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S.1. Sequential Backward Feature Selection (SBFS)

The initial feature space contained 200 molecular descriptors and 23 thermodynamic properties. SMILES
strings for each chemical were obtained using CIRpy (v1.0.2), then passed to the chemicals (v1.1.4) and
thermos (v0.2.26) libraries to retrieve thermodynamic data, while RDKit (v2023.3.3) was used to compute
the molecular descriptors. Given the large number of available features, it is important to retain only those
that contribute most to model performance hence we used the Sequential Backward Feature Selection with
linear regression and 5-fold cross-validated mean squared error to select five features from each feature set.

Mathematically, the SBFS procedure can be written as follows:

Input:

F — set of all features

] — evaluation function (5-fold cross-validated mean squared error)

K — desired number of features (= 5)
Initialize:

t=0

50 — F

While [S®| > K:

For each feature f € S®:
score(f) = J(SO\{f} )

f* = argmin score(f)

S(t+1) — gD\ frgern
Output:

S® with S| =K



S.2. Machine learning hyperparameter tuning

The performance of the ANN model depends strongly on a set of hyperparameters, such as the number of
hidden layers and neurons, activation functions, learning rate etc. In this work, the Adam optimizer was
employed to train the ANN, as it uses adaptive learning rates and momentum, which typically lead to faster
and more stable convergence compared to standard gradient descent for this type of dataset. The available
data w split into training, testing and validation sets, and the tuning of the hyperparameters was conducted
using the validation set by selecting the configuration that yielded the lowest validation error.

Table 1 Hyperparameter tuning for ANN models

Hyperparameter GWP RUI HHI EQI
Input layer elu elu tanh elu
activation
function
Input layer 200 200 140 200
#neurons
Input layer 0.2631 0.2631 0.1834 0.2631
dropout rate
Input layer GlorotUniform GlorotUniform GlorotUnifor | GlorotUniform
initializer m
Number of 5 5 4 5
hidden layers
Hidden layer GlorotUniform, GlorotUniform, HeNormal, GlorotUniform,
initializer GlorotUniform, GlorotUniform, HeNormal, GlorotUniform,
GlorotUniform, GlorotUniform, HeNormal, GlorotUniform,
GlorotUniform, GlorotUniform, HeNormal GlorotUniform,
GlorotUniform GlorotUniform GlorotUniform
Hidden layer 200, 200, 200, 200, 200, 200, 200, 200, | 250, 250, 200, 200, 200, 200,
#neurons 200 200 250, 250 200
Hidden layer leaky relu(alpha=0.0 | leaky relu(alpha=0.0 | relu, relu, leaky relu(alpha=0.0
activation 51), 51), relu, relu 51),
function leaky relu(alpha=0.0 | leaky relu(alpha=0.0 leaky relu(alpha=0.0
51), 51), 51),
leaky relu(alpha=0.0 | leaky relu(alpha=0.0 leaky relu(alpha=0.0
51), 51), 51),
leaky relu(alpha=0.0 | leaky relu(alpha=0.0 leaky relu(alpha=0.0
51), 51), 51),
leaky relu(alpha=0.0 | leaky relu(alpha=0.0 leaky relu(alpha=0.0
51), 51), 51),
Hidden layer 0.3055, 0.3055, 0.3055, 0.3055, 0.3055, 0.3055, 0.3055,
dropout rate 0.3055, 0.3055, 0.3055, 0.3055, 0.3055,
0.3055, 0.3055,
Output layer relu relu relu relu
activation
function
Loss function Mean squared Mean squared Mean Mean squared
logarithmic error logarithmic error squared logarithmic error
logarithmic
error
Learning rate 0.00108 0.00108 0.00127 0.00108




S.3. Data points for the Gate-to-Gate and end-of-life phase model

This phase leverages a power-law regression correlation to develop regression models that estimate the
GWP of the different technologies. The regression equation inspired by cost estimation equation is written
as:

(GWPnew) _ (Fnew)“ (Enew)B
GWPref Fref 1:—':ref
where F denotes the feed throughput and E denotes the energy consumption of the technology, and aand

B are regression coefficients which tell if the GWP of the technology is dependent on the feed throughput
or energy consumption respectively.

Linearized form:
InX1 = alnX2 + Y
Where;

F E GWP
Xl = new, X2= new’ and Y= new
Fref Eref GWPrer

Table 2 and Table 3 present the literature-derived data points used to construct the distillation and
pervaporation graphs shown in this work. In each case, a reference data point was chosen to normalize the
full dataset, and the resulting normalized points were plotted and fitted to obtain the regression coefficients
aand £.

Table 2 Data points for distillation obtained from literature

Energy GWP
Feed Rate (kg/s) (kW) (kg CO,-eq/kg feed)
Chea et al. [1] 0.2778 1175.3 0.2723
Do Thi and Toth. [2] 0.2778 223.3 0.0706
Caballero-Sanchez et al. [3] 0.0130 20.1 0.1295
Cavanagh et al. [4] 0.1261 407.2 0.2067
Cavanagh et al. [4] 0.4856 324.7 0.0500
Cavanagh et al. [4] 0.3089 1022.9 0.2219
Reference data:
| Do Thi et al. [2] | 0.2778 | 223.3 0.0706
Table 3 Normalized dataset used to generate the distillation graph
Data Xi X Y
1 1 5.2627 3.8590
2 1 1 1
3 0.0466 0.0901 1.8350
4 0.454 1.8232 2.9294
5 1.748 1.4541 0.7082
6 1.112 4.5806 3.1445




Power-law model for the distillation unit:
(GWPnew) _ ( Frew )‘0'83 ( Enew)
0.0706 0.278 223.3
The same procedure described above for distillation was applied to pervaporation, using Meng et al. as the

reference data.

0.799

Table 4 Data points for pervaporation obtained from literature

Energy GWP

2

Flux (L/m"h) (kJ/h) (kg CO,-eq/kg feed)
Meng et al.[5] 43357 1.22E+07 1.46E-02
Lee et al.[6] 1.3870 2.05E+05 5.500E-03
Norkobilov et al.[7] 0.262 1.54E+06 7.420E-03
Norkobilov et al.[7] 0.2876 6.16E+05 3.160E-03
Do Thi and Toth[2] 1.3000 1.66E+05 1.320E-03

Reference data:

| Meng et al.[5] | 43357 | 1.22E+07 | 1.46E-02 |

Table 5 Normalized dataset used to generate the pervaporation graph

Data X; X, Y
1 1 1 1
2 0.3199 0.0167 0.3767
3 0.0604 0.1256 0.5082
4 0.0663 0.0504 0.2164
5 0.2998 0.0135 0.0904

Power-law model for the pervaporation unit:
(GWPneW) B ( Few )0'0154 ( Enew )
0.0146 /) \4.3357 1.22 + 107
These datasets were used to fit a regression model and obtain the scaling coefficients o and 8, which were

then used to calculate the GWP of the distillation unit in all three scenarios from the case study.

0.411




S.4. Overall GWP estimation for the Case Study

In the case study presented by Do Thi and Toth [2], the authors examine the recovery of high-purity ethanol
and isobutanol from dilute alcohol-water waste streams using hybrid distillation—pervaporation processes.
They evaluate the environmental impacts of the different separation configurations, including climate
change, alongside their process performance. In our subsequent calculations, we adopt their ethanol-water
mixture as the reference case and estimate the GWP of all scenarios using our model, then compare these
values with the GWPs reported in their study.

1. Gate-to-gate GWP calculation for scenario 1 (D+PV):

1bar
Condenser Q -/< Z
Pump

Feed Z Membrane module
10%wt ethanol <
1000kg/h
20°C, bar
Feed heating 99.9% wt%
7 pistillation Column or cooler 4’?4—’@—'* Ethanol
| Vil 20°C, 1 bar
99.9% wt%
* Water
Reboiler Post cooler e o
Table 6 Summary of material and energy balance

Technology Parameter Value Unit

Distillation Feed Mass Flow 1000 Kg/hr.
Ethanol mass fraction 10 %
Water mass fraction 90 %
Reboiler duty 554.64 MJ/hr.
Condenser duty -234.58 Ml/hr.

Pervaporation Retentate heating 35.58 MlJ/hr.
Permeate cooling -38.54 MJ/hr.
Total membrane area 200 m?

GWP for distillation:

(GWPneW) B <0.278)‘°'83 <219.23>°-799
0.0706 /) \0.278 223.3

GWP,eww =0.0696 kg CO2.eq

GWP for pervaporation:

(GWPnew)

<0.0728)°-°154 7412 % 103\ **!
0.0146

4.3357 1.22 107



GWP,ey =0.016829 kg CO».eq

Table 7 GWP of the various technologies involved in scenario 1

Technology GWP

(kg COz-eq/kg feed)
Distillation 0.0696
Pervaporation 0.0016829
Total 0.0728829

2. Gate-to-gate GWP calculation for scenario 2 (D+PV+D):

Condenser

Feed
10%wt ethanol
1000kg/h
20°C, bar

/

3 bar I_. 7
Pump Feed heating
or cooler

99.9% wt%

'”U' » Water

Post cooler 20°G.A.hae

Table 8 Summary of material and energy balance

1bar [
Pump Membrane module

Condenser

Pump
~— 7 Distillation Column 2

Post cooler

99.9% wt%

» Ethanol

20°C, 1 bar

Technology Parameter Value Unit
1* Distillation Feed Mass Flow 1000 Kg/hr.
Ethanol mass fraction 10 %
Water mass fraction 90 %
Reboiler duty 713.56 MJ/hr.
Condenser duty -396.13 Ml/hr.
Pervaporation Retentate heating 14.86 Ml/hr.
Permeate cooling -17.86 MJ/hr.
Total membrane area 130 m?
2" Distillation Retentate heating 1080.19 MJ/hr.
Permeate cooling -1095.41 MJ/hr.

GWP for 1% Distillation:

(GWPneW) _ <0.278)
0.0706 /  \0.278

-0.83

308.25)0'799
223.3

GWP,ew =0.0913 kg COseq



GWP for pervaporation:

(GWPnew) ~ (0.04915)0-0154 32.72 103\
00146/~ \4.3357 1.22 % 107

GWPpeyw =0.001195 kg CO2.eq

GWP for 2™ Distillation:

(GWPnew) B <0.02764)‘°-83 (604.33)0'799
0.0706/ ~ \ 0.278 223.3

GWP, e =1.0626 kg COs.eq

Table 9 GWP of the various technologies involved in scenario 2

Technology GWP

(kg COr-eq/kg feed)
Distillation Column 1 0.0913
Pervaporation 0.001195
Distillation Column 2 1.0626
Total 1.155095

3. Gate-to-gate GWP calculation for scenario 2 (D+PV+D+HI):

Condenser

Ve

Feed
10%wt ethanol
1000kg/h
20°C, bar

3 bar
:
] Mixer : g
Fump Feed heating
or cooler

~ 7 Distillation Column 1

; Reboiler ‘éritr‘ecovery
99.9% wt%

* Water

Post cooler 20°C, 1 bar

1bar [
Pump Membrane module

Condenser

Pump

~— 1 Distillation Column 2

Post cooler

99.9% wt%

* Ethanol

20°C, 1 bar



Table 10 Summary of material and energy balance

Technology Parameter Value Unit

1* Distillation Feed Mass Flow 1000 Kg/hr.
Ethanol mass fraction 10 %
Water mass fraction 90 %
Reboiler duty 414.49 MJ/hr.
Condenser duty -396.87 MlJ/hr.

Pervaporation Retentate heating 15.02 Ml/hr.
Permeate cooling -18.09 MJ/hr.
Total membrane area 130 m?

2" Distillation Retentate heating 1078.65 Ml/hr.
Permeate cooling -1093.86 MJ/hr.

GWP for 1° Distillation:

—0.83 0.799

(GWPneW) _ (0.278) (225.38)
0.0706 /  \0.278 223.3

GWP,eww =0.0711 kg COzeq

GWP for Pervaporation:
(GWPnew) _ (0.049397)0-0154 33.11 * 103\
0.0146 / \ 4.3357 1.22 107

GWPpew = 0.00120 kg COs.eq

GWP for 2™ Distillation:

(GWPneW)

<0.027772)‘°-83 (603.48)0-799
0.0706

0.278 223.3
GWP, v =1.0572 kg COs.eq

Table 11 GWP of the various technologies involved in scenario 3

Technology GwWP

(kg COs-eq/kg feed)
Distillation Column 1 0.0711
Pervaporation 0.00120
Distillation Column 2 1.0572
Total 1.1295




Once the GWPs for the production phase have been obtained from the ANN model and those for the use

phase from the regression models described above, the overall life-cycle GWP of the process is calculated
as:

GWPoverall = GWPproduction + GWPuse—phase + GWPEOL

Table 12 GWP for all three scenarios of ethanol-water mixture case study

Scenario GWP (ANN) GWP (Regression) Overall GWP
(kg COz-eq/kg feed) (kg COr-eq/kg feed) (kg COs-eq/kg feed)
D+PV 3.102 0.0728829 3.17
D+PV+D 3.102 1.155095 4.30
D+PV+D+HI 3.102 1.1295 4.23

Having estimated the GWP for our case study, we next summarize how Do Thi and Toth calculated their
climate change values in order to enable a consistent comparison.

Table 13 Inventory data for the production of 1 kg of product in SimaPro

D+PV D+PV+D D+PV+D+HI
Feed Streams
Ethanol (kg) 0.10 0.10 0.10
Water(kg) 0.9 0.9 0.91
Utilities
Heating duty 5.99 18.34 15.41
Cooling Water 10.96 10.18 1.13
Vacuum energy 0.30 1.21 1.21
Products
Ethanol 1.00 1.00 1.00
Water by-product 9.07 9.06 9.11
Cooling water(kg) 10.96 10.18 1.13

Using the inventory data reported in Table 14, and applying the same Environmental Footprint (EF)
(adapted) method with characterization, as described in the reference paper, we attempted to reproduce their
impact results. Although we did not obtain same absolute values, likely because the exact background
inventories for energy and material flows were not fully specified, we observed similar trends across the
three scenarios, particularly for the climate change impact category.




Table 15 Results of the Impact Assessment Using the Adapted EF Method

Impact category Unit D+PV D+PV+D D+PV+D+HI
Climate change kg CO2 eq 9.31E-01 2.42E+00 2.09E+00
Ozone depletion kg CFCll eq | 9.92E-08 2.54E-07 2.23E-07
Ionising radiation, HH kBq U-235eq | 2.96E-02 6.87E-02 6.15E-02
Photochemical ozone kg NMVOC 2.05E-03 4.36E-03 4.04E-03
formation, HH eq

Respiratory inorganics disease inc. 4.94E-08 1.09E-07 9.75E-08
Non-cancer human CTUh 9.94E-08 1.91E-07 1.73E-07
health effects

Cancer human health CTUh 4.48E-09 7.55E-09 7.26E-09
effects

Acidification terrestrial | mol H+ eq 4.50E-03 1.01E-02 8.94E-03
and freshwater

Eutrophication kg Peq 1.67E-04 3.58E-04 3.16E-04
freshwater

Eutrophication marine kg N eq 1.05E-03 1.72E-03 1.64E-03
Eutrophication mol N eq 1.00E-02 1.71E-02 1.63E-02
terrestrial

Ecotoxicity freshwater CTUe 7.76E-01 1.12E+00 1.10E+00
Land use Pt 2.15E+01 2.23E+01 2.27E+01
Water scarcity m3 depriv. 1.14E+00 1.16E+00 7.17E-01
Resource use, energy MJ 1.12E+01 2.97E+01 2.57E+01
carriers

Resource use, mineral kg Sb eq 4.93E-07 5.12E-07 5.77E-07
and metals

Climate change - fossil | kg CO2 eq 9.05E-01 2.39E+00 2.07E+00
Climate change - kg CO2 eq 2.24E-03 2.54E-03 2.48E-03
biogenic

Climate change - land kg CO2 eq 2.29E-02 2.31E-02 2.30E-02
use and transform.

S.S. Contribution Tree Diagrams with Node Cut-Offs

Also presented below are contribution tree diagrams that highlight the processes making the largest
contributions to the overall impact in each scenario. A node cut-off is applied so that only processes
exceeding a specified share of the total impact are displayed.
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D+PV: 8.11% node cut-off

0.1 kg
Ethanol, without
water, in 99.7%
2.14E-5 Pt

1kg
Ethanol

7.76E-5 Pt

5.99 MJ
Heat, from
steam, in

4.72E-5 Pt

water, in 95%
1.08E-5 Pt

0.0831 kg
Maize grain
{GLO}| market for|
8.67E-6 Pt

0.1 kg 3.84 MJ 1.64 MJ 23 M)
Ethanol, without Heat, district or Heat, district or Heat, district or
water, in 95% industrial, industrial, other industrial, other
2.11E-5 Pt 1.45E-5 Pt 1.73E-5 Pt 1.35E-5 Pt
0.0258 kg 0.0568 kg
Ethanol, without Light fuel oil

{RoW}| market fo
6.48E-6 Pt s

0.0568 kg

Light fuel oil
{RoW}|

6.29E-6 Pt |uf

0.0857 kg
Petroleum {GLO}|
market for |
6.94E-6 Pt

11



D+PV+D: 5.78% node cut-off

1kg
Ethanol

0.00017 Pt

0.1 kg
Ethanol, without
water, in 99.7%

pigesee (o]

18.3 MJ
Heat, from
steam, in

0.000145 Pt

0.1kg
Ethanol, without
water, in 95%

11.8 MJ
Heat, district or
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4.82 MJ
Heat, district or
industrial, other

7.05 MJ
Heat, district or
industrial, other

D+PV+D+HI: 6.73% node cut-off

prtesee ol fascesee [l [saesee pazesee |l
—
0.0258 kg 0.179 m3 0.152 kg 0.174 kg
Ethanol, without Natural gas, high Hard coal {CN)| Light fuel oil
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1.08E-5 Pt 1.17E-5 Pt 1.27E-5 Pt 1.98E-5 Pt Il

0.146 kg
Hard coal {CN}|
hard coal mine

1.16E-5 Pt

0.174 kg
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{RoW}|
1.936-5Pt  (m]

1kg
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0.1kg

15.4 MJ

0.216 kg
Petroleum {GLO}|
market for |

1.75E-5 Pt
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water, in 99.7% steam, in
2. 14E-5 P: ] 0.000122 Pt
0.1kg 9.87 MJ 4.07 MJ 5.92 M)
Ethanol, without Heat, district or Heat, district or Heat, district or
water, in 95% industrial, naturall industrial, other industrial, other
2. 11E-5 Pt [ ] 3.72E-5 Pt [4.31E-5 Pt 3.47E-5 Pt
—
0.0258 kg 0.129 kg 0.146 kg
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