
Supplementary information 

Selection of species for memory experiment 

All images implemented in the study were selected from the publicly available St 
Andrews database of hyperspectral images of Lepidoptera (https://arts.st-
andrews.ac.uk/lepidoptera/documentation.html). For details on image 
acquisition, see Penacchio et al.[1]  contains images of 125 species from 12 
lepidopteran families: 96 aposematic (AP) and 29 non-aposematic (non-AP), 
sampled from museum collections located in British museums. For each image, 
the database also provides three metrics (luminance contrast, colour contrast, 
Orientation Distribution Deviation (ODD)) that characterise modelled activity in an 
avian visual system, according to the computational framework proposed by 
Penacchio et al [1]. As reported in the paper, these metrics can be used to classify 
butterflies as AP vs. non-AP with high accuracy. We fitted a logistic regression 
model to the database of neural metrics using the R [2] function glm, with 
luminance contrast, colour contrast, and ODD as predictors, and class (AP vs. 
non-AP) as the outcome variable. The logistic regression model was used to 
predict the overall neural signature for each image using the R [2] function predict. 
In other words, we used the predictive log odds that a given specimen is 
aposematic based on its visual statistics as a metric to select a set of stimuli that 
we presented to humans in the recognition memory test. When visualised in a 
three-dimensional pattern space (shown in Supplementary Figure S1) the selected 
stimuli occupy different regions of the space. Species that were used as 
memorisation targets are shown in Supplementary Figure S2, and lure species are 
shown in Supplementary Figure S3. 
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Supplementary Figure S1. Three-dimensional scatterplot of luminance contrast, 
colour contrast, and Orientation Distribution Departure for the Lepidoptera 
species (29 AP, 29 non-AP) from the St Andrews Hyperspectral Lepidoptera 
database [1] selected for the human memory experiment. Each point is a 
representative image of one species, selected based on a weighted sum of 
luminance contrast, colour contrast, and Orientation Distribution Deviation 
(ODD).  

 

 

 

 

 



 
 

Supplementary Figure S2. Target species used in the human memory experiment, 
sorted by the hit rate (shown at the top-left of each species). The red dot marks 
aposematic species. The scientific name for each target is shown below the 
corresponding image.  

 



 

Supplementary Figure S3. Lure species used in the human memory experiment, 
sorted by the false alarm rate (shown at the top-left of each species). The red dot 
marks aposematic species. The scientific name for each lure is shown below the 
corresponding image. 



Conversion of hyperspectral images to sRGB colour space 

The hyperspectral images from the St Andrews Hyperspectral Lepidoptera 
Database contain continuous information about the spectral reflectance of each 
pixel for several wavelengths, and as such, they required processing to be 
displayed as images in the conventional colour space. As proposed by Foster & 
Amano [3], reflectance data was converted to reflected radiance data by multiplying 
each pixel by the corresponding spectrum of daylight (correlated colour 
temperature (CCT) of 6500 K). Radiance data was subsequently converted to the 
RGB colour space using the CIE 1931 colour matching functions [4]. Specimens 
were segmented from the original hyperspectral scans and superimposed on a 
background with R, G, B values of 0 (‘black’). This resulted in a database of 
pictures of single specimens of various sizes. For presentation, the converted 
mages were resized to a resolution of 256x256 using bilinear interpolation and a 
constant scaling factor of 256/k, where k is the size of the largest image in the 
database. Given the evidence of common frequency components in Lepidopteran 
wing patterns [1], this was done to preserve the natural size differences between 
specimens. The size of images in the online PsychoPy [5] experiment was not 
controlled, but stimuli were set to occupy half of participants’ display and to be 
invariant to changes in aspect ratio of the window or display. To assess how 
differences in specimen sizes influenced the experimental data, we regressed the 
specimen sizes against the average metamemory ratings and hit rates. Size had a 
significant effect on metamemory ratings ( = 1.36 × 10-5, t = 3.56, SE = 3.83 × 10⁻⁶, 
R2 = 0.19, p < .001) but not on hit rates ( = 4.40 × 10-6, t = 0.85, SE = 5.21 × 10⁻⁶, R2 
= 0.01, p = .402).  

 

 

 

 

 

 

 

 

 

 

 



Statistical inference 

To identify the most appropriate mixed-effects structures to model the 
experimental data, we fitted a series of mixed-effects models and compared them 
using likelihood-ratio tests. The tables below report the model selection results. 
Supplementary Table S4 reports model comparisons for metamemory ratings, and 
Supplementary Table S5 reports model comparisons for recognition accuracy. 

 

Supplementary Table S4. Likelihood-ratio model comparisons for metamemory 
rating models. The model highlighted in grey was reported in the paper.  

Model Effects AIC BIC Log 
Likelihood 

χ² df p-
value 

 Fixed Random 
observer ID 
(experimental 
setting) 

      

Model 
1 
(null) 

 Intercept -741.62 -723.76 373.81    

Model 
2 

+ 
Lepidoptera 
class 

Intercept  -1,220.05 -1,196.23 614.02 480.42 1 < 
.001 

Model 
3 

+ 
Lepidoptera 
class 

Intercept  

 + Lepidoptera 
class 

-1,423.05 -1,387.32 717.52 207.00 2 < 
.001 

 

Fixed effects     

 Estimate SE t-value p-value 

Intercept 0.451 0.224 20.118 < .001 

Lepidoptera 
class 

0.162 0.019 8.745 < .001 

 

 

Random effects     

 Variance   SD  

Intercept 0.452  0.155  

Lepidoptera class 0.150  0.122  

Model fit: R2 (marginal): 0.108; R2 (conditional): 0.475 



Supplementary Table S5. Likelihood-ratio model comparisons for recognition 
accuracy models. The model highlighted in grey was reported in the paper.  

Model Effects AIC BIC Log 
Likelihood 

χ² df p-
value 

 Fixed Random 
observer ID 
(experimental 
setting) 

      

Model 
1 
(null) 

 Intercept 3584.70 3596.60 -1790.40    

Model 
2 

+ 
Lepidoptera 
class 

Intercept  3586.10 3603.90 -1790.00 0.658 1 0.417 

Model 
3 

+ 
Lepidoptera 
class 

Intercept  

 + Lepidoptera 
class 

3565.00 3594.80 -1777.50 25.044 2 < .001 

 

Fixed effects     

 Estimate SE z-value p-value 

Intercept 0.602 0.123 4.883 < .001 

Lepidoptera 
class 

0.057 0.127 0.453 0.651 

 

 

Random effects     

 Variance   SD  

Intercept 0.585  0.765  

Lepidoptera class 0.456  0.675  

Model fit: R2 (marginal): 0.000; R2 (conditional): 0.108 

 

 

 

 

 

 



ResMem analysis 

Current memorability studies commonly test whether human hit rates can be 
predicted by computer-vision models such as ResMem [6]. These models assume 
that the high consistency observed across people (as we note in the main body of 
the paper) makes memory partly predictable from image features. Given our 
findings, we assessed whether this was the case for our Lepidoptera images. 

The ResMem model [6] is a residual neural network pre-trained to estimate the 
memorability of any image. Its architecture combines a branch using AlexNet [7], an 
8-layer deep neural network which is known to successfully predict object 
categories, and ResNet-152 [8], a 152-layer deep neural work which is known to 
successfully extract semantic information from images. The model is trained on 
datasets of complex images labelled by human memory performance, LaMem [9] 

and MemCat [10]. ResMem has been shown to correlate to human memory data 
(e.g., Davis & Bainbridge [11]). For our analysis, we initialised a pre-trained instance 
of ResMem from the python package resmem [6]. To pre-process the images for 
model inference, we used the transformer() function included with the package, 
which resizes the input to a 256x256 image, takes a 227x277 central crop, and 
converts the image to a tensor before passing it as input to ResMem. The model 
accepts any image as input and returns a 0–1 “memorability score”, loosely 
interpretable as a predicted human hit rate. We exposed the model to our 
Lepidoptera images and compared its scores with empirical hit rates. 

ResMem largely failed to match the distribution of human hit rates, producing a 
narrower range with an apparent bias toward high values (see Supplementary 
Figure S6). Across all species, ResMem scores were not significantly correlated 
with hit rates (Spearman’s ρ = –0.21, p = 0.38). For AP species the correlation was 
significantly negative (ρ = –0.41, p = .03), and for non-AP species it was not 
significant (ρ = 0.04, p = 0.84). Thus, although human hit rates were highly 
predictable across observers, they were not well predicted by ResMem, which 
produced trends opposite to those observed in human data. 



 

Supplementary Figure S6. Correspondence between artificial memorability 
scores obtained from ResMem and empirical hit rates for each Lepidoptera target 
species. (A) Distributions of human hit rates and ResMem scores across all 
species. (B) Scatterplot and best linear fits of the correlation between ResMem 
scores and human hit rates, grouped by Lepidoptera class. 
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