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S.1. Sequential Backward Feature Selection (SBFS) 

The initial feature space contained 200 molecular descriptors and 23 thermodynamic properties. SMILES 

strings for each chemical were obtained using CIRpy (v1.0.2), then passed to the chemicals (v1.1.4) and 

thermos (v0.2.26) libraries to retrieve thermodynamic data, while RDKit (v2023.3.3) was used to compute 

the molecular descriptors. Given the large number of available features, it is important to retain only those 

that contribute most to model performance hence we used the Sequential Backward Feature Selection with 

linear regression and 5-fold cross-validated mean squared error to select five features from each feature set. 

Mathematically, the SBFS procedure can be written as follows: 

Input: 

F – set of all features 

J – evaluation function (5-fold cross-validated mean squared error) 

K – desired number of features (= 5) 

Initialize: 

t = 0 

S(0) = F 

 

While |S(t)| > K: 

        For each feature f ∈ S(t): 

 score(f) = J(S(t)\{f} ) 

f ∗ = argmin score(f)    

S(t+1) = S(t)\f ∗S(t+1) 

Output: 

S(t) with |S(t)| = K 
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S.2. Machine learning hyperparameter tuning 

The performance of the ANN model depends strongly on a set of hyperparameters, such as the number of 

hidden layers and neurons, activation functions, learning rate etc. In this work, the Adam optimizer was 

employed to train the ANN, as it uses adaptive learning rates and momentum, which typically lead to faster 

and more stable convergence compared to standard gradient descent for this type of dataset. The available 

data w split into training, testing and validation sets, and the tuning of the hyperparameters was conducted 

using the validation set by selecting the configuration that yielded the lowest validation error. 

Table 1 Hyperparameter tuning for ANN models 

Hyperparameter GWP RUI HHI EQI 

Input layer 

activation 

function  

elu  elu  tanh elu 

Input layer 

#neurons  

200  200  140 200  

Input layer 

dropout rate  

0.2631  0.2631  0.1834  0.2631  

Input layer 

initializer  

GlorotUniform  GlorotUniform  GlorotUnifor 

m  

GlorotUniform  

Number of 

hidden layers  

5  5  4  5  

Hidden layer 

initializer  

GlorotUniform,  

GlorotUniform,  

GlorotUniform, 

GlorotUniform,  

GlorotUniform  

GlorotUniform,  

GlorotUniform,  

GlorotUniform, 

GlorotUniform,  

GlorotUniform  

HeNormal,  

HeNormal,  

HeNormal,  

HeNormal  

GlorotUniform,  

GlorotUniform,  

GlorotUniform, 

GlorotUniform,  

GlorotUniform  

Hidden layer 

#neurons  

200, 200, 200, 200, 

200  

200, 200, 200, 200, 

200  

250, 250, 

250, 250  

200, 200, 200, 200, 

200  

Hidden layer 

activation 

function 

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51), 

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51), 

relu, relu,  

relu, relu 

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51),  

leaky_relu(alpha=0.0 

51), 

Hidden layer 

dropout rate  

0.3055, 0.3055,  

0.3055, 0.3055,  

0.3055,  

0.3055, 0.3055,  

0.3055, 0.3055,  

0.3055,  

0.3055, 

0.3055,  

0.3055, 0.3055,  

Output layer 

activation 

function  

relu  relu  relu  relu  

Loss function  Mean squared 

logarithmic error  

Mean squared 

logarithmic error  

Mean 

squared 

logarithmic 

error  

Mean squared 

logarithmic error  

Learning rate  0.00108   0.00108   0.00127   0.00108   
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S.3. Data points for the Gate-to-Gate and end-of-life phase model 

This phase leverages a power-law regression correlation to develop regression models that estimate the 

GWP of the different technologies. The regression equation inspired by cost estimation equation is written 

as: 

(
GWPnew

GWPref
) = (

Fnew

Fref
)

α

(
Enew

Eref
)

β

 

where 𝐹 denotes the feed throughput and 𝐸 denotes the energy consumption of the technology, and 𝛼and 

𝛽 are regression coefficients which tell if the GWP of the technology is dependent on the feed throughput 

or energy consumption respectively. 

Linearized form: 

ln X1 = α ln X2 + βY 

Where; 

X1 = 
Fnew

Fref
,  X2 = 

Enew

Eref
, and Y = 

GWPnew

GWPref
 

 

Table 2 and Table 3 present the literature-derived data points used to construct the distillation and 

pervaporation graphs shown in this work. In each case, a reference data point was chosen to normalize the 

full dataset, and the resulting normalized points were plotted and fitted to obtain the regression coefficients 

𝛼and 𝛽. 

Table 2 Data points for distillation obtained from literature 

 
Feed Rate (kg/s) 

Energy 

(kW) 

GWP 

(kg CO2-eq/kg feed) 

Chea et al. [1] 0.2778 1175.3 0.2723 

Do Thi and Toth. [2] 0.2778 223.3 0.0706 

Caballero-Sanchez et al. [3] 0.0130 20.1 0.1295 

Cavanagh et al. [4] 0.1261 407.2 0.2067 

Cavanagh et al. [4] 0.4856 324.7 0.0500 

Cavanagh et al. [4] 0.3089 1022.9 0.2219 
 

Reference data: 

Do Thi et al. [2] 0.2778 223.3 0.0706 
 

Table 3 Normalized dataset used to generate the distillation graph 

Data X1 X2 Y 

1 1 5.2627 3.8590 
2 1 1 1 

3 0.0466 0.0901 1.8350 
4 0.454 1.8232 2.9294 
5 1.748 1.4541 0.7082 

6 1.112 4.5806 3.1445 
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Power-law model for the distillation unit: 

(
GWPnew

0.0706
) = (

Fnew

0.278
)

−0.83

(
Enew

223.3
)

0.799

 

The same procedure described above for distillation was applied to pervaporation, using Meng et al. as the 

reference data. 

Table 4 Data points for pervaporation obtained from literature 

 
Flux (L/m2.h) 

Energy 

(kJ/h) 

GWP 

(kg CO2-eq/kg feed) 

Meng et al.[5] 4.3357 1.22E+07 1.46E-02 

Lee et al.[6] 1.3870 2.05E+05 5.500E-03 

Norkobilov et al.[7] 0.262 1.54E+06 7.420E-03 

Norkobilov et al.[7] 0.2876 6.16E+05 3.160E-03 

Do Thi and Toth[2] 1.3000 1.66E+05 1.320E-03 

 

Reference data: 

Meng et al.[5] 4.3357 1.22E+07 1.46E-02 

 

Table 5 Normalized dataset used to generate the pervaporation graph 

Data X1 X2 Y 

1 1 1 1 
2 0.3199 0.0167 0.3767 
3 0.0604 0.1256 0.5082 
4 0.0663 0.0504 0.2164 
5 0.2998 0.0135 0.0904 

 

Power-law model for the pervaporation unit: 

(
GWPnew

0.0146
) = (

Fnew

4.3357
)

0.0154

(
Enew

1.22 ∗ 107
)

0.411

 

These datasets were used to fit a regression model and obtain the scaling coefficients α and β, which were 

then used to calculate the GWP of the distillation unit in all three scenarios from the case study. 
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S.4. Overall GWP estimation for the Case Study  

In the case study presented by Do Thi and Toth [2], the authors examine the recovery of high-purity ethanol 

and isobutanol from dilute alcohol–water waste streams using hybrid distillation–pervaporation processes. 

They evaluate the environmental impacts of the different separation configurations, including climate 

change, alongside their process performance. In our subsequent calculations, we adopt their ethanol–water 

mixture as the reference case and estimate the GWP of all scenarios using our model, then compare these 

values with the GWPs reported in their study. 

1. Gate-to-gate GWP calculation for scenario 1 (D+PV): 

 

Table 6 Summary of material and energy balance 

Technology Parameter Value Unit 

Distillation Feed Mass Flow 1000 Kg/hr. 

 Ethanol mass fraction 10 % 

 Water mass fraction 90 % 

 Reboiler duty 554.64 MJ/hr. 

 Condenser duty -234.58 MJ/hr. 

Pervaporation Retentate heating 35.58 MJ/hr. 

 Permeate cooling -38.54 MJ/hr. 

 Total membrane area 200 m2 

 

GWP for distillation: 

(
GWPnew

0.0706
) = (

0.278

0.278
)

−0.83

(
219.23

223.3
)

0.799

 

   GWPnew   = 0.0696 kg CO2-eq   

GWP for pervaporation: 

(
GWPnew

0.0146
) = (

0.0728

4.3357
)

0.0154

(
74.12 ∗ 103

1.22 ∗ 107 )

0.411
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GWPnew   = 0.016829 kg CO2-eq   

Table 7 GWP of the various technologies involved in scenario 1 

Technology GWP 

(kg CO2-eq/kg feed) 

Distillation 0.0696 

Pervaporation 0.0016829 

Total 0.0728829 

 

2. Gate-to-gate GWP calculation for scenario 2 (D+PV+D): 

 

Table 8 Summary of material and energy balance 

Technology Parameter Value Unit 

1st Distillation Feed Mass Flow 1000 Kg/hr. 

 Ethanol mass fraction 10 % 

 Water mass fraction 90 % 

 Reboiler duty 713.56 MJ/hr. 

 Condenser duty -396.13 MJ/hr. 

Pervaporation Retentate heating 14.86 MJ/hr. 

 Permeate cooling -17.86 MJ/hr. 

 Total membrane area 130 m2 

2nd  Distillation Retentate heating 1080.19 MJ/hr. 

 Permeate cooling -1095.41 MJ/hr. 

 

GWP for 1st Distillation: 

(
GWPnew

0.0706
) = (

0.278

0.278
)

−0.83

(
308.25

223.3
)

0.799

 

   GWPnew   = 0.0913 kg CO2-eq   
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GWP for pervaporation: 

(
GWPnew

0.0146
) = (

0.04915

4.3357
)

0.0154

(
32.72 ∗ 103

1.22 ∗ 107 )

0.411

 

   GWPnew   = 0.001195 kg CO2-eq   

 

GWP for 2nd  Distillation: 

(
GWPnew

0.0706
) = (

0.02764

0.278
)

−0.83

(
604.33

223.3
)

0.799

 

   GWPnew   =1.0626 kg CO2-eq   

Table 9 GWP of the various technologies involved in scenario 2 

Technology GWP 

(kg CO2-eq/kg feed) 

Distillation Column 1 0.0913 

Pervaporation 0.001195 

Distillation Column 2 1.0626 

Total 1.155095 

 

 

 

3. Gate-to-gate GWP calculation for scenario 2 (D+PV+D+HI): 
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Table 10 Summary of material and energy balance 

Technology Parameter Value Unit 

1st Distillation Feed Mass Flow 1000 Kg/hr. 

 Ethanol mass fraction 10 % 

 Water mass fraction 90 % 

 Reboiler duty 414.49 MJ/hr. 

 Condenser duty -396.87 MJ/hr. 

Pervaporation Retentate heating 15.02 MJ/hr. 

 Permeate cooling -18.09 MJ/hr. 

 Total membrane area 130 m2 

2nd  Distillation Retentate heating 1078.65 MJ/hr. 

 Permeate cooling -1093.86 MJ/hr. 

 

GWP for 1st Distillation: 

(
GWPnew

0.0706
) = (

0.278

0.278
)

−0.83

(
225.38

223.3
)

0.799

 

   GWPnew   = 0.0711 kg CO2-eq   

GWP for Pervaporation: 

(
GWPnew

0.0146
) = (

0.049397

4.3357
)

0.0154

(
33.11 ∗ 103

1.22 ∗ 107 )

0.411

 

   GWPnew   = 0.00120 kg CO2-eq   

GWP for 2nd Distillation: 

(
GWPnew

0.0706
) = (

0.027772

0.278
)

−0.83

(
603.48

223.3
)

0.799

 

   GWPnew   =1.0572 kg CO2-eq   

Table 11 GWP of the various technologies involved in scenario 3 

Technology GWP 

(kg CO2-eq/kg feed) 

Distillation Column 1 0.0711 

Pervaporation 0.00120 

Distillation Column 2 1.0572 

Total 1.1295 
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Once the GWPs for the production phase have been obtained from the ANN model and those for the use 

phase from the regression models described above, the overall life-cycle GWP of the process is calculated 

as: 

𝑮𝑾𝑷𝒐𝒗𝒆𝒓𝒂𝒍𝒍 = 𝑮𝑾𝑷𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 + 𝑮𝑾𝑷𝒖𝒔𝒆−𝒑𝒉𝒂𝒔𝒆 + 𝑮𝑾𝑷𝑬𝒐𝑳 

Table 12 GWP for all three scenarios of ethanol-water mixture case study 

Scenario GWP (ANN) 

(kg CO2-eq/kg feed) 

GWP (Regression) 

(kg CO2-eq/kg feed) 

Overall GWP 

(kg CO2-eq/kg feed) 

D+PV 3.102 0.0728829 3.17 

D+PV+D 3.102 1.155095 4.30 

D+PV+D+HI 3.102 1.1295 4.23 

 

Having estimated the GWP for our case study, we next summarize how Do Thi and Toth calculated their 

climate change values in order to enable a consistent comparison. 

 

Table 13 Inventory data for the production of 1 kg of product in SimaPro 

 D+PV D+PV+D D+PV+D+HI 

Feed Streams    

Ethanol (kg) 0.10 0.10 0.10 

Water(kg) 0.9 0.9 0.91 

Utilities    

Heating duty 5.99 18.34 15.41 

Cooling Water 10.96 10.18 1.13 

Vacuum energy 0.30 1.21 1.21 

Products    

Ethanol  1.00 1.00 1.00 

Water by-product 9.07 9.06 9.11 

Cooling water(kg) 10.96 10.18 1.13 

 

Using the inventory data reported in Table 14, and applying the same Environmental Footprint (EF) 

(adapted) method with characterization, as described in the reference paper, we attempted to reproduce their 

impact results. Although we did not obtain same absolute values, likely because the exact background 

inventories for energy and material flows were not fully specified, we observed similar trends across the 

three scenarios, particularly for the climate change impact category. 
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Table 15  Results of the Impact Assessment Using the Adapted EF Method 

Impact category Unit D+PV D+PV+D D+PV+D+HI 

Climate change kg CO2 eq 9.31E-01 2.42E+00 2.09E+00 

Ozone depletion kg CFC11 eq 9.92E-08 2.54E-07 2.23E-07 

Ionising radiation, HH kBq U-235 eq 2.96E-02 6.87E-02 6.15E-02 

Photochemical ozone 

formation, HH 

kg NMVOC 

eq 

2.05E-03 4.36E-03 4.04E-03 

Respiratory inorganics disease inc. 4.94E-08 1.09E-07 9.75E-08 

Non-cancer human 

health effects 

CTUh 9.94E-08 1.91E-07 1.73E-07 

Cancer human health 

effects 

CTUh 4.48E-09 7.55E-09 7.26E-09 

Acidification terrestrial 

and freshwater 

mol H+ eq 4.50E-03 1.01E-02 8.94E-03 

Eutrophication 

freshwater 

kg P eq 1.67E-04 3.58E-04 3.16E-04 

Eutrophication marine kg N eq 1.05E-03 1.72E-03 1.64E-03 

Eutrophication 

terrestrial 

mol N eq 1.00E-02 1.71E-02 1.63E-02 

Ecotoxicity freshwater CTUe 7.76E-01 1.12E+00 1.10E+00 

Land use Pt 2.15E+01 2.23E+01 2.27E+01 

Water scarcity m3 depriv. 1.14E+00 1.16E+00 7.17E-01 

Resource use, energy 

carriers 

MJ 1.12E+01 2.97E+01 2.57E+01 

Resource use, mineral 

and metals 

kg Sb eq 4.93E-07 5.12E-07 5.77E-07 

Climate change - fossil kg CO2 eq 9.05E-01 2.39E+00 2.07E+00 

Climate change - 

biogenic 

kg CO2 eq 2.24E-03 2.54E-03 2.48E-03 

Climate change - land 

use and transform. 

kg CO2 eq 2.29E-02 2.31E-02 2.30E-02 

 

 S.5. Contribution Tree Diagrams with Node Cut-Offs 

Also presented below are contribution tree diagrams that highlight the processes making the largest 

contributions to the overall impact in each scenario. A node cut-off is applied so that only processes 

exceeding a specified share of the total impact are displayed. 
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D+PV: 8.11% node cut-off  
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D+PV+D: 5.78% node cut-off  

 

D+PV+D+HI: 6.73% node cut-off   

 

 0.1 kg

 Ethanol, without

 water, in 95%

 2.11E-5 Pt

 0.0258 kg

 Ethanol, without

 water, in 95%

 1.08E-5 Pt

 0.1 kg

 Ethanol, without

 water, in 99.7%

 2.14E-5 Pt

 0.152 kg

 Hard coal {CN}|

 market for |

 1.27E-5 Pt

 0.146 kg

 Hard coal {CN}|

 hard coal mine

 1.16E-5 Pt

 11.8 MJ

 Heat, district or

 industrial, natural

 4.42E-5 Pt

 4.82 MJ

 Heat, district or

 industrial, other

 5.1E-5 Pt

 7.05 MJ

 Heat, district or

 industrial, other

 4.13E-5 Pt

 18.3 MJ

 Heat, from

 steam, in

 0.000145 Pt

 0.174 kg

 Light fuel oil

 {RoW}| market for

 1.98E-5 Pt

 0.174 kg

 Light fuel oil

 {RoW}|

 1.93E-5 Pt

 0.179 m3

 Natural gas, high

 pressure {RoW}|

 1.17E-5 Pt

 0.216 kg

 Petroleum {GLO}|

 market for |

 1.75E-5 Pt

 1 kg

 Ethanol

 0.00017 Pt

 0.1 kg

 Ethanol, without

 water, in 95%

 2.11E-5 Pt

 0.0258 kg

 Ethanol, without

 water, in 95%

 1.08E-5 Pt

 0.1 kg

 Ethanol, without

 water, in 99.7%

 2.14E-5 Pt

 0.129 kg

 Hard coal {CN}|

 market for |

 1.08E-5 Pt

 9.87 MJ

 Heat, district or

 industrial, natural

 3.72E-5 Pt

 4.07 MJ

 Heat, district or

 industrial, other

 4.31E-5 Pt

 5.92 MJ

 Heat, district or

 industrial, other

 3.47E-5 Pt

 15.4 MJ

 Heat, from

 steam, in

 0.000122 Pt

 0.146 kg

 Light fuel oil

 {RoW}| market for

 1.67E-5 Pt

 0.146 kg

 Light fuel oil

 {RoW}|

 1.62E-5 Pt

 0.193 kg

 Petroleum {GLO}|

 market for |

 1.56E-5 Pt

 1 kg

 Ethanol

 0.000148 Pt



13 
 

References 

[1] J. D. Chea, A. L. Lehr, J. P. Stengel, M. J. Savelski, C. S. Slater, and K. M. Yenkie, “Evaluation of 

Solvent Recovery Options for Economic Feasibility through a Superstructure-Based Optimization 

Framework,” Ind Eng Chem Res, 2020. 

[2] H. T. Do Thi and A. J. Toth, “Environmental evaluation and comparison of hybrid separation methods 

based on distillation and pervaporation for dehydration of binary alcohol mixtures with life cycle, 

PESTLE, and multi-criteria decision analyses,” Sep. Purif. Technol., vol. 348, p. 127684, Nov. 2024, 

doi: 10.1016/j.seppur.2024.127684. 

[3] L. Caballero-Sanchez, A. A. Vargas-Tah, P. E. Lázaro-Mixteco, and A. J. Castro-Montoya, “Recovery 

of 1,4-butanediol from aqueous solutions through aqueous two-phase systems with K2CO3,” Chem. 

Eng. Res. Des., vol. 201, pp. 150–156, Jan. 2024, doi: 10.1016/j.cherd.2023.11.015. 

[4] E. J. Cavanagh, M. J. Savelski, and C. S. Slater, “Optimization of environmental impact reduction 

and economic feasibility of solvent waste recovery using a new software tool,” Chem. Eng. Res. Des., 

vol. 92, no. 10, pp. 1942–1954, Oct. 2014, doi: 10.1016/j.cherd.2014.02.022. 

[5] D. Meng et al., “Energy, economic and environmental evaluations for the separation of ethyl 

acetate/ethanol/water mixture via distillation and pervaporation unit,” Process Saf. Environ. Prot., 

vol. 140, pp. 14–25, Aug. 2020, doi: 10.1016/j.psep.2020.04.039. 

[6] H.-Y. Lee, S.-Y. Li, and C.-L. Chen, “Evolutional Design and Control of the Equilibrium-Limited 

Ethyl Acetate Process via Reactive Distillation−Pervaporation Hybrid Configuration,” Ind. Eng. 

Chem. Res., vol. 55, no. 32, pp. 8802–8817, Aug. 2016, doi: 10.1021/acs.iecr.6b01358. 

[7] A. Norkobilov, D. Gorri, and I. Ortiz, “Process flowsheet analysis of pervaporation‐based hybrid 

processes in the production of ethyl tert‐butyl ether,” J. Chem. Technol. Biotechnol., vol. 92, no. 6, 

pp. 1167–1177, June 2017, doi: 10.1002/jctb.5186. 

 


