

Supplementary Materials for

Radical-Omics Reveals the Hydrogen-Abstraction Pathway of Isoprene Oxidation

5 Huan Song^{1†‡}, Hongyang Cui^{2†}, Huabin Dong^{1†}, Ce Chen^{1, 2†}, Wenyu Wei¹, Yang Li¹, Qindan
6 Zhu³, Bo Tang⁴, Chongqin Zhu⁴, Xuefei Ma¹, Zhaofeng Tan¹, Shiyi Chen¹, Yi Wan^{2*} & Keding
7 Lu^{1*}

8 Affiliations:

⁹ ¹College of Environmental Sciences and Engineering, Peking University, Beijing, China

10 ² Laboratory for Earth Surface Processes, College of Urban and Environmental Science,
11 Peking University, Beijing, China

14 ⁴College of Chemistry, Beijing Normal University, Beijing, China

15 *Corresponding authors. Email: wany@urban.pku.edu.cn; k.lu@pku.edu.cn

16 [†] These authors contributed equally to this work

17 [‡] Present address: Department of Atmospheric and Climate Science, University of
18 Washington, Seattle, WA 98195, USA

20 **The PDF file includes:**

21

22 Materials and Methods

23 Figs. S1 to S23

24 Tables S1 to S6

25 Synthetic Procedures and Characterization Data and Figs. S24 to S28

26

27

28

29 **Table of content**

30	S1. Materials and Methods	3
31	S2. Figs.S1 to S23.....	24
32	S3. Tables S1 to S6	50
33	S4. Synthetic Procedures and Characterization Data and Figs. S24 to S28	58

34

35

36 **S1. Materials and Methods**

37 S1.1 Chemicals and Reagents

38 Methanol and acetonitrile (LC/MS grade) were obtained from Merck (Darmstadt, Germany).
39 Milli-Q water was obtained by a Milli-Q water purification system (Millipore, USA). 5,5-
40 Dimethyl-1-pyrroline N-oxide (DMPO) was obtained Aladdin (Shanghai, China). 2,2,6,6-
41 Tetramethylpiperidoxyl (TEMPO) was obtain from Merck (Darmstadt, Germany). CHANT was
42 obtained via the same synthetic procedure referring to Williams, et al.⁷⁰. The high purified nitrogen
43 (99.9999%) cylinders were purchased from AIR LIQUIDE SINGAPORE PTE LTD), isoprene
44 cylinders (500 ppm) were purchased from National Institute of Metrology, China. 1-OH Ta, 1-OH
45 Tb, 4-OH Ta, 4-OH Tb, structure 7, structure 10, structure 11, and DMPO-C₅H₇ was synthesized
46 according to Supplementary Information S4. Standards of the above synthesized chemicals were
47 prepared in MeOH for mass spectrometry imaging (MSI) analysis.

48

49 S1.2 Setup of Radical Generation and Capture Equipment

50 S1.2.1 Custom-build Calibration Source

51 A laboratory-fabricated calibration source for OH radicals was constructed, employing water
52 vapor photolysis at 185 nm. The calibration system consists of a flow tube (length: 350 mm, inner
53 diameter: ~17 mm) and a lamp module (Fig. S22). To minimize radical loss, the flow tube was
54 coated with a silanization treatment (SilcoNert®, SilcoTek). The flow tube was designed to
55 maintain laminar flow, ensuring a near-parabolic velocity profile and allowing radicals to achieve
56 fully developed flow before entering the photolysis region. Typically, a parabolic velocity profile
57 is characteristic of laminar flow at a rate of 20 L/min. Based on the tube's inner diameter and the

58 inlet flow rate, the Reynolds number was calculated as 1659.7, confirming a laminar flow regime
59 with a central flow and thinner boundary layers ^{71,72}.

60 The UV light was provided by a low-pressure mercury discharge lamp (81-1025-01, BHK). A
61 narrow-bandpass filter (185 nm, FWHM = 27.5 nm) was installed in the optical path to ensure that
62 only the relevant photolysis radiation reached the photodetector. Water vapor concentration was
63 adjusted via a dryer, and the mixing ratio of humid air was precisely regulated using a mass flow
64 controller. Humidification of gas flow was achieved by passing the gas through a wash bottle filled
65 with ultrapure water. The humidity of the mixed air was measured using a dew point hygrometer
66 (HL-NT3-D, Rotronic).

67 The concentration of OH radical generated in the calibration source can be calculated by
68 measuring the effective absorption cross-section of O₂ (σ_{O_2}) and the concentration of O₃ following
69 this equation ⁷³:

$$70 \quad [OH] = [HO_2] = [O_3] \cdot \frac{[H_2O]\sigma_{water}}{2[O_2]\sigma_{O_2}} \quad (\text{Eq. S1})$$

71 Here, σ_{water} refers to the absorption cross-section of water ($7.14 \times 10^{-20} \text{ cm}^2$) ^{74,75}. To minimize
72 the influence of oxygen on the concentration of R• and RO• radicals, we applied extremely low O₂
73 concentrations in all experiments. Under these conditions, both box model calculations and actual
74 measurements indicated that the O₃ concentration was below the detection limit ($< 2.87 \times 10^{-3} \text{ ppt}$).
75 With the aid of a stable laser equipment, we first measured the ozone concentration to determine
76 the OH concentration at 6.75% O₂. Simultaneously, the signal intensity of OH (denoted as
77 [OH]_{count}) was recorded. Subsequently, we measured OH concentrations and recorded [OH]_{count}
78 under varying relative humidity and flow rates to establish their correlation, which was found to

79 be linear. This linear relationship allowed us to subsequently determine OH concentrations under
80 low O₂ conditions (<0.1 ppm) directly from the [OH]_{count} signal, without the need for further ozone
81 measurements.

82 The junction between the calibration source and the solid phase column inlet is a 1/2 Teflon
83 connection (Swagelok). We assume the inner wall of the cylindrical junction as very reactive
84 towards the trace gas because of the collision loss of gas and wall due to the diameter changes.
85 The wall loss rates inside the calibration source (k_{wall1}) and at the junction between the calibration
86 source and the solid phase column inlet (k_{wall2}) can be calculated using Eq. S2 and Eq. S3,
87 respectively ⁷⁶⁻⁷⁸.

$$88 \quad k_{wall1} = \frac{A}{V} \times \frac{2}{\pi} \times \sqrt{k_e D_g} \quad (\text{Eq. S2})$$

$$89 \quad k_{wall2} = 3.66 \times \frac{D_g}{r^2} \quad (\text{Eq. S3})$$

90 Where $\frac{A}{V}$ is the surface-area-to-volume ratio of calibration source equaling to 2.35 cm⁻¹; k_e is
91 the eddy diffusion coefficient of 0.0042 s⁻¹⁷⁹; D_g is the diffusion coefficient; r is the inner diameter
92 of the solid phase column inlet as 0.953 cm. The mean residence times inside the calibration source
93 and, in the junction part, are 0.10 s and 0.02 s, respectively. The total wall loss of radicals needs
94 to be corrected in the calculations. The wall loss rates and fractions of different species are shown
95 in Table S3.

96 Table S5 summarizes the relative uncertainties associated with the calibration-derived radical
97 concentrations. These uncertainties mainly arise from measurement errors, instrument
98 characteristics, and literature values. By propagating each individual uncertainty using Gaussian

99 error propagation, the total uncertainty in the calculated radical concentration for this system is
100 determined to be 6.67%.

101 S1.2.2 Potential Aerosol Mass-Oxidation Flow Reactor (PAM-OFR)

102 Experiments were also performed in a commercial Potential Aerosol Mass-Oxidation Flow
103 Reactor (PAM-OFR, Aerodyne Research, Inc., Billerica, Massachusetts, USA, hereafter referred
104 to as OFR). In this study, the OH OFR mode was used to investigate the oxidant of isoprene in the
105 absence of NOx at room temperature ($T = 298 \pm 1$ K) and ambient pressure ($P = 1003 \pm 2$ mbar)
106 under the laminar flow condition. Isoprene at a flow rate of 20 mL min^{-1} was mixed into the humid
107 synthetic air at a flow rate of 10 L min^{-1} before entering the OFR.

108 The total volume of the OFR is 13.3 L, and it consists of four low-pressure-Hg-lamp. High
109 concentrations of oxidants (OH and O₃) can be produced instantly by photolyzing O₃ and O₂, and
110 achieve hours to days of comparative photochemical aging in only minutes of actual time ⁸⁰. By
111 utilizing different mercury lamp wavelengths, three distinct OFR modes can be achieved: OFR254,
112 OFR185, and O₃ OFR. O₃ was produced from the irradiation of O₂ with a mercury lamp ($\lambda = 185$
113 nm) and was measured with an O₃ monitor (Thermo Scientific model 49i, USA). Excited oxygen
114 O¹D atoms are produced from UV photolysis of O₃ ($\lambda = 254$ nm) inside the OFR. The radical O¹D
115 then reacts with water vapor (introduced using a Nafion membrane humidifier; Perma Pure LLC)
116 to produce OH radicals in the flow tubes. Both O₃ and OH will oxidize organic species. OH
117 exposures were obtained by measuring the decay of SO₂ due to reaction with OH at specific UV
118 lamp intensities and O₃ concentrations. First, SO₂ was introduced with the lamps turned off until
119 its initial concentration (SO_{2,i}) remained constant at steady-state conditions. Then, the flow tube
120 and UV lamps were turned on and adjusted to a specific intensity. This condition was maintained

121 until the final SO_2 concentration ($\text{SO}_{2,f}$) at the OFR outlet remained constant. Then, this procedure
122 was repeated at several different conditions to obtain an OH exposure calibration. The OH
123 exposure at each condition is calculated using Eq. S4:

124
$$OH_{exp} = \frac{1}{k_{OH+SO_2}} \times \ln \left(\frac{SO_{2,i}}{SO_{2,f}} \right) \quad (\text{Eq. S4})$$

125 where $k_{OH+SO_2} = 9 \times 10^{-13} \text{ cm}^3 \text{ molec}^{-1}$ is the bimolecular rate constant between OH and SO_2 ⁸¹.
126 Equation S4 is the result of integrating the differential rate equation for SO_2 and assuming pseudo-
127 first order kinetics. Using this type of calibration procedure has two advantages. First, any potential
128 bias resulting from SO_2 wall losses cancels out. Second, no assumptions about SO_2 residence times
129 need to be made, since the OH exposure (product of the OH concentration and average residence
130 time) is determined directly from the initial and final SO_2 concentrations.

131 We used OFR185 mode in the experiments of mixed total 200 ppb 111 VOCs oxidation with
132 the resident time of 40s at a relative humidity of 6% ($\pm 1\%$), with the carrier gas as zero air. Typical
133 OH exposure was about 2.6×10^9 . Assuming an average atmospheric OH concentration of $1.5 \times$
134 $10^6 \text{ molec cm}^{-3}$ ⁸², this experimental exposure is equivalent to 0.68 hour (about 40 mins) of
135 atmospheric oxidation which is typically the lower limit of VOCs' lifetimes. Based on the
136 measured OH exposure and modeling calculation⁸⁰, OH radical was always the principal oxidant
137 except for α -pinene, which is 48% comparable to ambient value.

138 We used OFR185 mode in the experiments involving 500 ppb isoprene alone with liquid N_2 as
139 the carrier gas to produce high concentration of OH radical to avoid the influence of ozone. The
140 resident time is 80s, and the relative humidity is 15%. Typical OH exposure was about 1.5×10^9 ,
141 which is equivalent to 0.38 hour (about 22 mins) of atmospheric oxidation.

142 The wall loss of RO₂ radicals in the reaction system consists of two parts: one is inside the OFR
143 and the other is at the junction of the OFR and the solid phase column inlet, both of which can be
144 viewed as first-order reactions. The wall loss rates inside the OFR (k_{wall1}) and at the junction
145 between the OFR and the solid phase column inlet (k_{wall2}) can be calculated using Eq. S2 and Eq.
146 S3, respectively ⁷⁶⁻⁷⁸. The parameter $\frac{A}{V}$ is the surface-area-to-volume ratio of OFR equaling to 25
147 m⁻¹; k_e is the eddy diffusion coefficient of 0.0042 s⁻¹⁷⁹; D_g is the diffusion coefficient; r is the
148 inner diameter of the solid phase column inlet as 0.953 cm. The mean residence times inside the
149 OFR and in the junction part are 40s, 80 s and 0.02 s, respectively. The wall loss rates and fractions
150 of different species are shown in Table S4.

151 S1.2.3 Experiment Settings of radical-omics method

152 Oxidation of isoprene was selected as a proof-of-principle model in the system. The oxidation
153 reactions were conducted either in the custom-built calibration source or in the OFR, both
154 maintained at controlled ambient temperature (~28 °C), pressure, and relative humidity (ranging
155 from 5% to 60%). High-purity nitrogen served as the carrier gas, further purified through a
156 dedicated deoxygenation system to ensure a low-oxygen environment. Given the total
157 experimental gas flow rate of 20 L/min, eight Gas Clean Oxygen Filter tubes (YJ-O100) were
158 employed in parallel to maintain efficient oxygen removal, accounting for the influence of high
159 flow rates on deoxygenation efficiency. Each filter consists of an acrylic outer shell, a glass inner
160 sleeve, a palladium/manganese oxide deoxidizing agent, and stainless-steel connectors. The
161 internal dimensions are 4 cm in diameter, 28 cm in length, and 351.86 cm³ in volume, with a
162 maximum flow rate of 5 L/min. The filters achieve residual oxygen concentrations below 0.1 ppm
163 under ambient conditions when treating nitrogen with an initial O₂ content below 1 ppm and at

164 flow rates under 5 L/min. As confirmed in SI Section S1.2.4, the oxygen concentration in the gas
165 stream was maintained below 0.1 ppm. The UV lamp used for OH radical production was
166 stabilized for at least 30 minutes under a continuous flow of high-purity nitrogen. Simultaneously,
167 purified water in a bubbler was purged with high-purity nitrogen at 5 L/min for at least 30 minutes
168 to efficiently remove dissolved oxygen. This setup ensured sufficiently short residence times and
169 low O₂ concentrations for effective gas-phase radical trapping. After deoxygenation, isoprene was
170 introduced into the system and maintained at 0.5 ppm, providing an excess reactant for OH
171 oxidation.

172 A solid-phase column was connected to the oxidation system via a 1/2-inch Teflon connector
173 (Swagelok) to capture the generated radicals. Within the column, purified trapping agents—
174 DMPO, TEMPO, or CHANT, as described in Section S1.2.6—were non-covalently bound to a
175 solid polymer matrix, ensuring high sampling efficiency. To prevent photolysis of the trapped
176 radicals and other side reactions, the column was completely wrapped in aluminum foil. For
177 consistency in sensitivity and stability of the trapping reactions across experimental runs, the
178 column temperature was maintained at 30 °C using a precision-controlled spiral heating tape. In
179 the photolysis region of the calibration source, isoprene underwent oxidation, generating reactive
180 radicals within ~0.011 seconds. These intermediates subsequently reacted through inter- and
181 intramolecular pathways in the dark for an additional ~0.109 seconds before being efficiently
182 captured by the solid-phase trapping agents. After sample collection, 5 mL of methanol was used
183 to elute the trapped radicals from the column. A 40 µL aliquot of the eluate was analyzed by
184 UHPLC-Orbitrap-MS (Thermo Fisher Scientific, Bridgewater, NJ, USA) and subsequently
185 quantified by UPLC-MS/MS (Waters, Milford, USA), according to the procedures outlined in
186 Section S1.3.

187 The absolute concentrations of the target adduct in the elution could be calculated via the
188 comparison with the relative synthetic standard samples. After that, we could calculate the gas
189 phase concentrations of $\cdot\text{C}_5\text{H}_8(\text{OH})$ and $\cdot\text{C}_5\text{H}_7$ radicals by the following equation:

190 $[\text{Radical}_g] = [C_l] \cdot \frac{[V_e]RT}{PM_r V_s}$ (Eq. S5)

191 where $[\text{Radical}_g]$ is the concentration of radical in the gas phase; $[C_l]$ is the captured compounds
192 concentration in the elution; $[V_e]$ is the volume of the elution as 5 mL; R is the gas constant; T is
193 the temperature; P is the pressure, M_r is the molecular mass of the captured compound, for
194 TEMPO- $\text{C}_5\text{H}_8(\text{OH})$ as 241.275 and DMPO- C_5H_7 as 181.147; V_s is the total volume of sample gas
195 flow.

196 S1.2.4 Detection of the Oxygen Concentration

197 The oxygen concentration in nitrogen gas, both from the original cylinder and after
198 deoxygenation, was measured using a gas chromatograph equipped with a plasma emission
199 detector (PED) (LDetek, Canada). During measurement of the nitrogen passing through the
200 deoxygenation tube, the flow rate was set at 2 L/min to match experimental conditions, and a three-
201 way valve was used to divert gas for oxygen detection. Measurements were performed with the
202 Multidetek2 system (LDetek, Canada) using high-purity argon (>99.9999%) as the carrier gas,
203 with a carrier flow rate of 25 mL/min and a sample flow rate of 0.6 mL/min. Gas separation was
204 achieved with a 5A (13 \times) molecular sieve column. The instrument parameters were as follows:
205 oven 1 temperature, 80 °C; oven 2 temperature, 70 °C; HCD temperature, 45 °C; detector
206 temperature, 60 °C; and analysis time, 300 s. Measurement of the oxygen concentration in nitrogen
207 gas was assisted by the National Institute of Metrology, China. The oxygen concentration in

208 nitrogen directly from the cylinder was determined to be 0.51 ppm, while the concentration after
209 deoxygenation was below 0.1 ppm.

210 The oxygen concentration in isoprene was measured using an Agilent 8890 gas chromatograph
211 equipped with a helium ionization detector (Agilent Technologies, Inc., USA). The calibration
212 standard was a primary standard gas (0.993 ppm O₂) from the National Institute of Metrology. The
213 column configuration included: column 1, HP-PlotQ capillary (30 m × 0.32 mm × 20 µm); column
214 2, MS 5A capillary (30 m × 0.53 mm × 50 µm); columns 3 and 4, Hayesep Q packed columns. The
215 column and detector temperatures were set at 40 °C and 60 °C, respectively. This analysis was
216 supported by Sichuan Zhongce Standard Technology Co., Ltd, China. The measured oxygen
217 concentration in isoprene used for this study was 1.62 ppm. For the experiments, isoprene was
218 introduced at 20 mL/min in a total flow of 20 L/min in the calibration source, and at 20 mL/min in
219 a total flow of 10 L/min in the OFR. In both cases, the total oxygen concentrations were maintained
220 below 0.1 ppm, which was also the value used in the box model simulations.

221 S1.2.5 Quantification Controls (QCs)

222 To ensure the correct identification and accurate quantification, strict QCs were implemented in
223 our study. The experiments were carried out in the high-efficiency particulate absorbing (HEPA),
224 positive-pressure, and carbon-filtered clean air lab to minimize blank contamination. All glass
225 equipment was cleaned and rinsed with DCM and n-hexane three times before use. After the
226 preparation of solid phase capture column, the columns were sealed with sealing film (Parafilm®)
227 and secondary seal in a cleaned Ziploc bag. Different concentrations of the synthetic samples were
228 measured and standard curves were plotted in every batch of experiments to correct for variability
229 due to the instrument response.

230 S1.2.6 The Preparation of Solid-phase Capture Column

231 Although the purification of commercially purchased DMPO and TEMPO were at high levels
232 (98%), we still detected high impurities of radical adducts possibly formed during their production,
233 which greatly interfered our analysis. Therefore, working standard solutions of DMPO and
234 TEMPO were freshly prepared by HPLC purification process in every batch of experiment. Briefly,
235 0.2 g DMPO or TEMPO were dissolved in 1 mL loading buffer (Loading buffer was MeOH:H₂O
236 = 1:1). The analytical HPLC system consists of two Shimadzu LC-20AT solvent pumps, an CBM-
237 20Asystem controller, a Prominence SPD-20A diode array detector performing the wavelength
238 scanning from 190 to 400 nm, a manual sample injection valve with a 1 mL loop and an LC
239 Solution workstation for data acquisition and process (Shimadzu, Japan). The samples were
240 separated and analyzed by a reversed phase InertSustain[®] C18 (250 mm × 4.6 mm i.d., 5 µm,
241 Shimadzu, Kyoto, Japan) column. The mobile phase was consisted of A (water) and B (methanol),
242 which was programmed as follows: 0-3 min, 10% B; 3-30 min, 10-100% B; 30-35 min, 100% B;
243 35-36 min, 100-10% B; 36-40 min, 10% B. The flow rate was 2 mL/min while the ambient
244 temperature was controlled at 20 °C by air conditioner. The data collection time, sampling interval,
245 response time and pool temperature were 0-36.1 min, 500 msec, 1.0 sec and 40 °C, respectively.
246 For DMPO, the chromatograms were acquired at 270 nm and 275 nm. For TEMPO, the
247 chromatograms were acquired at 450 nm and 435 nm. Then 2 ml of purified DMPO or TEMPO
248 were collected. Finally, the purified DMPO or TEMPO were diluted to 20 mL with water for
249 trapping of radicals.

250 The radical capture device in this study was capture column, which consisted of a 5 cm 1/2 outer
251 diameter Teflon tube, a 3cm 1/4 outer diameter Teflon tube, a 1/2 to 1/4 turn Teflon tube connector,
252 80 mg CNW Poly-Sery HLB Pro sorbent (ANPEL Laboratory Technologies (Shanghai) Inc.,

253 Shanghai, China), and a 6 mL PE frit (ANPEL Laboratory Technologies (Shanghai) Inc., Shanghai,
254 China). The HLB sorbent was filled into a 1/2 outer diameter Teflon tube, with a PE frit attached
255 and tightly sealed with a Teflon tube connector connected to a 1/4 tube. The HLB sorbent was
256 activated with 15 mL MeOH and 15 mL distilled water. The purified capture agent solution
257 (DMPO, TEMPO or CHANT) were loaded on the column, and the sorbents were then dried under
258 gentle nitrogen to remove the water, thus completing the preparation of the capture column.

259 S1.2.7 Sampling Efficiencies of Capture Column

260 To evaluate the capture efficiency of the capture column, 750 mg of sorbent was packed and
261 divided into three segments, with each segment analyzed separately to assess sampling efficiency.
262 After radical capture, the column was carefully disassembled to prevent sorbent loss. Trapped
263 radicals were eluted from each segment by adding 5 mL of methanol to the collection vessel. The
264 eluate was filtered using a hydrophobic PTFE needle filter (ANPEL Laboratory Technologies,
265 Shanghai, China) to remove any sorbent particles. A 40 μ L aliquot of the filtered solution was then
266 subjected to UHPLC-Orbitrap-MS analysis to determine the capture efficiency of the column. Due
267 to their short life-time and high activity, radicals have already reacted completely before reaching
268 the third segments. Therefore, the third segment was used as a blank. And the capture efficiency
269 (α) was calculated as follow:

270
$$\alpha = 1 - \frac{C_1}{C_0} = 1 - \frac{1}{m}$$
 (Eq. S6)

271 Where C_0 and C_1 was the concentration of radicals before and after being captured by the sorbent,
272 respectively, the mass spectrum peak area A_1/A_2 was set as m , and A_1 and A_2 was the mass
273 spectrum peak area of captured radicals from the first and second segment, respectively. And for

274 TEMPO, the efficiency for capturing C₅H₉O, C₅H₉O₃, C₅H₇O and C₅H₇O₂ was 99.58%, 86.59%,
275 87.98%, and 100%, respectively. For DMPO, the efficiency for capturing C₅H₉O, C₅H₉O₃, C₅H₇,
276 C₅H₇O and C₅H₇O₂ was 100%, 100%, 100%, 96.04% and 100%, respectively.

277 S1.2.8 Kinetic Reactions Between Capture Agents, Oxygen and Radicals

278 Allylic radicals (U[•]) such as •C₅H₈(OH) and •C₅H₇ in the gas flow react with O₂ and each other
279 to produce further products. In the moment of reaching out with capture agents (T) doped on the
280 filter, competitive reactions occur and therefore the following equations:

283 Because of the high concentration of oxygen and capture agents, we can assume they are both
284 quasi-first-order reaction. Thus, after the calculation, we got the concentration of adducts as:

285 $[UT] = [U^{\cdot}] \frac{k_2[T^{\cdot}]}{k_1[O_2] + k_2[T^{\cdot}]} (1 - e^{(k_1[O_2] + k_2[T^{\cdot}])t})$ (Eq. S7)

286 Where the exponential operator is infinitely close to 1 because of the large reaction rate k₁ and
287 k₂ and the excess oxygen and T[•]. In this condition, the concentration of adducts only relate to the
288 competitive reaction rates of radical with oxygen. The captured concentration of •C₅H₇ increased
289 with decreasing residence time (RT) shown in the Fig. S23 further unveiled the higher rate of
290 •C₅H₇ with O₂ than •C₅H₈(OH). In the moment of these radicals reached out for the capture agents,
291 lower ratio of •C₅H₇ could be captured by TEMPO because of its higher rate with oxygen than
292 •C₅H₈(OH). DMPO and CHANT, on the other hand, although have higher reaction rates with

293 •C₅H₇, their adducts were also detected as lower concentration before the dioxygen producer as
294 shown in Fig. S11.

295 S1.2.9 Nearest Neighbor Simulation (NNS) Method

296 To accurately interpret the experimental results, it was essential to ensure that the measured
297 concentrations of the captured adducts truly reflected their original branching ratios. To evaluate
298 the true branching ratio in the system, we used the explicit isoprene oxidation mechanism ⁸³ to
299 inverse the branching ratio. We then utilized Nearest Neighbor Simulation (NNS) to determine the
300 initial branching ratios of the four isomeric radicals as 1-OH cis, 1-OH trans, 4-OH cis and 4-OH
301 trans. Because of the lack of the other two isomers in the mechanism, we omitted their yield which
302 is smaller than 5%. A total of 9,751 branching ratio scenarios were evaluated by comparing
303 simulated and experimentally measured concentration ratios. The scenario yielding the smallest
304 deviation was identified as the most accurate representation of the initial branching ratios, as
305 shown in Figure S10.

306

307 S1.3. Analysis of Captured Radicals

308 S1.3.1 UPLC-Orbitrap-MS Analysis

309 Nontargeted radical profiling UPLC-HRMS analysis was carried out on an Thermo Vanquish
310 UPLC system coupled with Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, U.S.A.)
311 equipped with a heated electrospray ionization (HESI) source. An ACQUITY UPLC® CSH™
312 Fluoro-Phenyl column (2.1 × 100 mm, 1.7 µm particle; Waters) and a mobile phase containing (A)
313 MeOH and (B) ultrapure water were also employed, with a flow rate of 0.3 mL min⁻¹, to separate

314 the substances with extremely similar polarities. The column and sampler temperatures were
315 maintained at 40 °C and 4 °C, respectively. A total of 5 µL of each sample was injected into the
316 column. The gradient elution program was as follows: the A phase remained at 95% for 1 minutes,
317 then linearly decreased from 95% to 66% from 1 to 2 min and was maintained at 66% from 2 to
318 13 min; then the A phase linearly decreased from 66% to 0% from 13 to 23 min, and after that, the
319 column was re-equilibrated with 95% B for 2 min before the next injection.

320 The Orbitrap-MS was operated in positive mode (ESI⁺). The mass spectra were collected in
321 Full-MS ddMS2 analysis with top five ions from each MS1 scan being selected for MS/MS
322 fragmentation. To further identify the structures, MS/MS spectra were obtained by PRM mode
323 with inclusion list consisted of compounds of interest. MS1 spectra (*m/z* 50-500) were recorded
324 with inclusion list consisted of compounds of interest. MS1 spectra (*m/z* 50-500) were recorded at
325 resolution of 70,000, with a maximum of 1×10^6 ions collected within 100 ms. MS/MS spectra
326 were obtained with an isolation window of 2 *m/z* and the resolution of 17,500. The normalized
327 collisional energy of higher-energy collisional dissociation was set to 10, 30, and 50. The
328 optimized heated ESI source parameters were set as follows: the spray voltages, 3.5 kV; the
329 capillary temperature, 320 °C; the sheath gas flow rate, 40 Arb; the auxiliary gas flow rate, 10 Arb;
330 the auxiliary gas heater temperature, 300 °C; the sweep gas flow rate, 2 Arb; and the S-lens radio
331 frequency (RF) level, 50. Thermo Xcalibur Qual Browser (Thermo Fisher Scientific, USA) was
332 employed for visualization, processing, and interpretation of mass data.

333 S1.3.2 Non-Targeted Identification of Trapped Radicals

334 Thermo Xcalibur Qual Browser (Thermo Fisher Scientific, USA) was employed for
335 visualization, processing, and interpretation of mass data. Progenesis QI 2.3 software (Waters,

336 USA) was employed to perform the chromatographic peak alignment, picking, and normalization.
337 The picked signals were further proceeded with an intensity more than 10 times that of the
338 corresponding peak from the procedural blank. The molecular formulas corresponding to the
339 signals were determined based on ion mass errors lower than 5 ppm. In this study, TEMPO, DMPO
340 and CHANT trapped various radicals to explore its potential application in the identification of
341 radicals. The most abundant fragmentation ions of TEMPO-radical adducts were at m/z of 126.13
342 or 140.14, which is generated by the loss of TEMPO group from the adduct. Similarly, the most
343 abundant fragmentation ions of DMPO-radical adducts were at m/z of 114.09 or 98.10, generated
344 by the loss of DMPO. The CHANT-radical adducts generated fragmentation ions of m/z 83.09 or
345 152.11 via loss of its component (C_6H_{11} or $C_9H_{14}ON$ group). Therefore, the characteristic ions of
346 each trapping agents were used in the MS/MS analysis to identify the potential radicals trapped in
347 our system.

348 S1.3.3 Targeted Identification of Trapped Radicals

349 To confirm the origin of $[DMPO-C_5H_7+2H]^+$, and referring to the calculations of Ma, et al.⁸⁴,
350 we additionally detected its subsequent oxidation products. including O_2 -adduct peroxy radicals
351 $[DMPO-C_5H_7O_2+2H]^+$ (m/z=214.14377), cyclized dioxolane radicals $[TEMPO-C_5H_7O_2+H]^+$
352 (m/z=256.19072), alkoxyl radicals $[DMPO-C_5H_7O+2H]^+$ (m/z=256.19072), a possible oxetane-
353 substituted methyl radicals $[TEMPO-C_5H_7O+H]^+$ (m/z=240.1958), its O_2 -adduct peroxy radicals
354 $[DMPO-C_5H_7O_3+2H]^+$ (m/z= 230.13868), and the allylic radicals formed after peroxy radicals'
355 H-shift reaction $[TEMPO-C_5H_7O_3+H]^+$ (m/z=272.18563). All these products were further infused
356 into the HESI- Orbitrap-MS in a positive ion mode to explore their fragmentation. The molecular
357 mass of $[DMPO-C_5H_7O_2+2H]^+$ were found as precursor ions, and regular and intense product ions
358 with 55.06, 114.09, 214.14 were observed. Similarly, the molecular mass of $[DMPO-C_5H_7O+2H]$

359 $^{+}$ were found as precursor ions, and regular and intense product ions with 81.07, 98.10, 198.15
360 were observed. The product ion of 98.10 and 114.09 were considered to cause a loss of DMPO in
361 the DMPO trapped radicals. Compound $[\text{TEMPO-C}_5\text{H}_7\text{O}_2+\text{H}]^{+}$ and $[\text{TEMPO-C}_5\text{H}_7\text{O}+\text{H}]^{+}$ were
362 also found as precursor ions, respectively. The product ion of 126.13 was derived from the TEMPO
363 of the TEMPO trapped radicals. The identification of these oxidation products further supports our
364 assignment of the peak at retention time 5.77 min as the captured $\cdot\text{C}_5\text{H}_7$ radical. The products from
365 $\cdot\text{C}_5\text{H}_7$ follow the similar line of $\cdot\text{C}_5\text{H}_9\text{O}$ oxidation. Peroxyl radical $\text{C}_5\text{H}_7\text{O}_2\cdot$ produces cyclized
366 dioxolane radical and alkoxy radical under no NO_x condition. Alkoxy radical undergoes
367 cyclization⁸⁵ reaction to oxetane-substituted methyl radical. Visible ratio of $\text{C}_5\text{H}_7\text{O}\cdot$ to $\text{C}_5\text{H}_7\text{O}_2\cdot$
368 under no NO_x condition indicated the possibility of a new reaction pathway involving the
369 generation of RO \cdot radicals, and followed by rapid 1,5-HAT, β -scission, or cyclization, potentially
370 leading to R \cdot radical formation in the atmosphere. What's more, in the line of $\cdot\text{C}_5\text{H}_7$ oxidation, the
371 cyclization pathway do not fully align with the $\cdot\text{C}_5\text{H}_9\text{O}$ oxidation, suggesting that additional
372 reaction pathways may generate new products contributing to secondary organic aerosol (SOA)
373 formation, particularly in environments where highly oxygenated molecules (HOMs) or IEPOX-
374 like products may form⁸⁴.

375 S1.3.4 UPLC-MS/MS Analysis

376 Targeted quantification of trapped radical analysis was carried out on a ACQUITY UPLC
377 coupled with Xevo TQXS triple quadrupole mass spectrometry (Waters, Milford, USA) equipped
378 with an electrospray ionization (ESI) source. An ACQUITY UPLC[®] CSHTM Fluoro-Phenyl
379 column (2.1 × 100 mm, 1.7 μm particle; Waters) and a mobile phase containing (A) ultrapure water
380 and (B) MeOH were employed for chromatographic separation, with a flow rate of 0.3 mL min⁻¹,
381 to obtain the abundant responses of the targeted trapped radicals. The column and sampler

382 temperatures were maintained at 35 °C and 8 °C, respectively. A total of 2 µL of each sample was
383 injected into the column. The gradient elution program was as follows: the B phase remained at
384 5% for 1 minutes, then linearly increased from 5% to 34% from 1 to 4 min and maintained at 34%
385 from 4 to 12 min. Then, the B phase linearly increased from 34% to 100% from 12 to 23 min.
386 After that the column was re-equilibrated with the initial mobile phase composition for 2 min
387 before the next injection.

388 The MS/MS was operated in positive mode (ESI⁺). The mass spectra were collected in multiple-
389 reaction monitoring (MRM) mode. The parameters were set as follow: the capillary voltage, 3 kV;
390 the cone voltage, 30 V; the source offset voltage, 30 V; the source temperature, 150 °C; the
391 desolation temperature, 500 °C; the cone gas flow rate, 1,200 L/Hr; the collision gas flow rate,
392 0.15 mL/min; the nebulizer gas flow, 7 Bar. The data were obtained and analyzed using MassLynx
393 V4.2 software (Waters, Milford, USA).

394 S1.3.5 Standard curves of captured compounds

395 The concentrations of captured radicals were quantified relative to the synthesized standard
396 sample. The synthesized standard samples were diluted with methanol into solutions of different
397 concentrations: six different concentrations of mixed standard solutions of 1-OH Ta and 1-OH Tb
398 between 0.1 ng/mL and 20 ng/mL, six different concentrations of mixed standard solutions of 4-
399 OH Ta and 4-OH Tb between 0.05 ng/mL and 10 ng/mL, and six different concentrations of
400 standard solution of DMPO-C₅H₇ between 0.1 ng/mL and 10 ng/mL. All stock solutions were
401 stored at -80 °C, and a series of diluted solutions were stored at -20 °C. During each mass
402 spectrometry analysis, the same method was used to analyze a series of standard solutions of
403 different concentrations. The concentration of each part in the mixed standard sample was

404 determined based on the average proportion of signal response intensity. Standard curves between
405 signal response intensity and concentrations were obtained from standard solutions of different
406 concentrations. For each experiment, all curves provided adequate linearity ($R^2 > 0.995$). Figure
407 S2 showed the standard curve used in a certain experiment.

408

409 **S1.4. Theoretical Methods and Modeling Calculation**

410 S1.4.1 Quantum Chemical Calculation.

411 Structures were fully optimized at the UB3LYP-D3/6-31+G(d,p) level of theory. For the
412 isomerization reactions, vibrational frequency calculations were performed to make sure that there
413 is zero (one) imaginary frequency for minimum (transition state) structures. In addition, intrinsic
414 reaction coordinate (IRC) was performed at same level to check the connectivity among reactant,
415 product and transition state. All these calculations were performed using the Gaussian 16 program
416 ⁸⁶.

417 S1.4.2 Rate Constant Calculations

418 All rate constant calculations k were performed using a Master Equation Solver for Multi
419 Energy-well Reactions (MESMER) code ⁸⁷. For the barrierless TEMPO+C₅H₉O reactions,
420 conventional TST and variational TST are not appropriate because the reaction coordinated is not
421 well-defined, a situation which is typical of association reactions between two pen-shell species ⁸⁸.
422 Therefore, the associated k rate constants for the barrierless bimolecular reactions were evaluated
423 by the Inverse Laplace Transform (ILT) method of the modified Arrhenius form of the

424 experimental high-pressure association rate coefficient ⁸⁹. The general ILT method can be
425 represented in Eq. S7:

426 $k^\infty(\beta) = A^\infty \left(\frac{1}{\beta}\right)^{n^\infty} \exp(-\beta E^\infty)$ (Eq. S7)

427 Where $k^\infty(\beta)$ is the high pressure limiting rate coefficient; $\beta = 1/kT$; A^∞ is the preExponential,
428 and n^∞ is the infinity; T was set to 300K; A^∞ was set to $6.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$; E^∞ and n^∞
429 are both set to 0, which are identical to those used previously ^{90,91}. The input parameters for
430 electronic geometries, vibrational frequencies, and rotational constants were calculated at
431 UB3LYP-D3/6-31+G(d,p) level.

432 S1.4.3 Box Model Settings

433 To evaluate the true branching ratio in this no chemical equilibrium system, we used the MCM
434 v3.3.1 isoprene oxidation mechanism to inverse the branching ratio. Given the low oxygen
435 concentration in our study, its impact was accounted for in the correction of KDEC, a generic rate
436 coefficient applied to hydroxyalkoxy species decomposition. Parameters such as temperature,
437 pressure, photolysis time, residence time, and dilution coefficient were input into the kinetic box
438 model.

439 S1.4.4 CAM-Chem Simulation

440 We use the Community Earth System Model/Community Atmosphere Model with chemistry
441 version 2.2.0 (CAM-Chem) to investigate the impact of an updated isoprene oxidation mechanism
442 on the global radical budget and secondary organic aerosol (SOA) formation ^{92,93}. The CAM-Chem
443 simulations are conducted at a horizontal resolution of $1.25^\circ \times 0.95^\circ$ with 32 vertical layers.

444 Meteorological fields are nudged to the Modern-Era Retrospective Analysis for Research and
445 Applications, Version 2 (MERRA-2). Anthropogenic and biomass burning emissions are
446 consistent with the Coupled Model Intercomparison Project Phase 6 (CMIP6)⁹⁴⁻⁹⁶. Biogenic
447 NMVOC emissions are calculated online using the Model of Emissions of Gases and Aerosols
448 from Nature (MEGAN) v2.1⁹⁷. We conduct three simulations using identical emissions but varying
449 chemical mechanisms. The baseline simulation is configured with the MOZART-TS2 mechanism
450⁹⁸. The second simulation incorporates an updated TS2 mechanism with hydrogen abstraction
451 pathway and the corrected branching ratio of OH addition allylic radical. All simulations results
452 are performed average values for the period 2011–2013.

453 Beyond SOA precursors discussion in the manuscript, the shift in branching ratios exerts
454 broader impacts on atmospheric oxidative balance. The redistribution of oxidation flux away from
455 IEPOX suppresses one known HO_x recycling pathway associated with IEPOX multiphase
456 processing. As illustrated in Figure S20, model simulations capture regional variations in OH
457 production rates, with decreases over isoprene-rich humid tropics such as the Amazon, Congo
458 Basin, Maritime Continent, and Southeast Asia where IEPOX-driven HO_x recycling is diminished.
459 In contrast, moderate increases appear over subtropical and temperate regions such as East Asia,
460 South Asia, and the southeastern United States, reflecting the net response of the altered oxidation
461 network. While the current model framework does not explicitly resolve potential secondary
462 radical cycling involving H-abstraction-derived products, the chemical structure of these di-
463 carbonyls suggests possible reactivity in both aqueous-phase and multiphase radical networks,
464 potentially contributing additional HO_x regeneration and SOA formation under specific conditions.
465 Further laboratory and mechanistic studies are required to quantify these pathways, particularly
466 under tropical convective conditions. In addition to the spatial responses, global mean diagnostics

467 indicate that the incorporation of H-abstraction induces limited changes in the global OH
468 concentration (Table S6). However, regional redistribution of isoprene oxidation flux reduces
469 IEPOX while enhancing highly oxygenated intermediates, potentially elevating aqueous SOA
470 formation in susceptible regions.

471

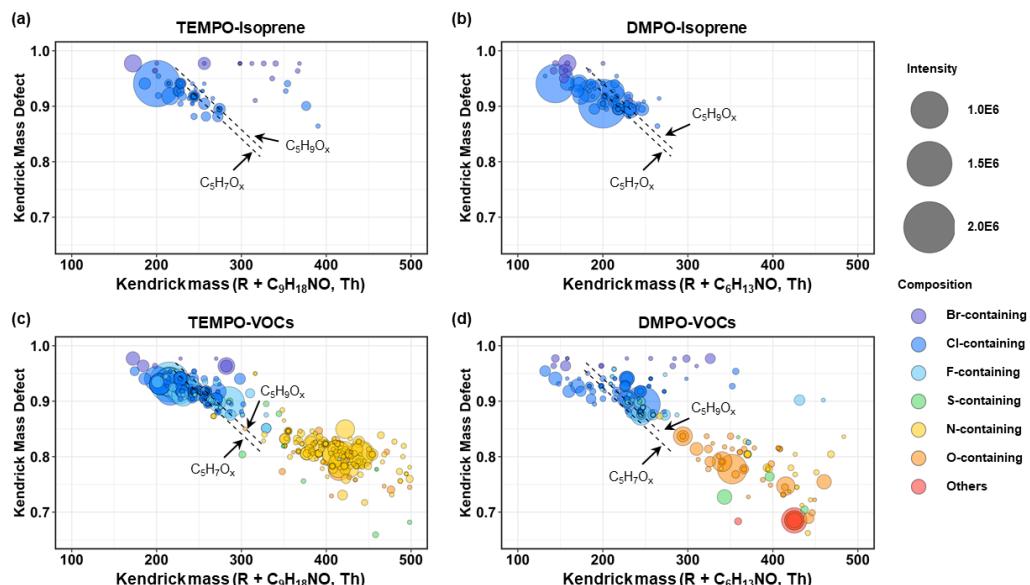
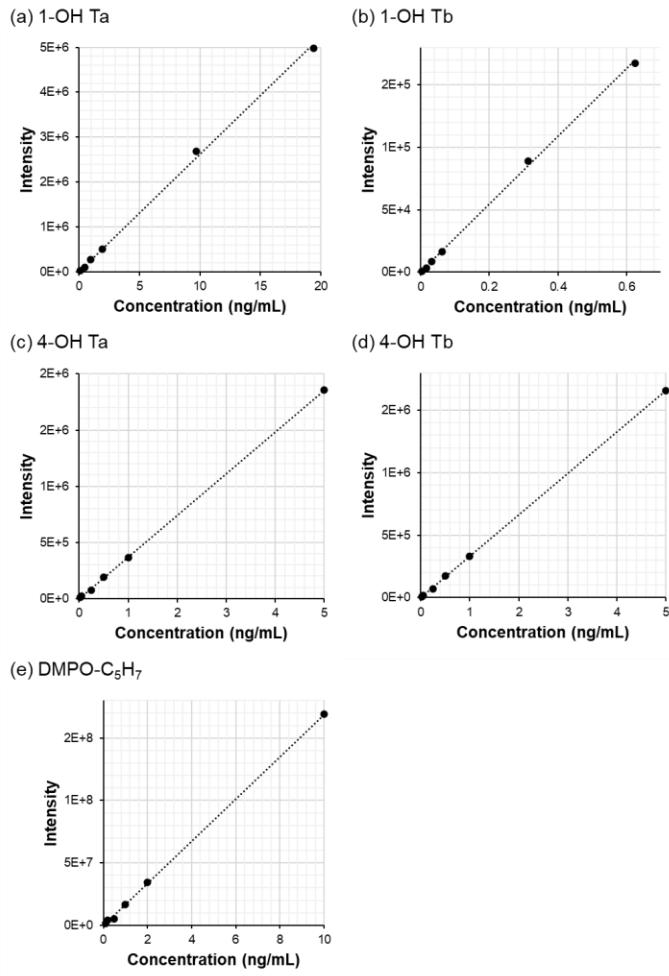
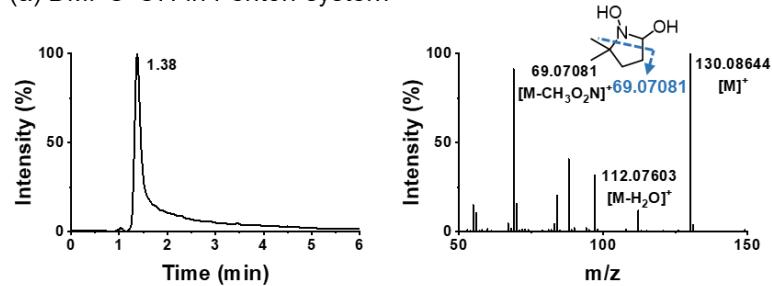


473
474

Figure S1. Kendrick mass–defect fingerprints of radical adduct formed during OH oxidation.

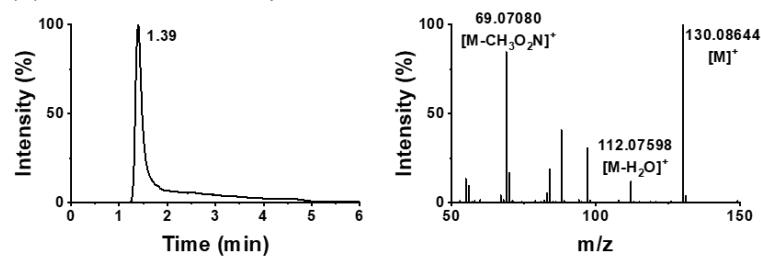
475 (a) TEMPO–isoprene; (b) DMPO–isoprene; (c) TEMPO–mixed VOCs; (d) DMPO–mixed VOCs.

476 The x-axis is the Kendrick mass (Th) after adding the trap mass to the radical: $R + C_9H_{18}NO$ for
 477 TEMPO and $R + C_6H_{13}NO$ for DMPO. The y-axis is the Kendrick mass defect (KMD). Each circle
 478 denotes a uniquely assigned radical adduct (R-TEMPO or R-DMPO). Symbol area scales with
 479 ion signal (reference sizes at right: 1.0×10^6 , 1.5×10^6 , 2.0×10^6 abundance). Colors indicate
 480 elemental classes (legend at lower right: Br-, Cl-, F-, S-, N-, O-containing, and others meaning
 481 C_xH_y species). Dashed arrows highlight two recurrent homologous families, $C_5H_9O_x$ and $C_5H_7O_x$
 482 ($x=0-5$). The $C_5H_9O_x$ cluster is consistent with adducts of OH-addition-derived allylic radicals,
 483 whereas the $C_5H_7O_x$ cluster indicates hydrogen-abstraction-derived carbon-centered radicals
 484 ($\cdot C_5H_7$). The same two trends appear in both single-precursor (isoprene) and mixed-VOC
 485 experiments and for both traps, demonstrating methodological consistency and providing a unified,
 486 omics-style fingerprint of early-stage radical chemistry.

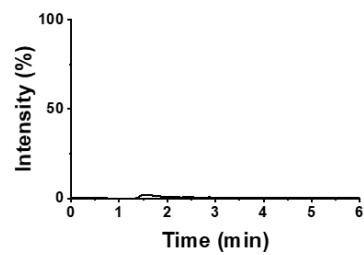
487



488

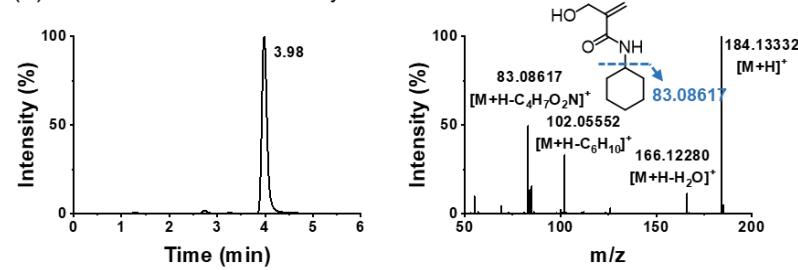

489 Figure S2. Standard curves of each TEMPO-C₅H₉O and DMPO-C₅H₇ standard samples in a certain
490 experiment. The standard curves were calculated in every batch of experiment, we just showed
491 one of them here. (a) 1-OH Ta: Intensity = 260741 × Concentration (ng/mL) + 14457 ($R^2=0.9987$).
492 (b) 1-OH Tb: Intensity = 271456 × Concentration (ng/mL) + 116.21 ($R^2=0.999$). (c) 4-OH Ta:
493 Intensity = 372084 × Concentration (ng/mL) - 3471.1 ($R^2=0.9999$). (d) 4-OH Tb: Intensity =
494 332100 × Concentration (ng/mL) - 1738 ($R^2=0.9999$). (e) DMPO-C₅H₇: Intensity = 16985608 ×
495 Concentration (ng/mL) - 541201 ($R^2=0.9994$). The concentration of 1-OH Tc and 4-OH Tc in
496 sample was calculated according to the standard curves of 1-OH Ta and 4-OH Ta, respectively.

497

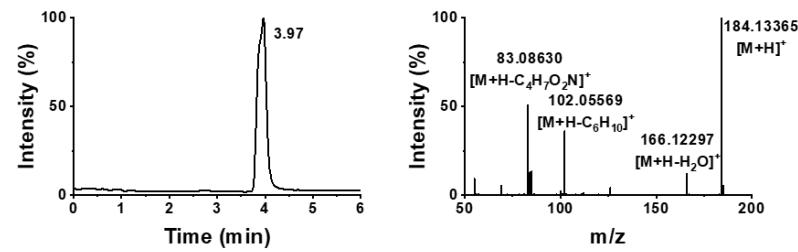

(a) DMPO-OH in Fenton system

(b) DMPO-OH in Sample

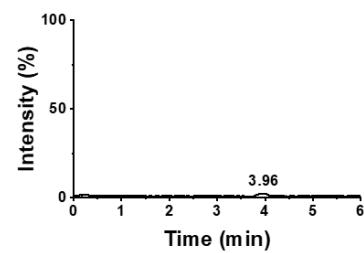
(c) Blank



498

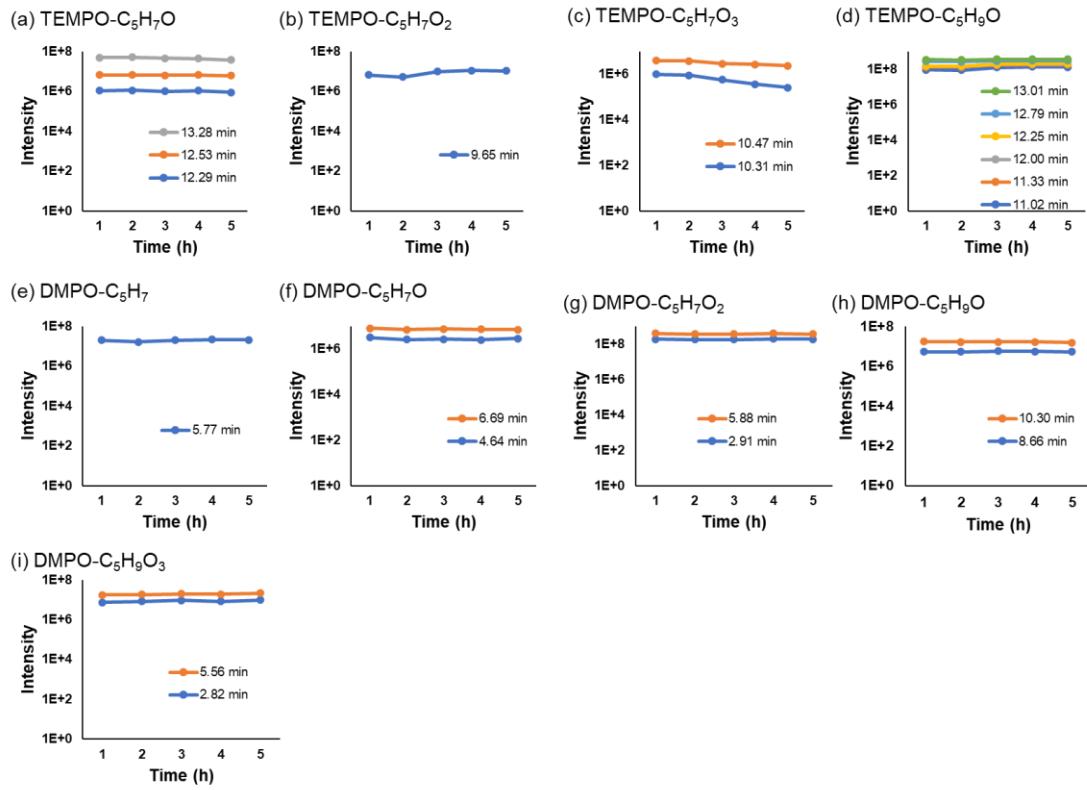

499 Figure S3. Radical OH standard in the Fenton-reaction system and the gas phase sample. (a) The
500 peak of DMPO-OH generated through Fenton-reaction system was eluted at 1.38 min. Compared
501 to this standard solution, the characteristic peak was also occurred (b) when using DMPO to
502 capture the products of gas phase isoprene and OH in calibration source. The process blank (c)
503 also indicated this peak was related to DMPO-OH.

504


505 (a) CHANT-OH in Fenton system

507 (b) CHANT-OH in Sample

509 (c) Blank

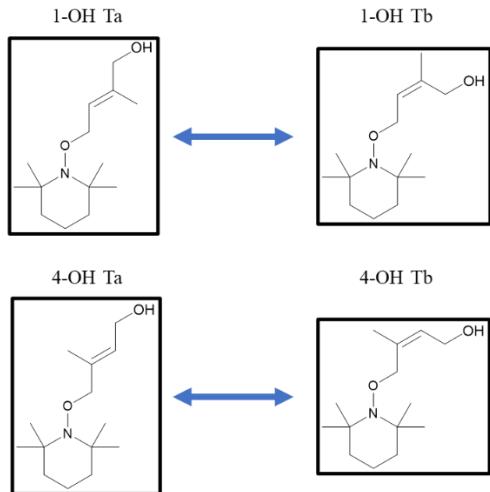


511 505

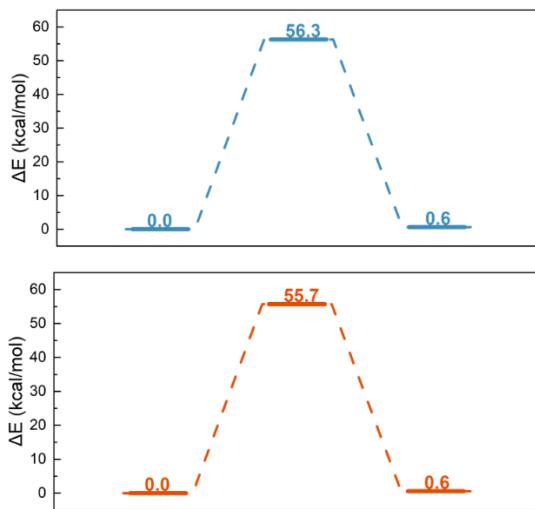
512 506 Figure S4. Radical OH standard in the Fenton-reaction system and the gas phase sample. (a) The
513 507 peak of CHANT-OH generated through Fenton-reaction system was eluted at 3.98 min. Compared
514 508 to this standard solution, the characteristic peak was also occurred (b) when using CHANT to
515 509 capture the products of isoprene and OH in calibration source. The process blank (c) also indicated
516 510 this peak was related to CHANT-OH.

517 511

518 512

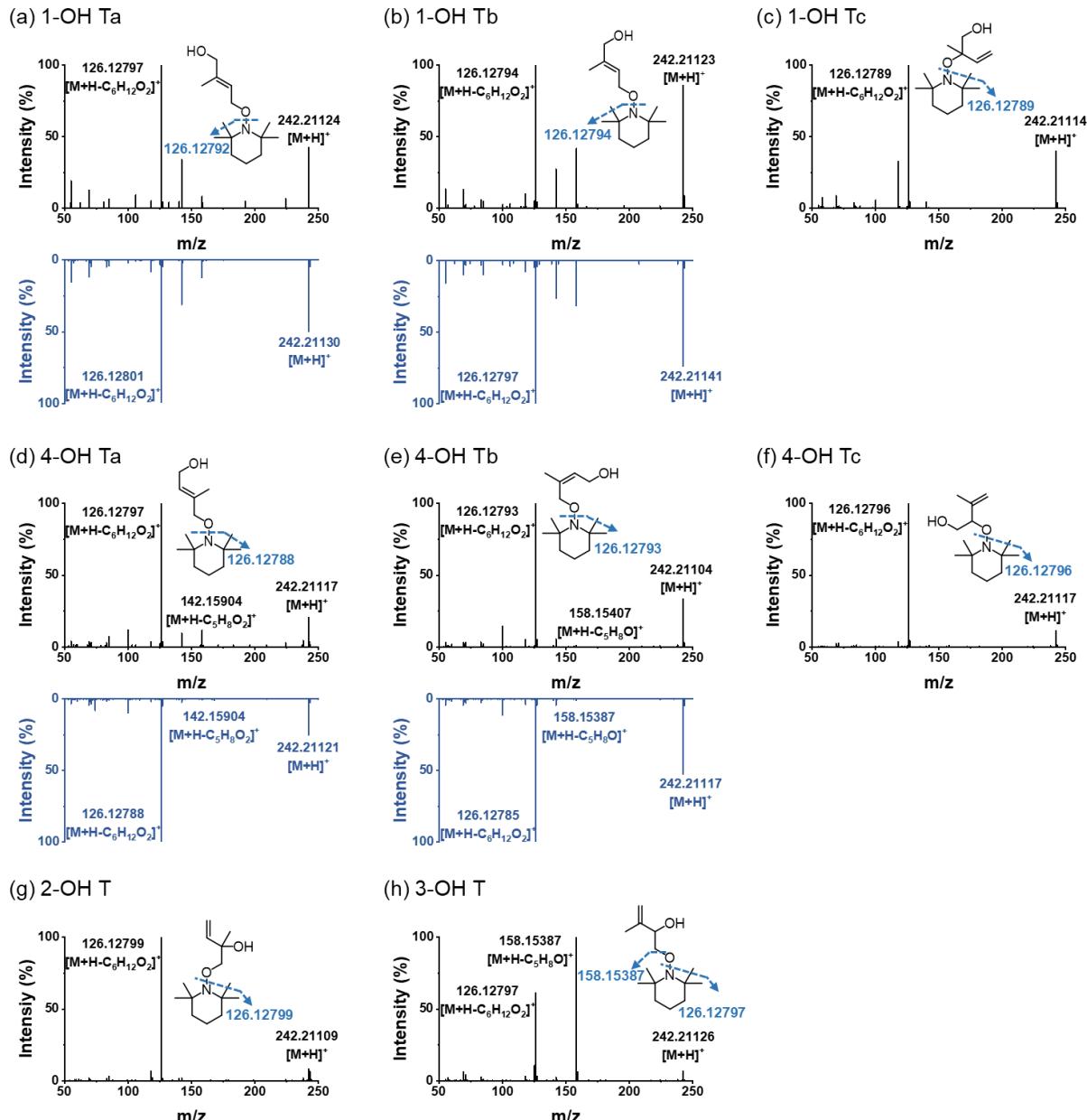


513


514 Figure S5. Stability of the captured compounds after elution. The elution solution was measured
 515 through nontargeted UPLC-MS analysis every hour, for a total of five measurements.

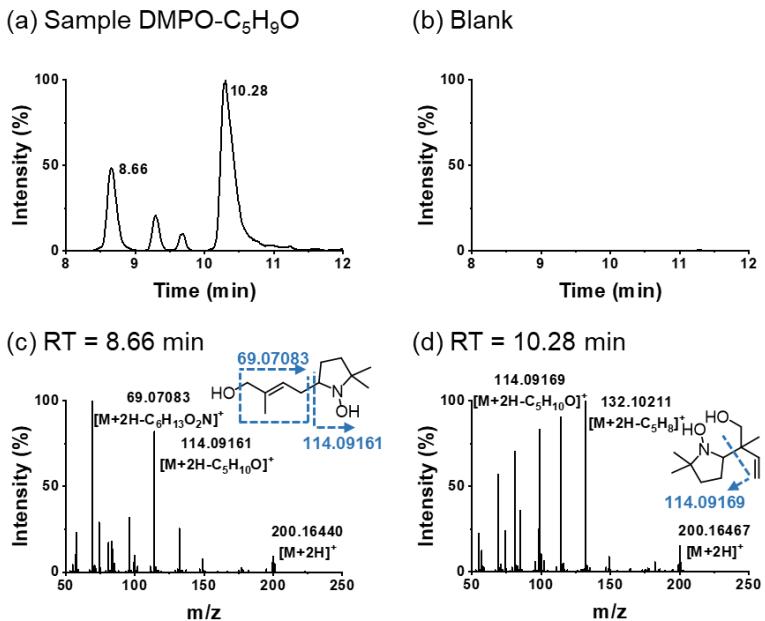
516

(a) Isomerization Process


(b) Computational accuracy: ub3lyp/6-31+g(d,p)

517

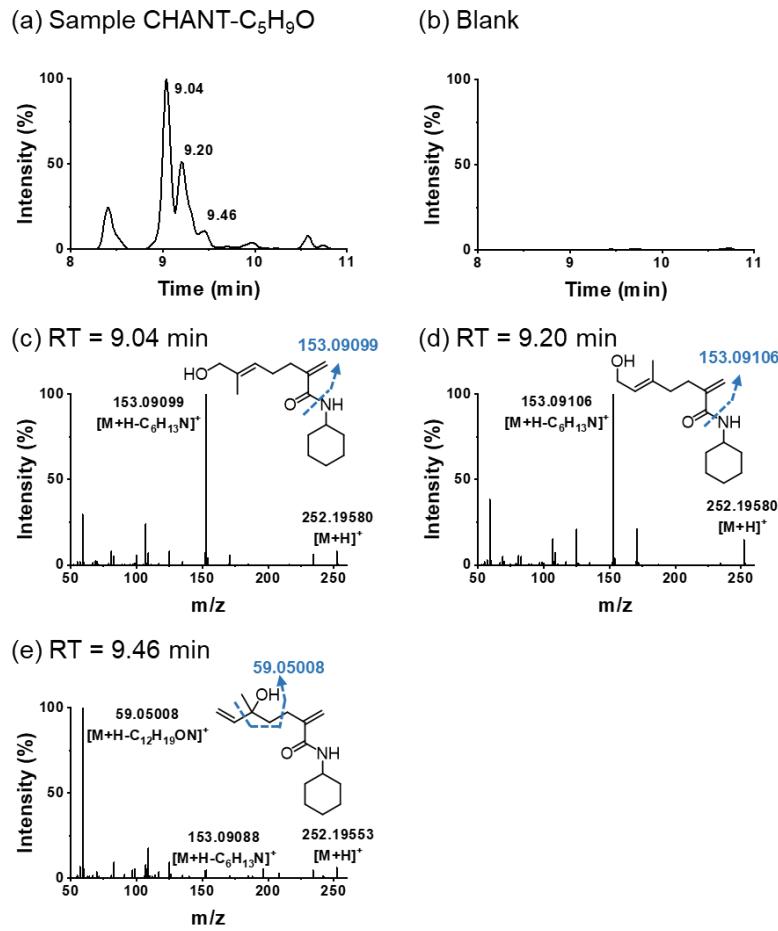
518 Figure S6. Structures were fully optimized at the UB3LYP-D3/6-31+G(d,p) level of theory. For
519 the isomerization reactions, vibrational frequency calculations were performed to make sure that
520 there is zero (one) imaginary frequency for minimum (transition state) structures. In addition,
521 intrinsic reaction coordinate (IRC) was performed at same level to check the connectivity among
522 reactant, product and transition state. All these calculations were performed using the Gaussian 16
523 program ⁸⁶. There is high energy base, ~55 kcal/mol, structure isomers in the elution would not
524 isomerize.


525

526

527 Figure S7. In order to identify the TEMPO-trapped products of compound $\text{C}_5\text{H}_9\text{O}$ ($[\text{TEMPO-}$
 528 $\text{C}_5\text{H}_9\text{O}+\text{H}]^+$, $m/z = 242.21150$), the MS/MS spectrum for each peak was analyzed. No visible
 529 signal in the OFR experiments. The relative retention times (RT) of these adducts were further
 530 corroborated by their predicted LogP (octanol-water partition coefficient) values. (a-b) The
 531 TEMPO-trapped products of 1-OH Ta and 1-OH Tb was compared to the standard sample,

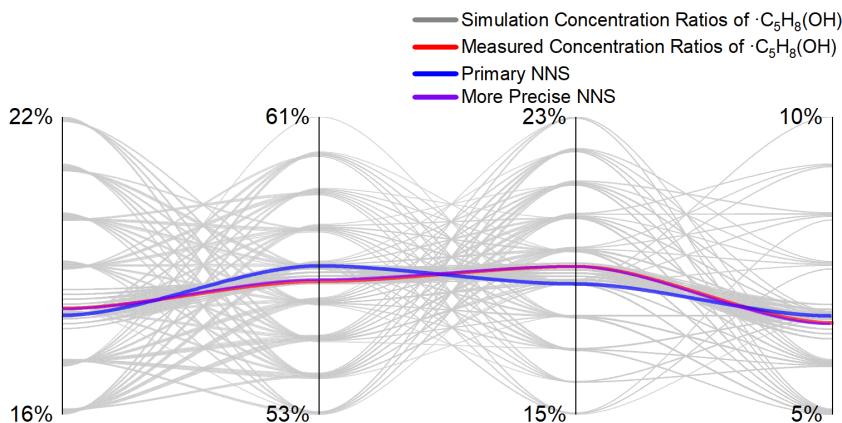
532 respectively. (c) The MS/MS analysis of TEMPO-trapped products of 1-OH Tc. (d-e) The
533 TEMPO-trapped products of 4-OH Ta and 4-OH Tb was compared to the standard sample,
534 respectively. (f-h) The MS/MS analysis of TEMPO-trapped products of 4-OH Tc, 2-OH T, and 3-
535 OH T. The MS/MS analysis revealed that these peaks exhibited precursor ions with the expected
536 molecular masses, along with characteristic product ions at m/z 126.13 and 158.15, corresponding
537 to the loss of the TEMPO from the trapped radical adducts.



538

539 Figure S8. The DMPO-trapped adducts of $\text{C}_5\text{H}_9\text{O}$ in the experiments of calibration source were
 540 analyzed as shown in (a). The $[\text{DMPO}-\text{C}_5\text{H}_9\text{O}+2\text{H}]^+$ ($\text{m/z} = 200.16450$) peaks were extracted, and
 541 their MS/MS spectra were examined. By comparison with the process blank (b) and based on
 542 precursor ion analysis, the peaks at 8.66 and 10.28 min were identified as major DMPO-trapped
 543 products. Two possible structures proposed as shown in (c) and (d). The MS/MS spectra displayed
 544 a dominant product ion at m/z 114.09, consistent with the dissociation of the DMPO from the
 545 radical adduct. All DMPO adducts in this study were analyzed and quantified using the $[\text{DMPO}-$
 546 $\text{R}+2\text{H}]^+$ ion signal. This is because DMPO-derived radical adducts can undergo disproportionation
 547 reactions in solution, resulting in the presence of both oxidized ($[\text{M}]^+$) and reduced ($[\text{M}+2\text{H}]^+$)
 548 forms. The relative abundance of $[\text{M}]^+$ and $[\text{M}+2\text{H}]^+$ formed by different adducts varies and
 549 depends on the type of radical trapped. Moreover, their retention times are also different, indicating
 550 that these species are chemically distinct entities already present in solution, rather than simply
 551 being products of protonation in the ion source ⁹⁹. Previous studies have shown that the proportion
 552 of the reduced $[\text{M}+2\text{H}]^+$ ion increases with the molecular size of the spin adduct, while the

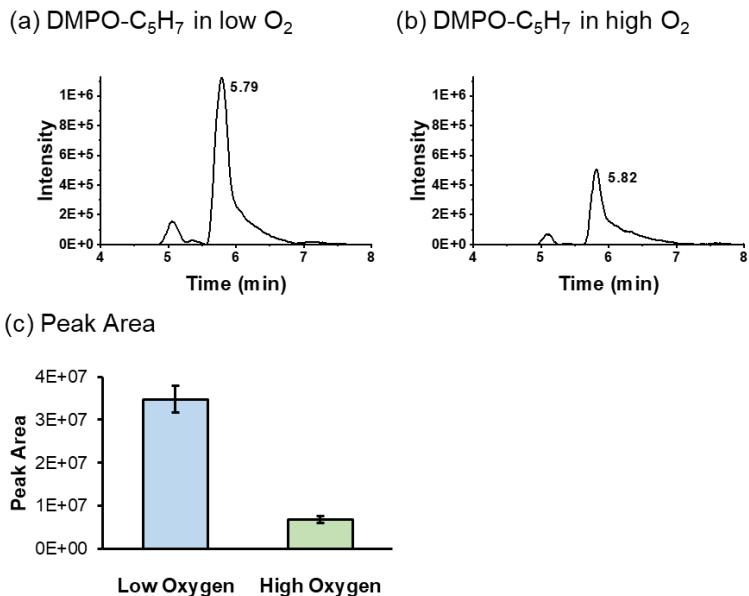
553 oxidized form ($[M]^+$) is generally only predominant for certain adducts such as DMPO-OH, which
554 typically appears primarily as $[M+H]^+$ in ESI-MS^{99,100}. For the C_5H_7 radical adduct, both $[M]^+$
555 and $[M+2H]^+$ ions were detected; however, the abundance of the $[M]^+$ ion was much lower,
556 accounting for only about 1% of the $[M+2H]^+$ signal. Therefore, to ensure consistency and avoid
557 confusion, only the $[M+2H]^+$ extracted ion chromatograms and mass spectra are shown for all
558 DMPO adducts in this work, except for OH radical.


559

560

561 Figure S9. The CHANT-trapped adducts of C₅H₉O in the experiments of calibration source were
 562 analyzed as shown in (a). The [CHANT-C₅H₉O+H]⁺ (m/z = 252.19580) peaks were extracted,
 563 and their MS/MS spectra were examined. By comparison with the process blank (b) and based on
 564 precursor ion analysis, the peaks at 9.04, 9.20 and 9.46 min were identified as major CHANT-
 565 trapped products. The possible structures proposed as shown in (c), (d) and (e). The MS/MS spectra
 566 displayed a dominant product ion at m/z 153.09, consistent with the dissociation of the CHANT
 567 from the radical adduct.

568



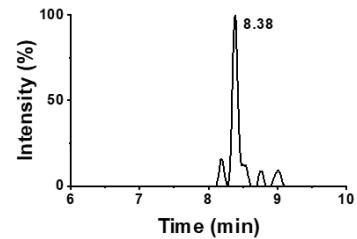
569

570 Figure S10. Based on up to 9751 routines of different branching ratios s of 1-OH trans, 1-OH cis,
 571 4-OH trans and 4-OH cis radicals setting calculation, the Nearest Neighbor Search (NNS) of
 572 modelled concentrations of $\cdot\text{C}_5\text{H}_8(\text{OH})$ to measured ones was found at 0.172: 0.509:0.215:0.068.

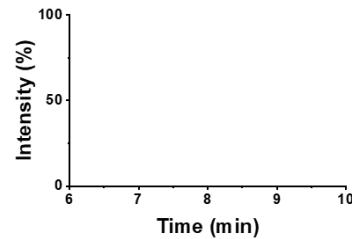
573

574

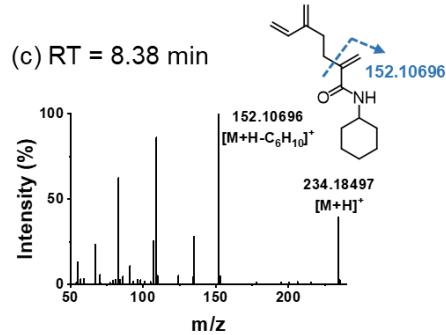
575


576 Figure S11. In order to compare the yield of compound C_5H_7 under (a) low O_2 (under 0.1ppm) and
 577 (b) high O_2 (0.51ppm), the characteristic DMPO- C_5H_7 ($m/z = 182.15$) peaks were extracted
 578 respectively. The peak was eluted at (a) 5.79 min and (b) 5.82 was identified as the DMPO-trapped
 579 products. (c) The peak areas of the targeted product under different concentration of oxygen were
 580 compared.

581

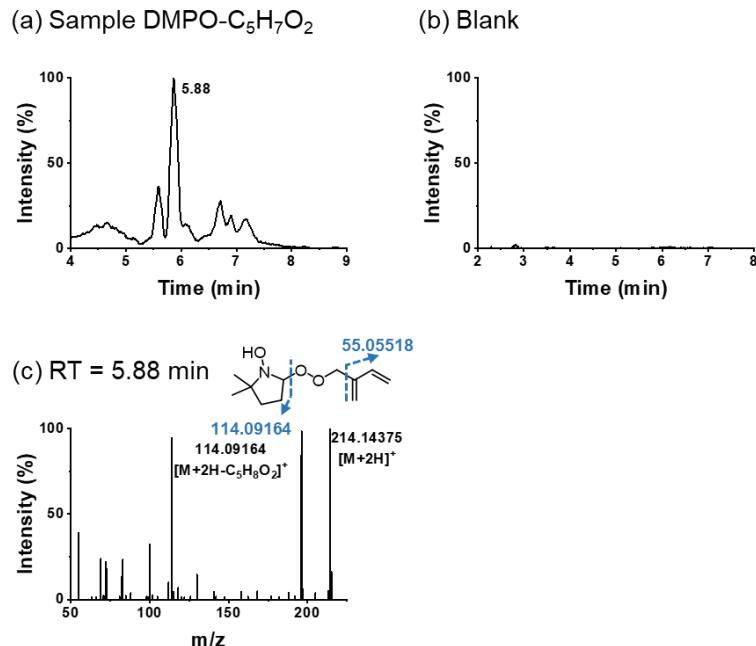

582

583


584 (a) Sample CHANT- C_5H_7

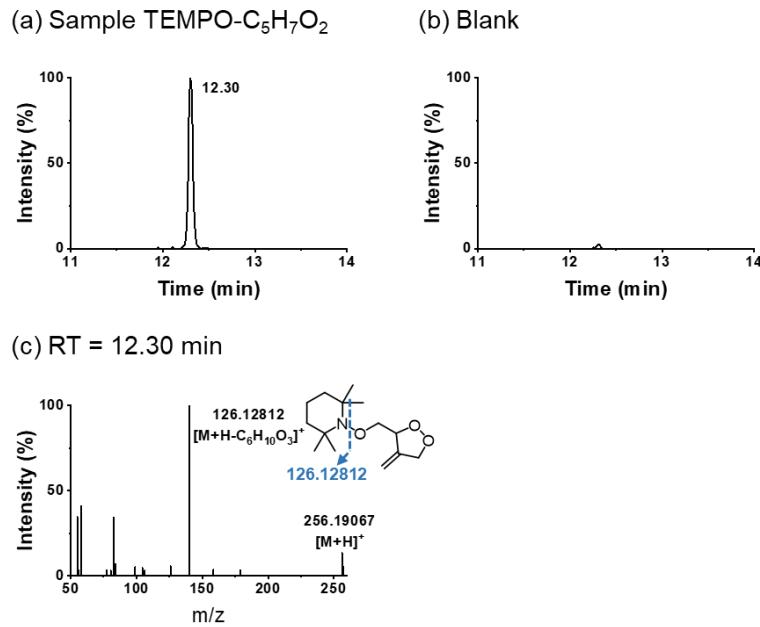
584 (b) Blank

584 (c) RT = 8.38 min

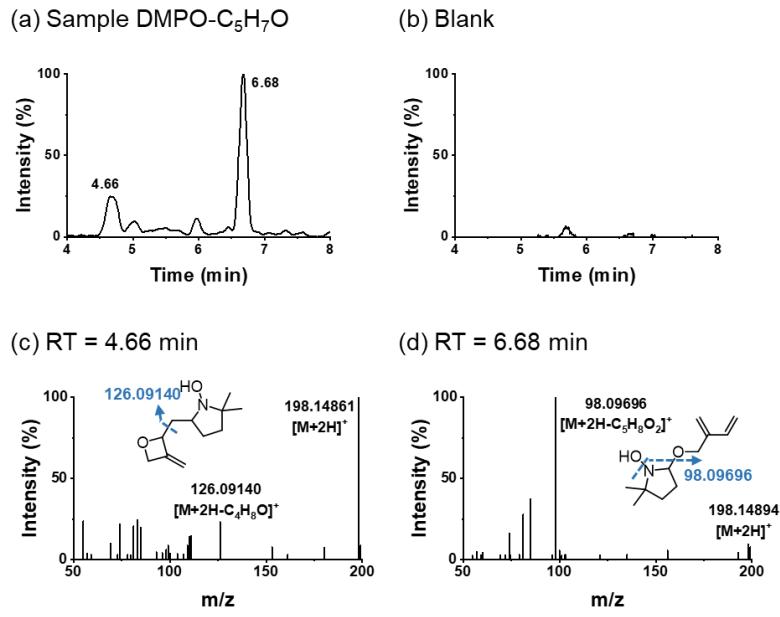


584

585 Figure S12. The CHANT-adducted product of C_5H_7 generated from calibration source was
586 identified through comparison between sample (a) and process blank (b) with isoprene but without
587 uv photolysis. The peak at 8.38 min was identified as $[\text{CHANT-}\text{C}_5\text{H}_7+\text{H}]^+$ (m/z = 234.19). The
588 MS/MS spectra displayed a dominant product ion at m/z 152.10696, consistent with the loss of
589 C_5H_7 .

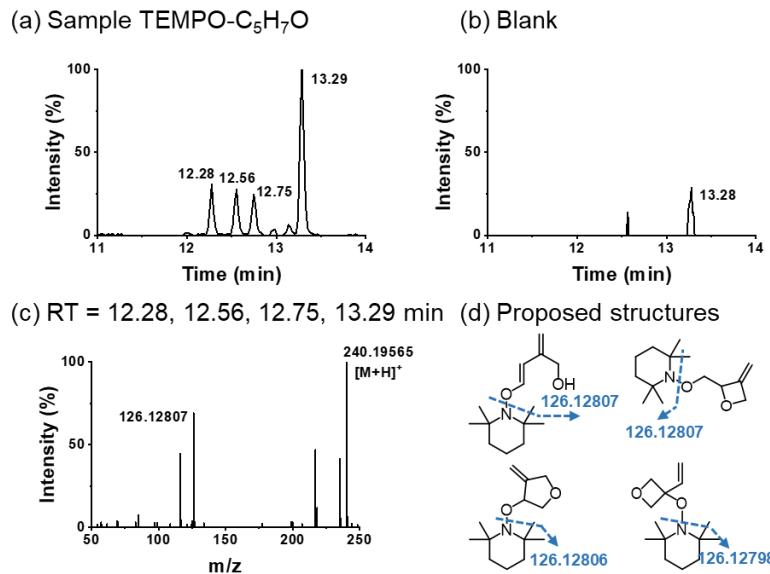

590

591

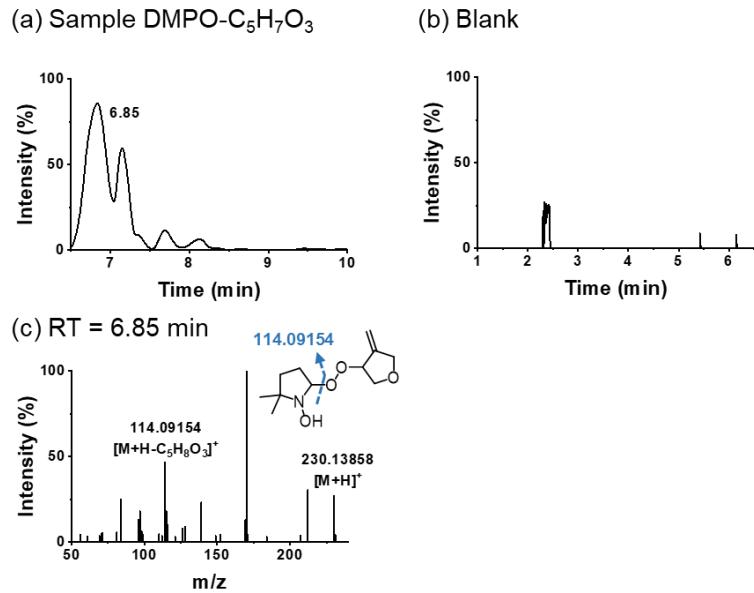

592 Figure S13. The DMPO-trapped adducts of $\text{C}_5\text{H}_7\text{O}_2$ generated from calibration source (a) were
 593 identified by comparison with process blank (b). The characteristic peaks, corresponding to
 594 [DMPO- $\text{C}_5\text{H}_7\text{O}_2+2\text{H}$]⁺ ($\text{m/z} = 214.14$), with retention time of 5.88 min was identified as the
 595 DMPO-trapped products. MS/MS analysis of this peak revealed the molecular mass of [DMPO-
 596 $\text{C}_5\text{H}_7\text{O}_2+2\text{H}$]⁺ as precursor ions. (c) In the MS/MS spectrum of the peak, regular and intense
 597 product ions with 114.09, and 55.06 were observed. The product ion of 114.09 was considered to
 598 cause a loss of DMPO in the DMPO trapped radicals. And the product ion of 55.06 was considered
 599 as the loss of a butadiene. No visible signals in the experiments from OFR which could be
 600 attributed to the prolonged resident time facilitating following reactions.

602

603 Figure S14. The TEMPO-adducted product of compound $\text{C}_5\text{H}_7\text{O}_2$ was identified through
 604 comparison between sample (a) and process blank (b) in the experiments of OFR. The
 605 characteristic $[\text{TEMPO-C}_5\text{H}_7\text{O}_2+\text{H}]^+$ ion ($\text{m/z} = 256.19$) eluted at 12.30 min and was selected for
 606 MS/MS analysis. The fragmentation spectrum exhibited the precursor ion at the expected m/z
 607 256.19, along with a dominant product ion at m/z 126.13, corresponding to characteristic TEMPO-
 608 derived fragments.

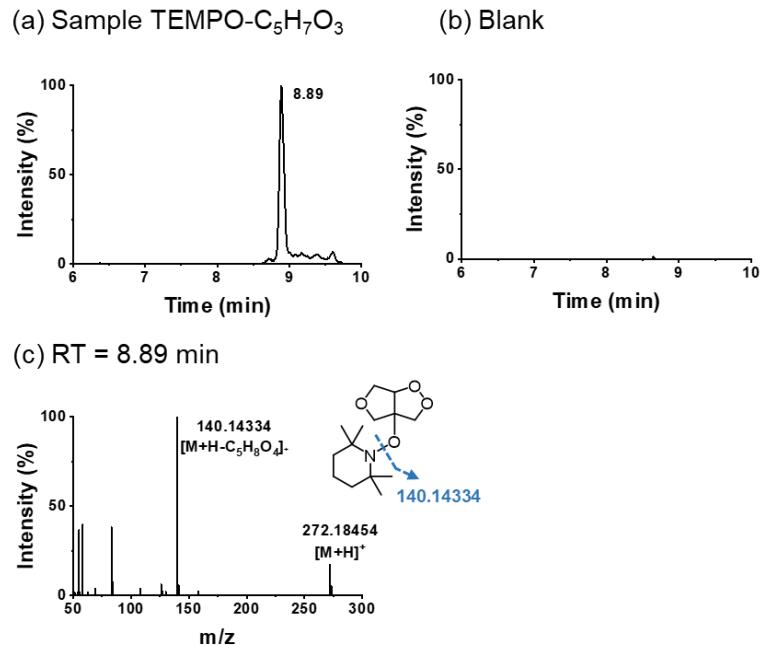

610

611
612 Figure S15. The DMPO-adducted product of $\text{C}_5\text{H}_7\text{O}$ generated from calibration source was
613 identified through comparison between sample (a) and process blank (b). The characteristic
614 $[\text{DMPO-C}_5\text{H}_7\text{O}+2\text{H}]^+$ ion ($m/z = 198.15$) eluted at 4.66 and 6.68 min and were selected for
615 MS/MS analysis. (c) In the MS/MS spectrum of the first peak, regular and intense product ion with
616 126.09 were observed, which was considered that the DMPO fragmentation in the product lost
617 another hydroxyl group. (d) In the second peak, regular and intense product ion with 98.09 was
618 considered as the DMPO fragmentation of adducts. No visible DMPO-trapped products of
619 compound $\text{C}_5\text{H}_7\text{O}$ were detected in the OFR experiments which could be attributed to the
620 prolonged resident time facilitating following reactions.

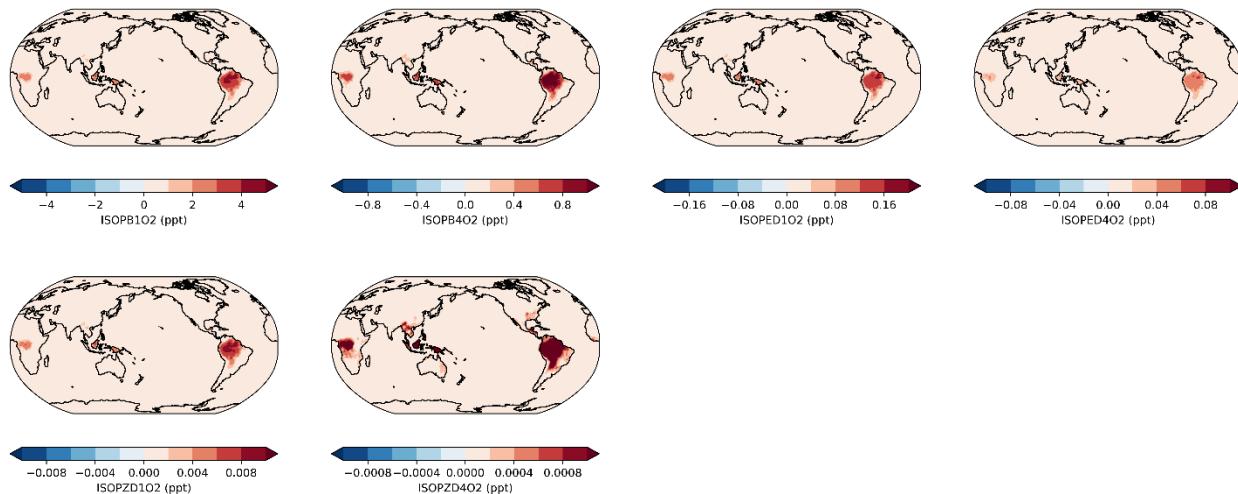

621

622

623 Figure S16. The TEMPO-adducted product of compound $\text{C}_5\text{H}_7\text{O}$ generated from calibration
 624 source was identified through comparison between sample (a) and process blank (b). The
 625 characteristic $[\text{TEMPO-C}_5\text{H}_7\text{O}+\text{H}]^+$ ion ($m/z = 240.20$) eluted at 12.28, 12.56, 12.75 and 13.29
 626 min was selected for MS/MS analysis. MS/MS analysis revealed that these peaks were similar to
 627 each other, and the MS/MS analysis of 13.29 was shown in (c). The peak exhibited precursor
 628 ions with the expected molecular masses, along with characteristic product ions at m/z 126.13,
 629 corresponding to the loss of the TEMPO fragmentation from the trapped radical adducts. (d) The
 630 proposed structures for TEMPO- $\text{C}_5\text{H}_7\text{O}$. No visible signals in the experiments from OFR which
 631 could be attributed to the prolonged resident time facilitating following reactions.

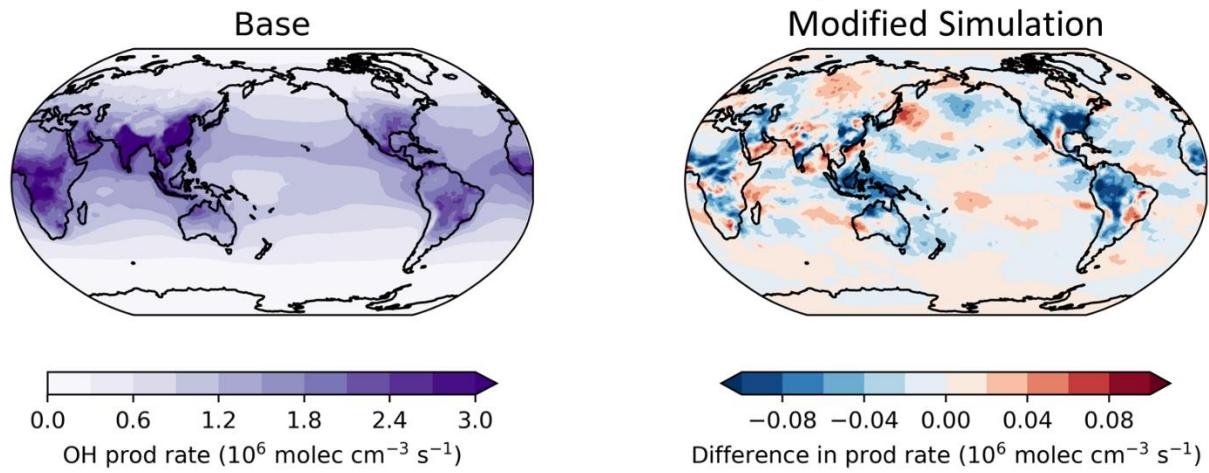

632

634 Figure S17. (a) The DMPO-adducted product of compound $C_5H_7O_3$ generated from OFR was
 635 identified through comparison between sample (a) and process blank (b). The characteristic
 636 $[DMPO-C_5H_7O_3+2H]^+$ ion ($m/z = 230.14$) eluted at 6.85 min was selected for MS/MS analysis.
 637 The structures of the other peaks could not be inferred because of their low abundance which may
 638 due to the low concentration of poor sensitivity. No visible DMPO-trapped products of compound
 639 $C_5H_7O_3$ were detected in the calibration source experiments.


640

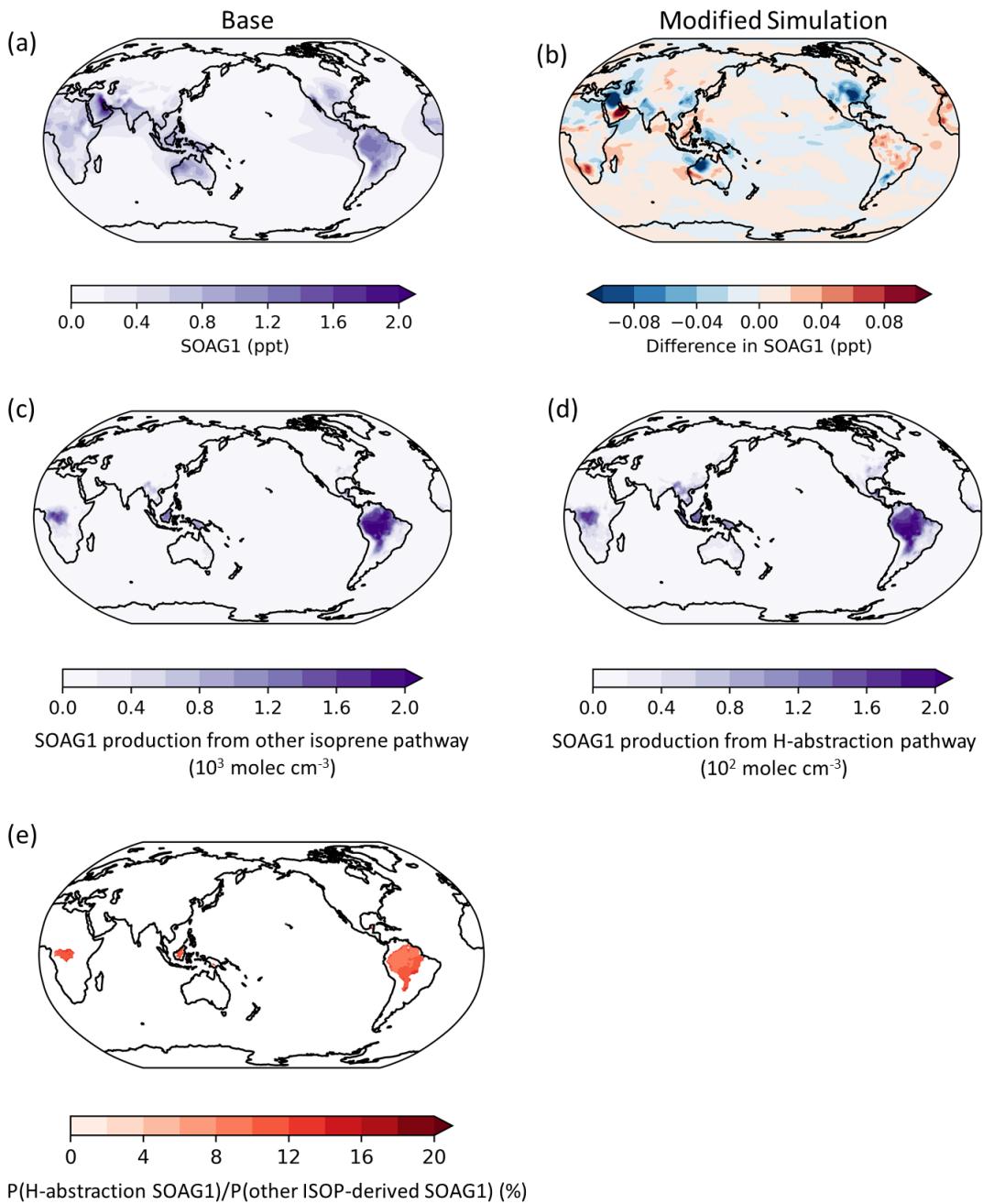
641

643 Figure S18. (a) The TEMPO-adducted product of compound C₅H₇O₃ from OFR was identified
 644 through comparison between sample (a) and process blank (b). The characteristic [TEMPO-
 645 C₅H₇O₃+H]⁺ ion (m/z = 272.19) eluted at 8.89 min was selected for MS/MS analysis. The
 646 structures of the other peaks could not be inferred because of their low abundance which may due
 647 to the low concentration of poor sensitivity. No visible TEMPO-trapped products of compound
 648 C₅H₇O₃ were detected in the calibration source experiments.


649

650

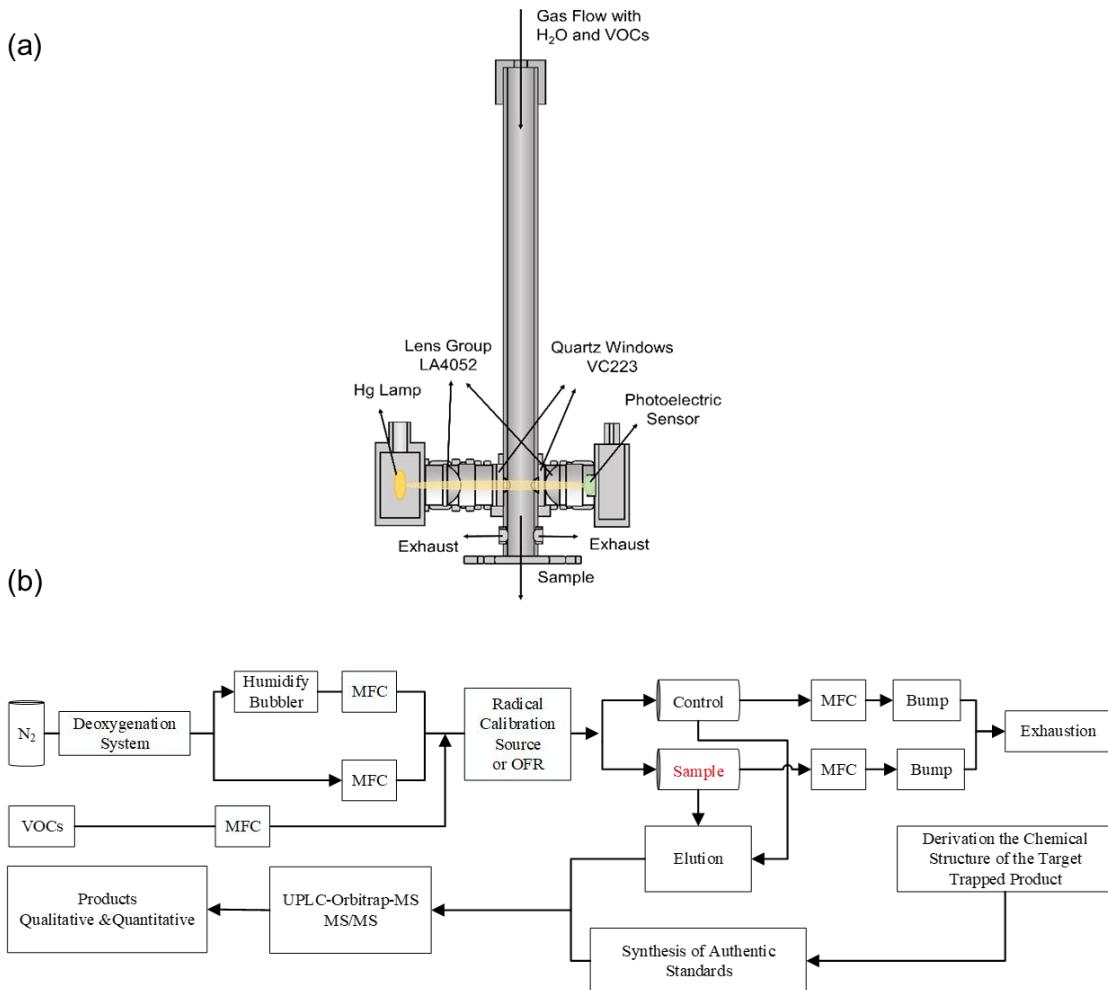
651 Figure S19. Spatial concentrations (in parts per trillion, ppt) of key isoprene-derived peroxy
 652 radicals in base model simulations. From top left to bottom right, species include: ISOPB₁O₂,
 653 ISOPB₄O₂, ISOPED₁O₂, ISOPED₄O₂, ISOPD₁O₂ and ISOPD₄O₂⁹⁸.


654

655

656 Figure S20. Global OH production rates and their differences between baseline and modified
 657 simulations. The left panel shows the simulated annual mean hydroxyl radical (OH) production
 658 rate (in 10^6 molecules $\text{cm}^{-3} \text{s}^{-1}$) for the baseline simulation, while the right panel displays the
 659 difference between the modified and baseline simulations. Blue areas in the difference map
 660 represent regions with reduced OH production, and red areas indicate increased production.
 661 Significant changes are observed over eastern China, the United States, and the Amazon, reflecting
 662 the impact of the newly modified branching ratio and pathway of H-abstraction mechanisms on
 663 atmospheric oxidizing capacity.

664

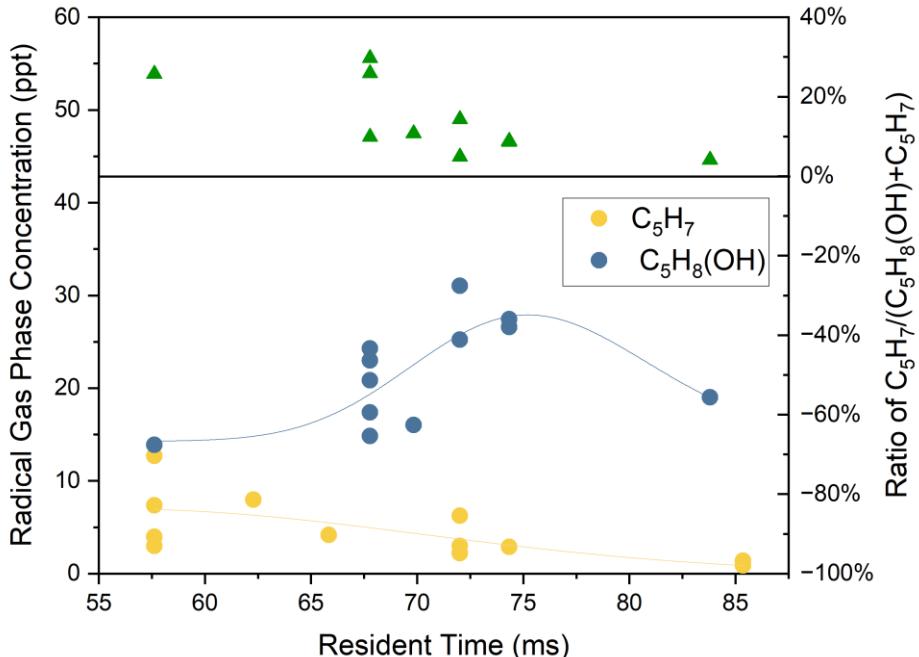


665

666 Figure S21. The source contributions of simulated low-volatility secondary organic aerosol
 667 SOAG1 concentrations. (a) SOAG1 concentration (ppt). (b) Difference in SOAG1 concentration
 668 in the modified simulation. (c) SOAG1 production from other isoprene-derived pathways exclude
 669 H-abstraction pathway (10^3 molec cm^{-3}). (d) SOAG1 production attributed to hydrogen abstraction

670 pathway (10^3 molec cm^{-3}). (e) The ratio of these two production pathways' SOAG1 contribution
671 (%) In BVOC abundant regions the ratio is 9.0 - 15.6% with a regional average value of 10.5%.
672 The results highlight the potential contribution of SOA from the abstraction channel.

673


674

675 Figure S22. (a) Schematic of the custom-built radical calibration source used in the experiments.
676 Target compounds are mixed with OH precursors and photolyzed in a reaction cell under
677 controlled flow conditions. The system includes mass flow controllers (MFCs), a deoxygenation
678 unit, and a UV photolysis source for OH generation. The resulting radicals are immediately

679 captured by spin-trapping agents (e.g., TEMPO, DMPO) on a solid-phase substrate. The adducts
680 are subsequently eluted and analyzed via high-resolution mass spectrometry to provide reference
681 spectra for compound identification and quantification. (b) Overview of the full experimental
682 workflow for gas-phase radical detection in the OH-initiated oxidation of isoprene. The system
683 integrates the radical generation reactor (e.g., oxidation flow reactor), radical capture using solid-
684 phase substrates, and subsequent UHPLC–HRMS analysis. Trapping agents selectively stabilize
685 reactive intermediates, enabling structural identification and quantification of short-lived radicals
686 involved in the early-stage oxidation mechanisms.

687

688

689

690 Figure S23. The concentration of $\bullet\text{C}_5\text{H}_7$ increased with decreasing residence time (RT) shown in
 691 the yellow dots and the concentration of $\bullet\text{C}_5\text{H}_8(\text{OH})$ shown an insignificant upward and then
 692 downward trend with RT as illustrated in blue dots. Their ratio decreases from 29.68% to 4.15%
 693 as shown in the green triple dots. The presence of polar substituents (e.g., $-\text{OH}$, $-\text{COOH}$) increases
 694 the polarity of the radical center and can enhance the cross-coupling reaction rate between a
 695 nitroxide (such as TEMPO) and a C-centered radical. For $\bullet\text{C}_5\text{H}_7$ radicals, the higher reaction rate
 696 with O_2 compared to TEMPO may result in the absence of detectable TEMPO adduct signals in
 697 this study. In contrast, spin traps such as DMPO and CHANT may exhibit higher trapping rates
 698 with $\bullet\text{C}_5\text{H}_7$ radicals, thereby facilitating their detection.

699

700 **S3. Tables S1 to S6**

701 Table S1. The quantum chemical calculations helped to assessed the contributions of cis- and trans-
702 radicals to struc-8 and struc-9. All rate constant calculations k were performed using a Master
703 Equation Solver for Multi Energy-well Reactions (MESMER) code ⁸⁷.

Reaction rates (s ⁻¹)			
1-OH Tc		4-OH Tc	
1-OH cis	49249.55 (49.4%)	4-OH cis	47134.4 (51.7%)
1-OH trans	50380.45 (50.6%)	4-OH trans	44003.1 (48.3%)

704

705

706 Table S2. Summary of the newly implemented oxidation mechanism for the H-abstraction pathway,
 707 including product branching and rate constants. This mechanism incorporates hydrogen
 708 abstraction by OH and subsequent peroxy radical chemistry.

Reaction	Rate
$\text{ISOP} + \text{OH} \rightarrow 0.482 \text{ ISOPC}_1\text{T} + 0.163 \text{ ISOPC}_1\text{C} + 0.064 \text{ ISOPC}_4\text{T} + 0.203 \text{ ISOPC}_4\text{C} + 0.088 \text{ ISOPC}_1\text{H}$	2.70e-11 exp (390.00/t)
$\text{ISOPC}_1\text{H} + \text{O}_2 \rightarrow \text{C}_5\text{H}_7\text{O}_2$	1e-12
$\text{C}_5\text{H}_7\text{O}_2 \rightarrow \text{C}_5\text{H}_7\text{O}_6$	0.077
$\text{C}_5\text{H}_7\text{O}_6 + \text{NO} \rightarrow 0.0035 \text{ SOAG}_1$	1.1e-11
$\text{C}_5\text{H}_7\text{O}_6 \rightarrow \text{HCHO} + \text{CO} + \text{HO}_2 + \text{C}_3\text{H}_4\text{O}_4$	0.3
$\text{C}_3\text{H}_4\text{O}_4 \rightarrow \text{SOAG}_1$	3.5×10^{-3}
	$(8.2 \times 10^{-3} \text{ to } 5.8 \times 10^{-5})^a$

709 ^a The reaction rate was calculated under the typical ambient conditions as 5 to 287 min ¹⁰¹ of
 710 glyoxal heterogenous reactions, with the aid of uptake coefficient as 0.0002 ⁹⁸ to 0.0033 ^{92,102} with
 711 typical aerosol surface area as $3 \times 10^{-4} \text{ cm}^2/\text{cm}^3$ and mean molecular speed as $3.3 \times 10^4 \text{ cm/s}$. We
 712 assume that all glyoxal that is taken up by aerosol particles is irreversibly converted into SOA (i.e.,
 713 100% yield upon uptake), consistent with common treatments in global and regional chemical
 714 transport models (e.g., GEOS-Chem, MOZART, and CAM-Chem) ¹⁰³.

715

716 Table S3. The mean wall loss rates and fractions of different species in the calibration source. We
 717 assumed that k_{wall2} played a role in the whole oxidant period which was in fact not true, the wall
 718 effect from the junction between the calibration source and the solid phase column inlet may only
 719 account for less than 10% period. The wall loss fractions are the upper limit.

Species	D_g ($\text{cm}^2 \text{ s}^{-1}$)	k_{wall1} (s^{-1})	k_{wall2} (s^{-1})	Production (molecule $\text{cm}^3 \text{ s}^{-1}$)	rate (molecule $\text{cm}^3 \text{ s}^{-1}$)	Wall loss	rate (molecule $\text{cm}^3 \text{ s}^{-1}$)	Wall loss	fraction
OH	0.23	0.047	0.960	1.12×10^{10}	8.59×10^7				0.77%
HO ₂	0.15	0.038	0.626	5.95×10^8	3.37×10^7				5.66%
ISO-R	0.07	0.026	0.292	1.04×10^{10}	2.35×10^8				2.26%
		(estimated)							
ISO-RO ₂	0.07	0.026	0.292	2.24×10^9	2.53×10^7				1.13%

720

721

722 Table S4. The wall loss rates and fractions of different species in the OFR. We assumed that k_{wall2}
 723 played a role in the whole oxidant period which was in fact not true, the wall effect from the
 724 junction between the calibration source and the solid phase column inlet may only account for less
 725 than 10% period. The wall loss fractions are the upper limit.

Species	D_g ($\text{cm}^2 \text{ s}^{-1}$)	k_{wall1} (s^{-1})	k_{wall2} (s^{-1})	Production (molecule $\text{cm}^3 \text{ s}^{-1}$)	rate (molecule $\text{cm}^3 \text{ s}^{-1}$)	Wall loss rate fraction	Wall loss
OH	0.23	0.0050	0.960	9.05×10^{11}	1.62×10^8		0.017%
HO ₂	0.15	0.0040	0.626	6.88×10^{11}	1.53×10^{10}		2.22%
R	0.07 (estimated)	0.0027	0.292	5.36×10^{11}	8.89×10^8		0.17%
RO ₂	0.07	0.0027	0.292	5.48×10^{11}	2.46×10^9		0.45%

726

727

728 Table S5. Relative uncertainties in calibration-derived radical concentrations. The value of $F \times t$ is
 729 1.08×10^{12} . The correlation equation of $[\text{OH}]_{\text{count}}$ with the concentration of OH is
 730 $[\text{OH}] = 1.83 \times 10^7 \times [\text{OH}]_{\text{count}}$, $R^2 = 0.997$. Thus, the correlation of RH with [OH] in the condition of
 731 low oxygen (<0.1 ppm) and 20 L/min flow is $[\text{OH}] = -6.12 \times 10^6 \times \text{RH}^2 + 1.06 \times 10^9 \times \text{RH} - 3.60 \times 10^9$,
 732 $R^2 = 0.998$. The non-linear correlation between them is attributed to the interferences of water vapor
 733 on the photolysis and reaction with OH.

Parameter	Value	Uncertainty (1σ)
σ_{water}	$7.1 \times 10^{-20} \text{ cm}^2$	3%
$\varphi_{\text{OH}+\text{H}}$	1.0	<0.5%
$[\text{O}_2]$	6.75%	2.5%
$\sigma_{\text{O}_2}^{\text{eff}}$	$1.63 \times 10^{-20} \text{ cm}^2$	2%
RH	0.1-0.6	0.5%
Total		6.67%

734

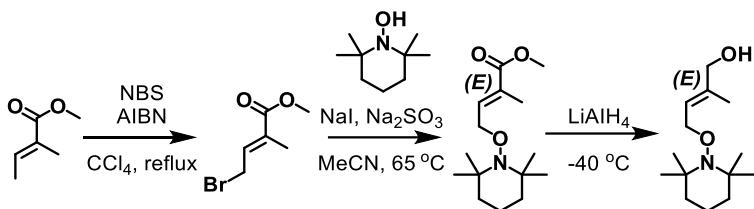
735

736 Table S6. Tropospheric airmass-weighted concentrations of key oxidants, isoprene oxidation
 737 intermediates, and SOA-related species from global simulations. Columns report values from the
 738 base simulation, the modified simulation including the changing of branching ratio and addition
 739 of H-abstraction pathway, and the absolute difference between them. All values are airmass-
 740 weighted tropospheric averages; species marked as "new added" were absent from the base
 741 simulation. Units are in parts per trillion (ppt), except for SOA1, which is expressed in 10^{-11} kg
 742 per kg of air.

	Base	Modified	Difference
OH (ppt)	0.077	0.077	
HO ₂ (ppt)	5.61	5.59	-0.02
IEPOX (ppt)	6.38	5.92	-0.47
Isoprene (ppt)	43.6	44.8	
SOAG1 (ppt)	0.19	0.19	
SOA1 (10^{-11} kg/kg)	6.97	6.94	
ISOPC1T (ppt)	2.5e-8	2.5e-8	
ISOPC1C (ppt)	4.6e-9	4.5e-9	

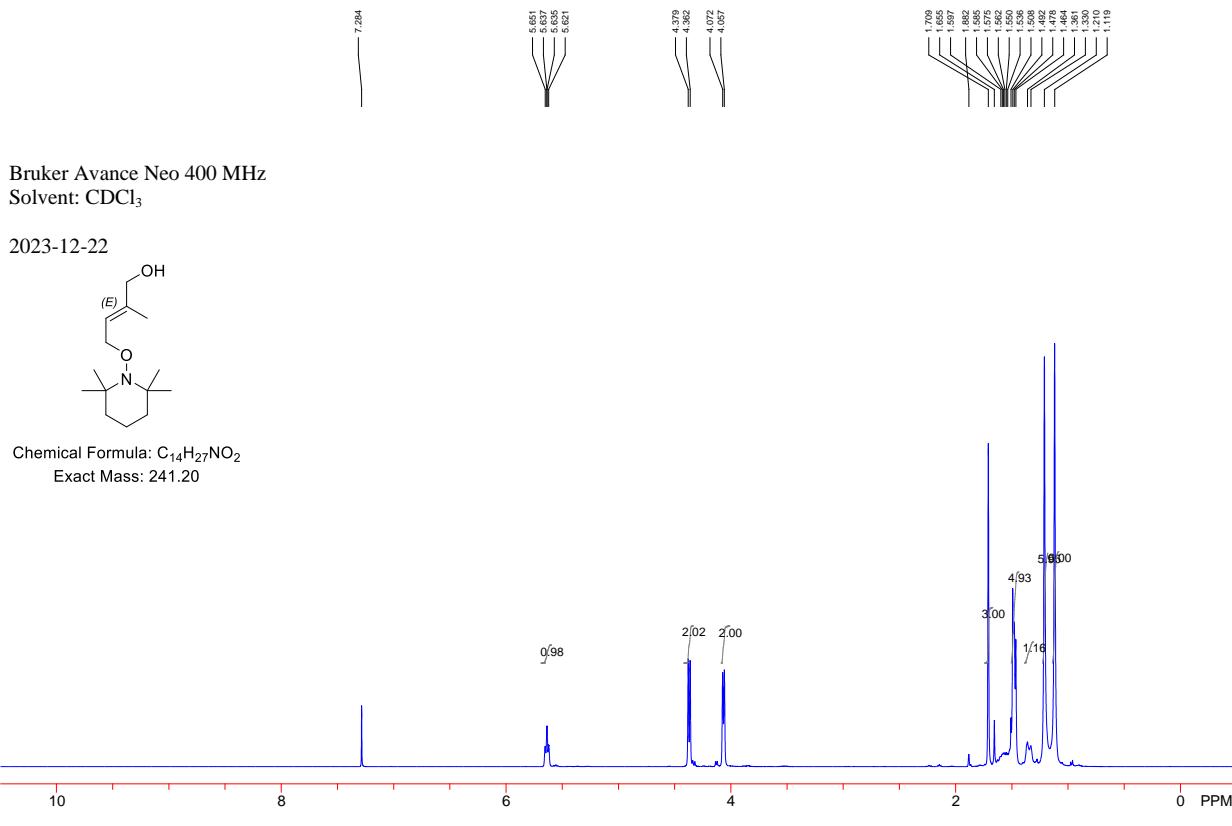
ISOPC4T (ppt)	1.4e-9	9.4e-10	
ISOPC4C (ppt)	7.0e-10	4.8e-10	
ISOPC1H (ppt), new	N/A	2.5e-11	
added			
ISOPB ₁ O ₂ (ppt)	0.096	0.096	
ISOPB ₄ O ₂ (ppt)	0.027	0.019	-0.008
ISOPED ₁ O ₂ (ppt)	0.0039	0.0039	
ISOPED ₄ O ₂ (ppt)	0.0015	0.00097	-0.0005
ISOPZD ₁ O ₂ (ppt)	0.0002	0.0002	
ISOPZD ₄ O ₂ (ppt)	6.7e-5	4.5e-5	-2.0e-5
C ₅ H ₇ O ₂ (ppt), new	N/A	0.0014	
added			
C ₅ H ₇ O ₆ (ppt), new	N/A	0.0003	
added			

RO ₂ total (ppt)	0.128	0.121	-0.007
-----------------------------	-------	-------	--------


743

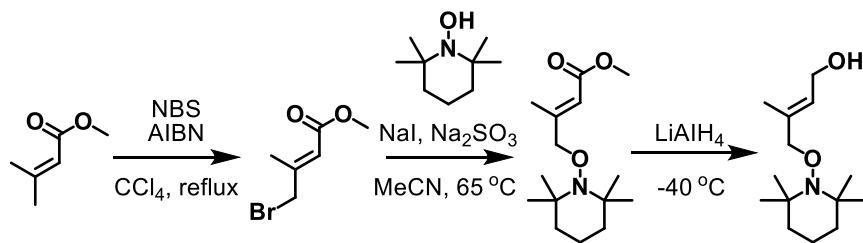
744

745


746 **S4. Synthetic Procedures and Characterization Data and Figs. S24 to S28**

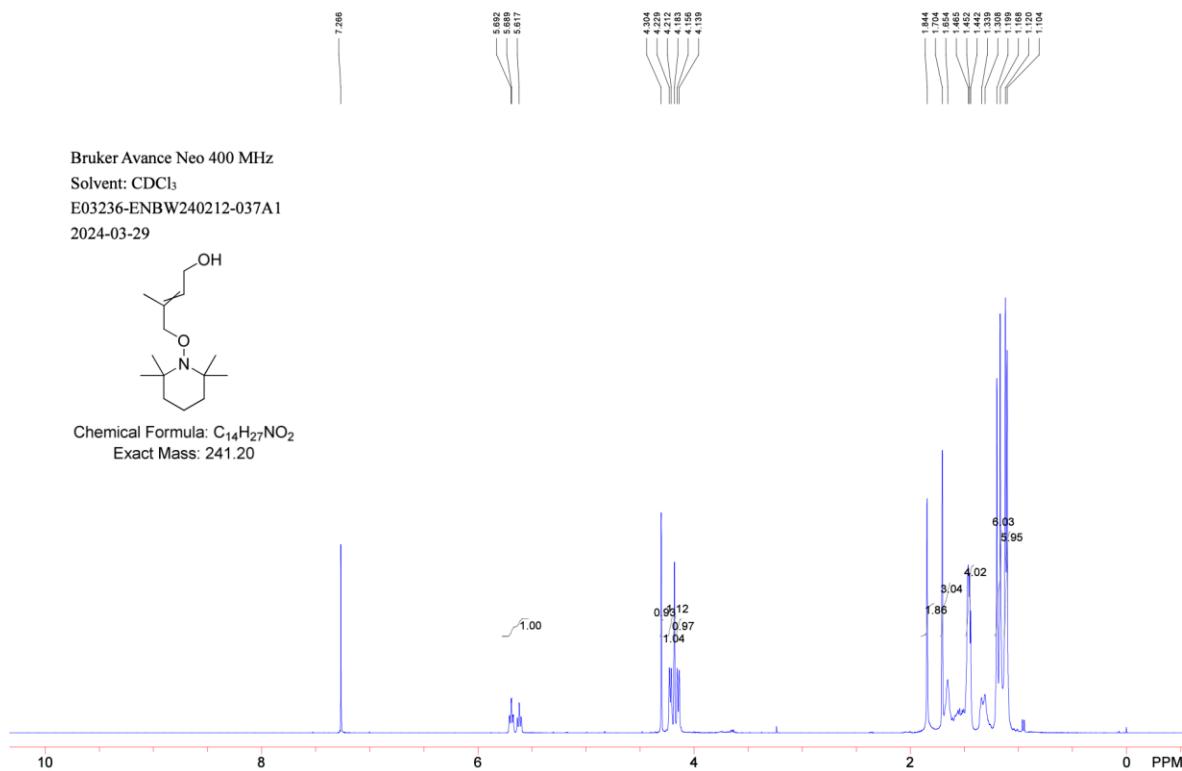
747

748 Scheme S1. Synthetic process of (E)-2-methyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)but-2-
749 en-1-ol (1-OH-TEMPO adducts).


750 (E)-2-methyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)but-2-en-1-ol was prepared according
751 to Scheme 1. To a stirred solution of methyl (E)-2-methylbut-2-enoate in CCl_4 was added NBS
752 and a catalytic amount of AIBN. The mixture solution was heated to reflux and maintained for
753 several hours. After the reaction was completed, the mixture solution was cooled to the room
754 temperature, and filtered to remove the byproduct and to get methyl (E)-4-bromo-2-methylbut-2-
755 enoate. The purified product from the previous step was dissolved in acetonitrile with NaI, Na_2SO_3 ,
756 and TEMPO. The mixture solution was stirred at 65°C for several hours and cooled to room
757 temperature after the reaction was completed, and then, methyl (E)-2-methyl-4-((2,2,6,6-
758 tetramethylpiperidin-1-yl)oxy)but-2-enoate was obtained. Finally, the purified product from the
759 previous step was reacted with LiAlH_4 at -40°C , and was reduced to obtain target compound.

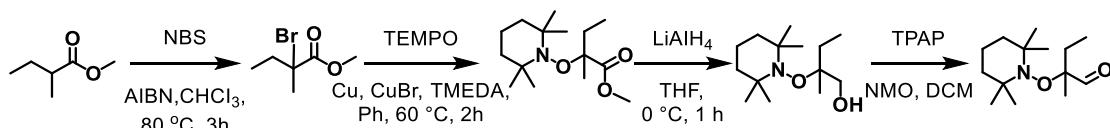
760

761 Figure. S24 The HRMS of 1-OH-TEMPO adducts.


762

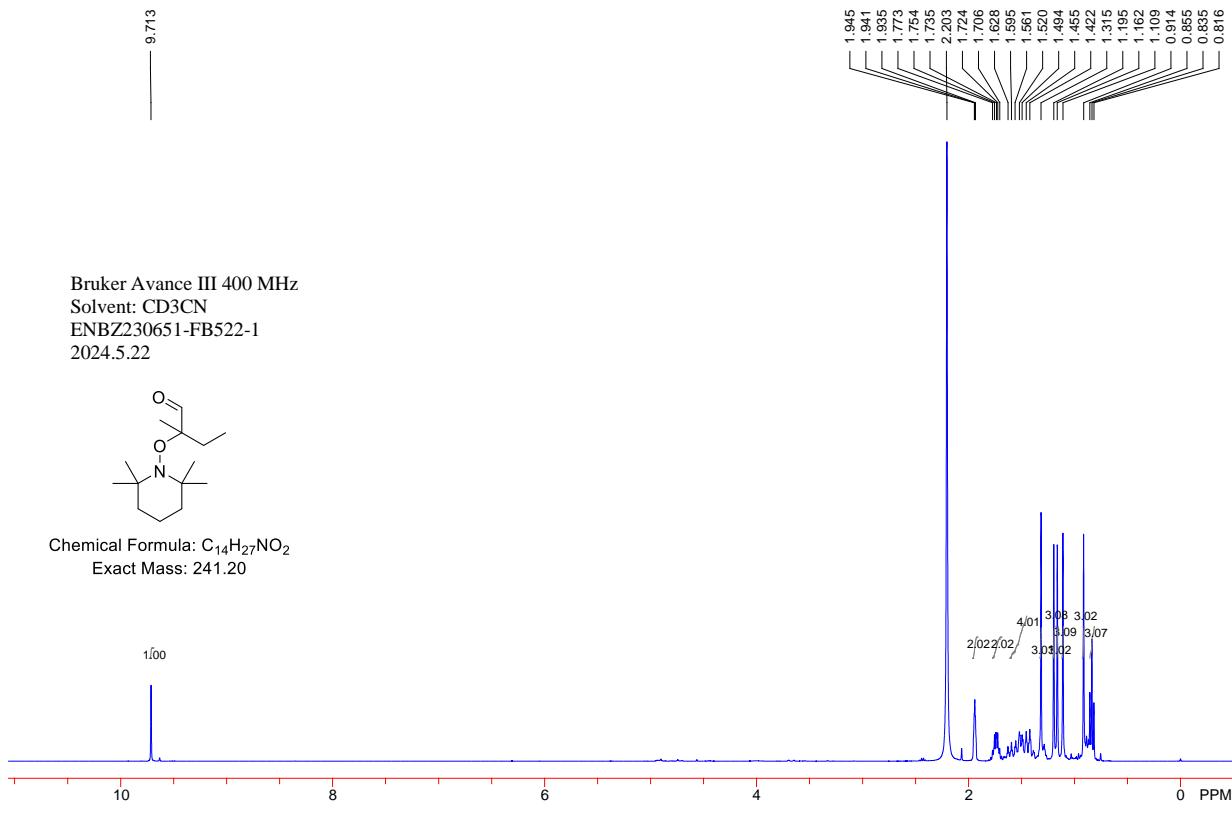
763 Scheme S2. (E)-3-methyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)but-2-en-1-ol (4-OH-
764 TEMPO adducts)

765 (E)-3-methyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)but-2-en-1-ol was obtained according
766 to Scheme 2. First, to a stirred solution of methyl 3-methylbut-2-enoate in CCl_4 was added NBS,
767 and AIBN, and the mixture solution was heated to reflux and maintained for several hours. Methyl
768 (E)-4-bromo-3-methylbut-2-enoate was obtained after reaction and purification, which was then

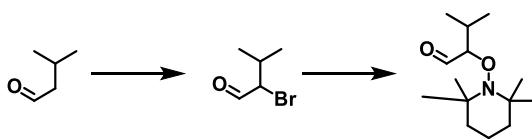

769 dissolved in MeCN with TEMPO, NaI, and Na₂SO₃, and heated to 65 °C. After cooling to room
770 temperature, methyl (E)-3-methyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)but-2-enoate was
771 obtained. Finally, the product from the previous step was reduced by LiAlH₄ at -40 °C to get target
772 compound.

773

774 Figure S25 The HRMS of 4-OH-TEMPO adducts.

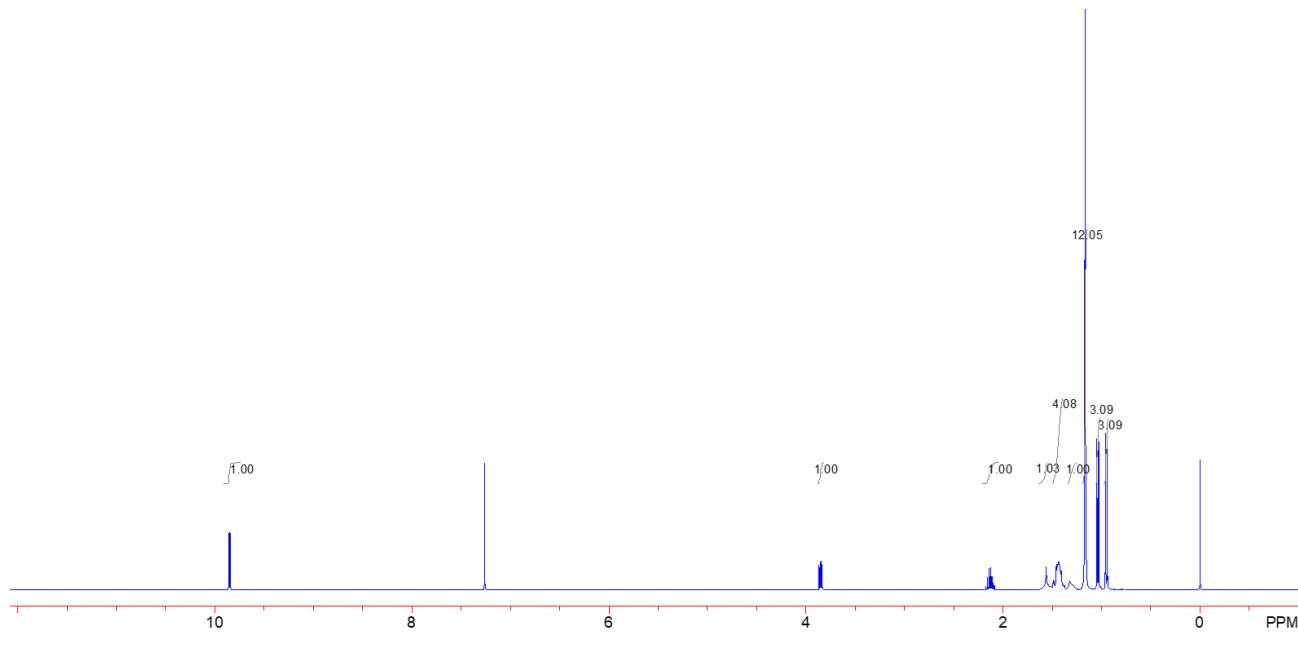

775

776

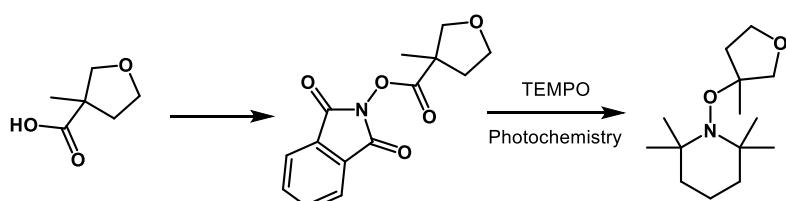

777 Scheme S3. 2-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanal (Structure 7)

778 2-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanal (Structure 7) was prepared
779 according to Scheme 3. To a stirred solution of methyl 2-methylbutanoate in CHCl_3 was added
780 NBS and a catalytic amount of AIBN. The mixture solution was stirred for 3 h at 80 °C. After the
781 reaction was completed, the mixture solution was purified by silical gel column to get methyl 2-
782 bromo-2-methylbutanoate, and the structure was confirmed by $^1\text{H-NMR}$. Then, the product was
783 dissolved in benzene with TEMPO, Cu, CuBr, and TMEDA and was stirred for 2 h at 60 °C to get
784 methyl 2-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanoate. After purification by silical
785 gel column, the product and LiAlH_4 was added into THF and the reaction temperature was
786 maintained at 0 °C for 1 h to get 2-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butan-1-ol.
787 After purification, TPAP, NMO, and product from the previous step was dissolved in DCM to
788 obtain the oxidation product, Structure 7. MS (ES, m/z): $[\text{M}+1]^+ = 241.8$. $^1\text{H-NMR}$ (400 MHz,
789 $\text{DMSO-}d_6$): 9.713 (s, 1H), 1.945-1.935 (m, 2H), 1.773-1.706 (m, 2H), 1.628-1.422 (m, 4H), 1.315
790 (s, 3H), 1.195 (s, 3H), 1.162 (s, 3H), 1.109 (s, 3H), 0.914 (s, 3H), 0.835 (t, 3H).

792 Figure S26. The HRMS of structure 7.

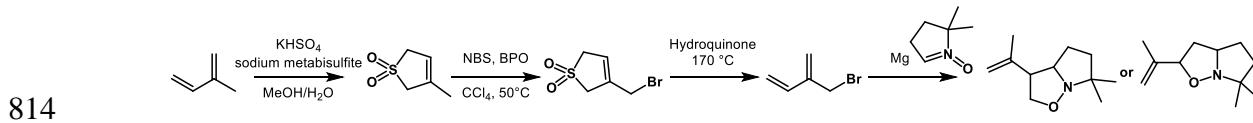

793

795 Scheme S4. 3-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanal (Structure 11)


796 To a stirred solution of TEMPO (1 g, 6.40 mmol, 1.0 eq.) in MeCN (10.0 mL) was added
 797 Ru(bpy)₃(PF₆)₂ (110 mg, 0.13 mmol, 0.02 eq.), morpholine (28 mg, 0.32 mmol, 1.0 eq.), 3-
 798 methylbutanal (1.10 g, 12.80 mmol, 2.0 eq.) and stirred for 16 h under 435nm blue LED. The
 799 mixture was purified by reverse column (MeCN : NH₄HCO₃=0 to 100%) to give **Structure 11**

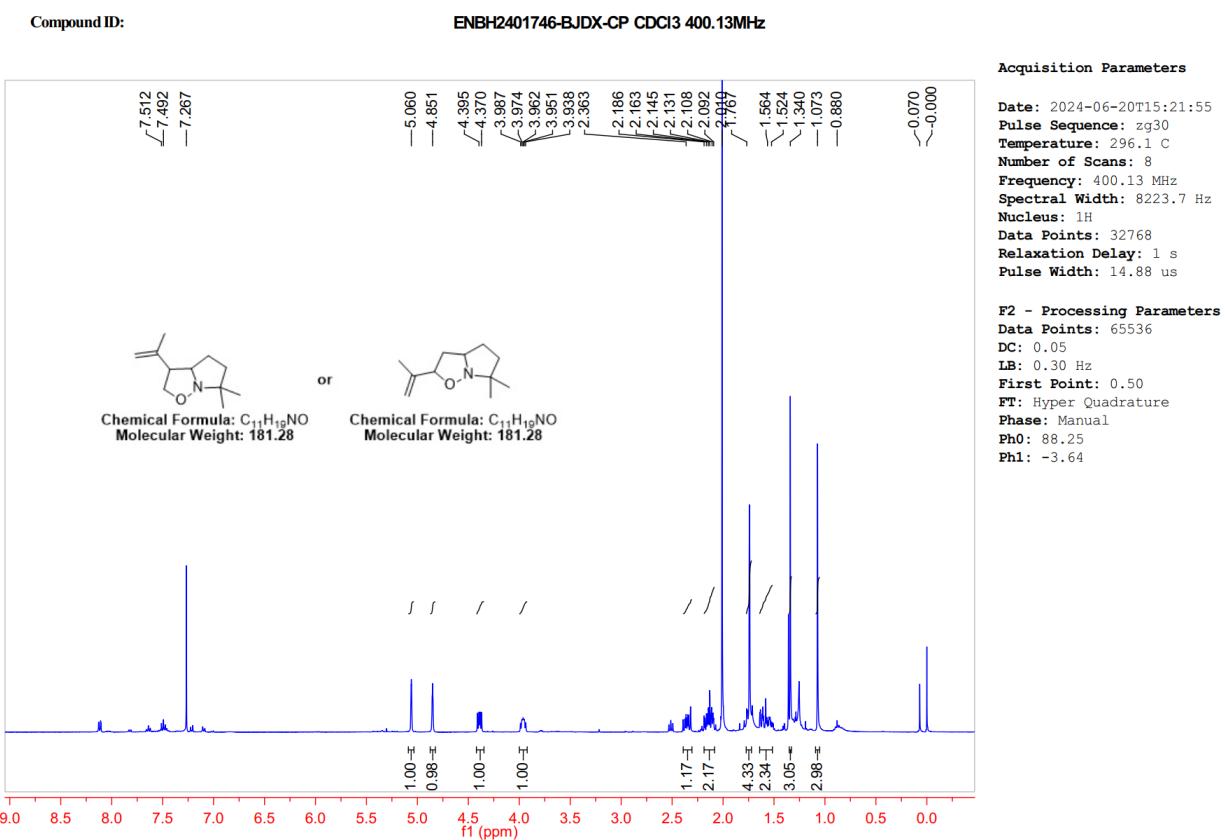
800 (150 mg, 9.74%) as a pale yellow liquid. MS (ES, m/z): $[M+1]^+ = 241.8$. $^1\text{H-NMR}$ (400 MHz,
 801 DMSO- d_6): 9.853 (d, $J=5.2\text{Hz}$, 1H), 3.868-3.838 (m, 1H), 2.175-2.089 (m, 1H), 1.563-1.325 (m,
 802 6H), 1.169 (s, 12H), 1.039 (d, $J=6.8\text{Hz}$, 3H), 0.951 (d, $J=6.8\text{Hz}$, 3H).

804 Figure S27. The HRMS of structure 11.


805

807 Scheme S5. 2,2,6,6-tetramethyl-1-((3-methyltetrahydrofuran-3-yl)oxy)piperidine (Structure 10)

808 2,2,6,6-tetramethyl-1-((3-methyltetrahydrofuran-3-yl)oxy)piperidine (Structure 10) was
809 obtained from Scheme 5. First, 3-methyltetrahydrofuran-3-carboxylic acid was reacted with 2-
810 hydroxyisoindoline-1,3-dione. Then, 1,3-dioxoisooindolin-2-yl 3-methyltetrahydrofuran-3-
811 carboxylate was obtained, which was then mixed with TEMPO. Finally, after a photochemical
812 reaction occurred, Structure 10 was finally obtained.


813

815 Scheme S6. 6,6-dimethyl-3-(prop-1-en-2-yl)hexahdropyrrolo[1,2-b]isoxazole or 6,6-dimethyl-2-
816 (prop-1-en-2-yl)hexahdropyrrolo[1,2-b]isoxazole

817 To a solution of 1 (5 g, 0.073 mol) in methanol (146 mL) and water (40 mL) was added KHSO₄
818 (20 g, 0.146 mol) and sodium metabisulfite (70 g, 0.365 mol). The reaction mixture was stirred at
819 100 °C for 14 h under N₂. The reaction mixture was cooled to room temperature and concentrated.
820 The solution was extracted with EA (100 mL, 3 times). The combined organic layers were dried
821 over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the product (2.5 g, yield
822 25.7%). To a solution of 2 (22 g, 166 mmol) in chloroform (250 mL) was added NBS (35.4 g, 199
823 mmol) and BPO (2 g, 8.3 mmol). The reaction mixture was stirred at 75 °C for 16 h under N₂. The
824 reaction mixture was poured into water (500 mL) and extracted with DCM (100 mL, 3 times). The
825 combined organic layers were washed with water (100 mL) and brine (100 mL), dried over Na₂SO₄
826 and concentrated to give crude product. The crude product was purified by silica gel
827 chromatography (PE/EA=20/1~5/1) to give product (11 g, yield 31.2%). A 50 mL round-bottom
828 flask was charged with (5 g, 23.6 mmol) of 3-bromomethyl-2,5-dihydrothiophene-1,1-dioxide and

829 about 20 mg of hydroquinone, and connected to a condenser with a receiving flask. The round-
 830 bottom flask was then placed in a pre-heated oil bath at 170 °C. After the solid had melted, vacuum
 831 was applied with a water aspirator. Sulfur dioxide was evolved and the product was collected in
 832 the receiving flask cooled in an ice bath to give product (2 g, yield 57%). To a solution of Mg (0.2
 833 g, 8.3 mmol) in THF (5 mL) was added 4 (0.6 g, 4.08 mmol) in THF (2 mL) dropwise at 30 °C.
 834 The reaction mixture was stirred at 30 °C for 1 h under N₂. Then DMPO (565 mg, 5.0 mmol) was
 835 added dropwise at 30 °C. Then the mixture was stirred at 50 °C for 5 h. The solution was poured
 836 into water (20 mL) and extracted with DCM (30 mL, 3 times). The combined organic layers were
 837 dried over Na₂SO₄ and concentrated to give crude product. The crude product was purified by
 838 prep-HPLC.

839

840 Figure S28. The HRMS of 6,6-dimethyl-3-(prop-1-en-2-yl)hexahdropyrrolo[1,2-b]isoxazole.

841 References

842 70 Williams, P. J. H. *et al.* New Approach to the Detection of Short-Lived Radical Intermediates.
843 *Journal of the American Chemical Society* **144**, 15969-15976 (2022).
844 <https://doi.org:10.1021/jacs.2c03618>

845 71 Kanaya, Y., Sadanaga, Y., Hirokawa, J., Kajii, Y. & Akimoto, H. Development of a ground-based
846 LIF instrument for measuring HO_x radicals: Instrumentation and calibrations. *J Atmos Chem* **38**,
847 73-110 (2001). <https://doi.org:10.1023/A:1026559321911>

848 72 Wang, F. *et al.* Development of a field system for measurement of tropospheric OH radical using
849 laser-induced fluorescence technique. *Optics Express* **27**, A419-A435 (2019).

850 73 Heard, D. E. & Pilling, M. J. Measurement of OH and HO₂ in the troposphere. *Chemical Reviews*
851 **103**, 5163-5198 (2003). <https://doi.org:10.1021/cr020522s>

852 74 Cantrell, C. A., Zimmer, A. & Tyndall, G. S. Absorption cross sections for water vapor from 183
853 to 193 nm. *Geophysical Research Letters* **24**, 2195-2198 (1997).

854 75 Creasey, D. J., Heard, D. E. & Lee, J. D. Absorption cross-section measurements of water vapour
855 and oxygen at 185 nm. Implications for the calibration of field instruments to measure OH, HO₂
856 and RO₂ radicals. *Geophysical Research Letters* **27**, 1651-1654 (2000).

857 76 Palm, B. B. *et al.* In situ secondary organic aerosol formation from ambient pine forest air using
858 an oxidation flow reactor. *Atmospheric Chemistry and Physics* **16**, 2943-2970 (2016).

859 77 Tang, M., Cox, R. & Kalberer, M. Compilation and evaluation of gas phase diffusion coefficients
860 of reactive trace gases in the atmosphere: volume 1. Inorganic compounds. *Atmospheric
861 Chemistry and Physics* **14**, 9233-9247 (2014).

862 78 Hansel, A., Scholz, W., Mentler, B., Fischer, L. & Berndt, T. Detection of RO₂ radicals and other
863 products from cyclohexene ozonolysis with NH₄⁺ and acetate chemical ionization mass
864 spectrometry. *Atmospheric Environment* **186**, 248-255 (2018).

865 79 Huang, Y. *et al.* Unified theory of vapor-wall mass transport in Teflon-walled environmental
866 chambers. *Environmental science & technology* **52**, 2134-2142 (2018).

867 80 Peng, Z. & Jimenez, J. L. Radical chemistry in oxidation flow reactors for atmospheric chemistry
868 research. *Chemical Society Reviews* **49**, 2570-2616 (2020).

869 81 Davis, D. D., Ravishankara, A. R. & Fischer, S. SO₂ oxidation via the hydroxyl radical:
870 Atmospheric fate of HSO_x radicals. *Geophysical Research Letters* **6**, 113-116 (1979).
871 <https://doi.org:https://doi.org/10.1029/GL006i002p00113>

872 82 Mao, J. *et al.* Airborne measurement of OH reactivity during INTEX-B. *Atmospheric Chemistry
873 and Physics* **9**, 163-173 (2009). <https://doi.org:10.5194/acp-9-163-2009>

874 83 Jenkin, M., Young, J. & Rickard, A. The MCM v3. 3.1 degradation scheme for isoprene.
875 *Atmospheric Chemistry and Physics* **15**, 11433-11459 (2015).

876 84 Ma, F. *et al.* Atmospheric Chemistry of Allylic Radicals from Isoprene: A Successive Cyclization-
877 Driven Autoxidation Mechanism. *Environmental Science & Technology* **55**, 4399-4409 (2021).
878 <https://doi.org:10.1021/acs.est.0c07925>

879 85 Atkinson, R. Rate constants for the atmospheric reactions of alkoxy radicals: An updated
880 estimation method. *Atmospheric Environment* **41**, 8468-8485 (2007).

881 86 Frisch, M. e. *et al.* (Gaussian, Inc. Wallingford, CT, 2016).

882 87 Glowacki, D. R., Liang, C.-H., Morley, C., Pilling, M. J. & Robertson, S. H. MESMER: an open-
883 source master equation solver for multi-energy well reactions. *The Journal of Physical Chemistry
884 A* **116**, 9545-9560 (2012).

885 88 Georgievskii, Y. & Klippenstein, S. J. Variable reaction coordinate transition state theory:
886 Analytic results and application to the C₂H₃ + H → C₂H₄ reaction. *The Journal of chemical
887 physics* **118**, 5442-5455 (2003).

888 89 Horváth, G., Horváth, I., Almousa, S. A.-D. & Telek, M. Numerical inverse Laplace
889 transformation using concentrated matrix exponential distributions. *Performance Evaluation* **137**,
890 102067 (2020).

891 90 Carr, S. A. *et al.* Experimental and Modeling Studies of the Pressure and Temperature
892 Dependences of the Kinetics and the OH Yields in the Acetyl+O₂ Reaction. *The Journal of*
893 *Physical Chemistry A* **115**, 1069-1085 (2011).

894 91 Maranzana, A., Barker, J. R. & Tonachini, G. Master equation simulations of competing
895 unimolecular and bimolecular reactions: application to OH production in the reaction of acetyl
896 radical with O₂. *Physical Chemistry Chemical Physics* **9**, 4129-4141 (2007).

897 92 Tilmes, S. *et al.* Climate forcing and trends of organic aerosols in the Community Earth System
898 Model (CESM2). *Journal of Advances in Modeling Earth Systems* **11**, 4323-4351 (2019).

899 93 Emmons, L. K. *et al.* The Chemistry Mechanism in the Community Earth System Model Version
900 2 (CESM2). *Journal of Advances in Modeling Earth Systems* **12**, e2019MS001882 (2020).
<https://doi.org:https://doi.org/10.1029/2019MS001882>

901 94 Van Marle, M. J. *et al.* Historic global biomass burning emissions for CMIP6 (BB4CMIP) based
903 on merging satellite observations with proxies and fire models (1750–2015). *Geoscientific Model*
904 *Development* **10**, 3329-3357 (2017).

905 95 Hoesly, R. M. *et al.* Historical (1750–2014) anthropogenic emissions of reactive gases and
906 aerosols from the Community Emissions Data System (CEDS). *Geoscientific Model Development*
907 **11**, 369-408 (2018).

908 96 Feng, L. *et al.* The generation of gridded emissions data for CMIP6. *Geoscientific Model*
909 *Development* **13**, 461-482 (2020).

910 97 Guenther, A. *et al.* The Model of Emissions of Gases and Aerosols from Nature version 2.1
911 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions.
912 *Geoscientific Model Development* **5**, 1471-1492 (2012).

913 98 Schwantes, R. H. *et al.* Comprehensive isoprene and terpene gas-phase chemistry improves
914 simulated surface ozone in the southeastern US. *Atmos. Chem. Phys.* **20**, 3739-3776 (2020).
<https://doi.org:10.5194/acp-20-3739-2020>

915 99 Gerritz, L., Perraud, V., Weber, K. M., Shiraiwa, M. & Nizkorodov, S. A. Application of UHPLC-
917 ESI-MS/MS to Identify Free Radicals via Spin Trapping with BMPO. *The Journal of Physical*
918 *Chemistry A* **128**, 10240-10249 (2024). <https://doi.org:10.1021/acs.jpca.4c05311>

919 100 Bauer, N. A., Hoque, E., Wolf, M., Kleigrewe, K. & Hofmann, T. Detection of the formyl radical
920 by EPR spin-trapping and mass spectrometry. *Free Radical Biology and Medicine* **116**, 129-133
921 (2018).

922 101 Liggio, J., Li, S.-M. & McLaren, R. Reactive uptake of glyoxal by particulate matter. *Journal of*
923 *Geophysical Research: Atmospheres* **110** (2005).
<https://doi.org:https://doi.org/10.1029/2004JD005113>

924 102 Knote, C. *et al.* Simulation of semi-explicit mechanisms of SOA formation from glyoxal in
926 aerosol in a 3-D model. *Atmospheric Chemistry and Physics* **14**, 6213-6239 (2014).

927 103 Fu, T.-M. *et al.* Global budgets of atmospheric glyoxal and methylglyoxal, and implications for
928 formation of secondary organic aerosols. *Journal of Geophysical Research: Atmospheres* **113**
929 (2008). <https://doi.org:https://doi.org/10.1029/2007JD009505>

930