BIO-BASED STARCH FILMS FROM RIPE PLANTAIN PEELS: KINETIC MODELLING AND PHYSICOMECHANICAL ASSESSMENT (Data availability statement)

Cosmos Kojo Boateng a, b*, Persis Tweneboah c, Arafat Mohammed c

- ^{a,} Department of Applied Chemistry, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.
- ^b Regional water & Environmental Sanitation Centre Kumasi (RWESCK) Laboratories, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- ^c Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.

*Corresponding author E-mail address: cosmosboateng060@gmail.com

1. Biodegradability studies

Week	Weight (g) at a particular time	Difference between initial and final weight (g)
0	7.000	7.000
1	2.532	4.468
2	2.130	4.870
3	1.424	5.576
4	0.706	6.234

Figure 1: Biodegradation curve of RPP bioplastic film showing rapid early mass loss and gradual stabilization over 28 days

2. Kinetic Studies

1. First Order Kinetic Model [Time Vs $Ln(W_t/W_o)$]

Time	Weight (g) at a	Initial weight (g)	W_t/W_0	Ln(W _t /W ₀)
(week)	particular time (W _t)	(W ₀)		
0	7.000	7.000	1.000	0
1	2.532	7.000	0.362	-1.017
2	2.130	7.000	0.304	-1.188
3	1.424	7.000	0.203	-1.592
4	0.706	7.000	0.101	-2.294

2. Zero Order Kinetic Model (Time $Vs W_t$)

Time (week)	Weight (g) at a particular time (W _t)
1	2.532
2	2.130
3	1.424
4	0.706

3. Second Order Kinetic Model (Time Vs 1/Wt)

Time (week)	Weight (g) at a particular time	1/W _t
	(W _t)	
1	2.532	0.395
2	2.130	0.469
3	1.424	0.702
4	0.706	1.416

4. Korsmeyer–Peppas model [$Ln(Time) Vs Ln(\Delta W/W_o)$]

Time	Ln(Time)	$\Delta W = (W_o - W_t)$	ΔW/W _o	Ln(ΔW/W _o)
1	0.000	4.468	0.638	-0.449
2	0.693	4.870	0.696	-0.362
3	1.097	5.903	0.843	-0.171
4	1.386	5.614	0.802	-0.221

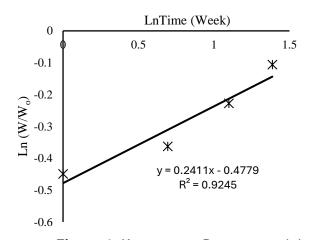


Figure 1: Korsmeyer–Peppas model

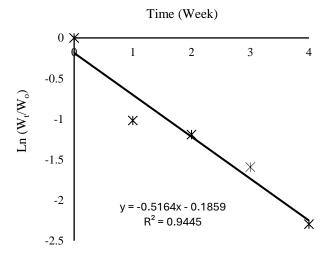


Figure 4: First Order Kinetics Model

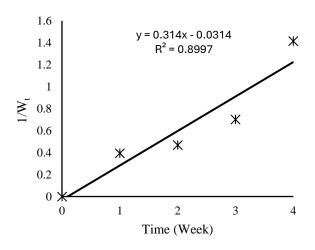


Figure 3: Second Order Kinetics Model

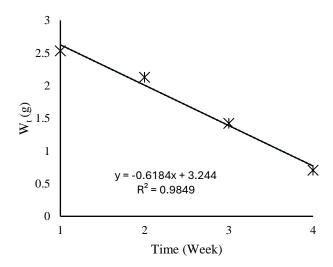


Figure 5: Zero Order Kinetics Model