown as grey background. U/t = 2, Vj/t = 4, Charge concentration n. = 0.5.
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FIG. 3. Interaction dependence of the stiffness D, ;oifor superpotential values V4 /t = 0 (blue) and
Vo/t = 2 (red, squares) separated into the diamagnetic (mostly intraband) (D%®) and paramagnetic
(mostly interband) (DY*"*) contribution. Also shown is the geometric contribution for r # m
(black) which positively contributes to the stiffness. Lines in the foreground (full symbols) and in
the background (open symbols) refer to the RPA (BCS) result, respectively. For |U|/t = 0 the
charge stiffness D, is shown by full circles while Dy vanishes in this limit. charge concentration:

p = 0.5.



V. DETERMINATION OF krl

In order to estimate the value for the scattering rate in the disordered system, we calculate
the normal state optical conductivity without superpotential but disorder potential Iy/t =
0.5 and [y/t = 1.0 from an average over 10 disorder configurations, cf. Fig. 4. This result

is then fitted by a standard Drude form

00

-9 18
1+ w?r? (18)

o(w)

which for [/t = 0.5 yields 09 ~ 11 and 7 = 15[1/t]. In case of I/t = 1.0 one obtains
oo = 2.5 and 7 ~ 3.8[1/t].

FIG. 4. Drude fit (lines) to the numerical (symbols) normal state optical conductivity without
superpotential but disorder Ip/t = 0.5 (black), Ip/t = 1.0 (blue) and density ne = 0.5. The

numerical o(w) is obtained from an average over 10 disorder configurations.

From the bare bandstructure one can average Fermi momentum and Fermi velocity for
given chemical potential at n. = 0.5. This yields kr ~ 1.78[1/a] and vr ~ 1.51[ta], so that
we obtain for the disorder parameter kpl = kpvpT &~ 40 in case of Iy/t = 0.5 and krl = 10

for I(]/t =1.0.



VI. SUM RULE AND SPECTRAL WEIGHT TRANSFER

The optical conductivities in normal (ox ) and superconducting (og¢)system follow from

the current correlation function and read

I TrT
onp(w) = TDS(w) + me ©) (19)
I T
osc(w) = TD(w) + %(“’) (20)
where both obey the f-sum rule
> T
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0
From these relations one can construct the identity
2 o0
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where the integral excludes the contribution of the J-functions.

FIG. 5. Main panel: Difference in interband optical spectral weight between normal and supercon-
ducting state. The blue solid line corresponds to the integrated spectral weight which determines
the interband contribution to Ds. b) Normal state band structure close to the Fermi energy. Ar-
rows indicate the lowest relevant interband excitations in the main panel. ¢) Interband optical

conductivity for normal and superconducting state. Parameters: V/t =4, |U|/t = 2, ne = 0.5.
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Fig. 5 reports the spectral weight transfer for a superpotential Vj/t = 4 where the second
line of Eq. (22) gives only a minor contribution to the stiffness ((t)'F) — (t5)+ D, ~ —0.0075)
which therefore is essentially determined by the interband spectral weight transfer. The
interband optical conductivities in the normal and superconducting state are shown in Fig.
5b. Due to the opening of the gap the optical weight is generally shifted to higher energies
in the SC state where the difference to the normal state decreases with increasing energy.
As a result the most pronounced difference, which is reported in the main panel, originates
from interband excitations up to energies of the order ~ t. These are indicated in panel b)

which shows the low energy band structure for V;/t = 4 along diagonal and horizontal cuts

accross the reduced Brillouin zone.

VII. ORIGIN OF SPECTRAL WEIGHT TRANSFER
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FIG. 6. a) Normal state optical conductivity from Drude theory (red) and in the superconducting
state from Mattis-Bardeen theory (black). The area under the difference curve(blue, dashed) yields
the superfluid stiffness. b) Dependence of Dg on the SC gap. ¢) Optical conductivity for a specific

excitation in the presence of a superpotential in the normal (red) and SC state (blue) as explained

in the text.

The physics for the optical weight transfer in the presence of a superpotential bears some
resemblance with the situation in strongly disordered superconductors. Fig. 6 shows o(w) as
obtained from Mattis-Bardeen (MB) theory [1] at zero temperature. Absorption in the SC

starts above the energy of the spectral gap 2A and approaches the normal state conductivity
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(red) for large energies. For weak coupling the difference of kinetic energies between SC and
normal state can be neglected and for a Drude -like normal conductivity D, = 0 in the
sum rule Eq. (22). Therefore, the superfluid stiffness is determined from the integrated
difference oy (w) — 0sc(w) which naturally scales with the spectral gap 2A, cf. Fig. 6b.
Since A increases with the interaction this is similar to what is observed in Fig. 3 in the
main paper in the presence of a superpotential. In fact, in MB theory absorption is induced
by the violation of momentum conservation due to the scattering from impurities while here
the scattering from the superpotential causes the paramagnetic absorption processes. The
spectral weight transfer can be understood from the modification of the band structure due
to the scattering from the superpotential and the SC gap. Consider two states close to

the Fermi surface which can be connected by one of the reciprocal lattice vectors @,,. The

resulting new states have energies FNl = j:\/ (er — p)? + V3, which leads to a peak in the
optical conductivity at w = 2EN* (assuming that p stays approximately the same). In

the presence of SC the energies are modified to EN' = :I:\/(ek —p)? + V5 4+ A2, cf. Fig.

sc?

6c, thus yielding a spectral weight transfer as observed in Fig. (5). In this case we find
Agc = Ag,=o ~ 0.2t which is compatible with the separation of excitations in oxy, — osc

for the transition #2.
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