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Supplementary information
Selection of species for memory experiment

Allimages implemented in the study were selected from the publicly available St
Andrews database of hyperspectral images of Lepidoptera (https://arts.st-
andrews.ac.uk/lepidoptera/documentation.html). For details on image
acquisition, see Penacchio et al.!" contains images of 125 species from 12
lepidopteran families: 96 aposematic (AP) and 29 non-aposematic (non-AP),

sampled from museum collections located in British museums. For each image,
the database also provides three metrics (luminance contrast, colour contrast,
Orientation Distribution Deviation (ODD)) that characterise modelled activity in an
avian visual system, according to the computational framework proposed by
Penacchio et al!"l. As reported in the paper, these metrics can be used to classify
butterflies as AP vs. non-AP with high accuracy. We fitted a logistic regression
model to the database of neural metrics using the R ? function glm, with
luminance contrast, colour contrast, and ODD as predictors, and class (AP vs.
non-AP) as the outcome variable. The logistic regression model was used to
predict the overall neural signature for each image using the R ? function predict.
In other words, we used the predictive log odds that a given specimen is
aposematic based on its visual statistics as a metric to select a set of stimuli that
we presented to humans in the recognition memory test. When visualised in a
three-dimensional pattern space (shown in Supplementary Figure S1) the selected
stimuli occupy different regions of the space. Species that were used as
memorisation targets are shown in Supplementary Figure S2, and lure species are
shown in Supplementary Figure S3.
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Supplementary Figure S1. Three-dimensional scatterplot of luminance contrast,
colour contrast, and Orientation Distribution Departure for the Lepidoptera
species (29 AP, 29 non-AP) from the St Andrews Hyperspectral Lepidoptera
database "' selected for the human memory experiment. Each pointis a
representative image of one species, selected based on a weighted sum of
luminance contrast, colour contrast, and Orientation Distribution Deviation
(ODD).
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Supplementary Figure S2. Target species used in the human memory experiment,
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aposematic species. The scientific name for each target is shown below the

corresponding image.
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Supplementary Figure S3. Lure species used in the human memory experiment,
sorted by the false alarm rate (shown at the top-left of each species). The red dot
marks aposematic species. The scientific name for each lure is shown below the

corresponding image.




Conversion of hyperspectral images to sRGB colour space

The hyperspectral images from the St Andrews Hyperspectral Lepidoptera
Database contain continuous information about the spectral reflectance of each
pixel for several wavelengths, and as such, they required processing to be
displayed as images in the conventional colour space. As proposed by Foster &
Amano B, reflectance data was converted to reflected radiance data by multiplying
each pixel by the corresponding spectrum of daylight (correlated colour
temperature (CCT) of 6500 K). Radiance data was subsequently converted to the
RGB colour space using the CIE 1931 colour matching functions . Specimens
were segmented from the original hyperspectral scans and superimposed on a
background with R, G, B values of 0 (‘black’). This resulted in a database of
pictures of single specimens of various sizes. For presentation, the converted
mages were resized to a resolution of 256x256 using bilinear interpolation and a
constant scaling factor of 256/k, where k is the size of the largest image in the
database. Given the evidence of common frequency components in Lepidopteran
wing patterns !}, this was done to preserve the natural size differences between
specimens. The size of images in the online PsychoPy ! experiment was not
controlled, but stimuli were set to occupy half of participants’ display and to be
invariant to changes in aspect ratio of the window or display. To assess how
differences in specimen sizes influenced the experimental data, we regressed the
specimen sizes against the average metamemory ratings and hit rates. Size had a
significant effect on metamemory ratings (B =1.36 x 105, t = 3.56, SE=3.83 x 10°°,
R?=0.19, p <.001) but not on hit rates (f =4.40 x 10°,t=0.85, SE=5.21 x 107°, R2
=0.01, p=.402).



Statistical inference

To identify the most appropriate mixed-effects structures to model the
experimental data, we fitted a series of mixed-effects models and compared them
using likelihood-ratio tests. The tables below report the model selection results.
Supplementary Table S4 reports model comparisons for metamemory ratings, and
Supplementary Table S5 reports model comparisons for recognition accuracy.

Supplementary Table S4. Likelihood-ratio model comparisons for metamemory
rating models. The model highlighted in grey was reported in the paper.

Model Effects AIC BIC Log X2 df p-
Likelihood value
Fixed Random
observer ID
(experimental
setting)
Model Intercept -741.62 -723.76 373.81
1
(null)
Model + Intercept -1,220.05 -1,196.23 614.02 480.42 1 <
2 Lepidoptera .001
class
Model + Intercept -1,423.05 -1,387.32 717.52 207.00 2 <
3 Lepidoptera 4 | epidoptera .001
class class

Fixed effects

Estimate SE t-value p-value
Intercept 0.451 0.224 20.118 <.001
Lepidoptera 0.162 0.019 8.745 <.001
class
Random effects

Variance SD

Intercept 0.452 0.155
Lepidoptera class 0.150 0.122

Model fit: R? (marginal): 0.108; R? (conditional): 0.475



Supplementary Table S5. Likelihood-ratio model comparisons for recognition

accuracy models. The model highlighted in grey was reported in the paper.

Model Effects AIC BIC Log x> df p-
Likelihood value
Fixed Random
observer ID
(experimental
setting)
Model Intercept 3584.70 3596.60 -1790.40
1
(null)
Model + Intercept 3586.10 3603.90 -1790.00 0.658 1 0.417
2 Lepidoptera
class
Model + Intercept 3565.00 3594.80 -1777.50  25.044 2 <.001
3 Lepidoptera 4 |epidoptera
class class
Fixed effects
Estimate SE z-value p-value
Intercept 0.602 0.123 4.883 <.001
Lepidoptera 0.057 0.127 0.453 0.651
class
Random effects
Variance SD
Intercept 0.585 0.765
Lepidoptera class 0.456 0.675

Model fit: R? (marginal): 0.000; R? (conditional): 0.108



ResMem analysis

Current memorability studies commonly test whether human hit rates can be
predicted by computer-vision models such as ResMem ¢ These models assume
that the high consistency observed across people (as we note in the main body of
the paper) makes memory partly predictable from image features. Given our
findings, we assessed whether this was the case for our Lepidoptera images.

The ResMem model ¥ is a residual neural network pre-trained to estimate the
memorability of any image. Its architecture combines a branch using AlexNet "), an
8-layer deep neural network which is known to successfully predict object
categories, and ResNet-152 ¥, a 152-layer deep neural work which is known to
successfully extract semantic information from images. The model is trained on
datasets of complex images labelled by human memory performance, LaMem !
and MemCat ', ResMem has been shown to correlate to human memory data
(e.g., Davis & Bainbridge '"). For our analysis, we initialised a pre-trained instance
of ResMem from the python package resmem ®l. To pre-process the images for
model inference, we used the transformer() function included with the package,
which resizes the input to a 256x256 image, takes a 227x277 central crop, and
converts the image to a tensor before passing it as input to ResMem. The model
accepts any image as input and returns a 0-1 “memorability score”, loosely
interpretable as a predicted human hit rate. We exposed the model to our
Lepidoptera images and compared its scores with empirical hit rates.

ResMem largely failed to match the distribution of human hit rates, producing a
narrower range with an apparent bias toward high values (see Supplementary
Figure S6). Across all species, ResMem scores were not significantly correlated
with hit rates (Spearman’s p =-0.21, p = 0.38). For AP species the correlation was
significantly negative (p =-0.41, p =.03), and for non-AP species it was not
significant (p = 0.04, p = 0.84). Thus, although human hit rates were highly
predictable across observers, they were not well predicted by ResMem, which
produced trends opposite to those observed in human data.
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Supplementary Figure S6. Correspondence between artificial memorability
scores obtained from ResMem and empirical hit rates for each Lepidoptera target
species. (A) Distributions of human hit rates and ResMem scores across all

species. (B) Scatterplot and best linear fits of the correlation between ResMem

scores and human hit rates, grouped by Lepidoptera class.
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