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Acoustic Imaging System
The imaging system comprised a single-element transducer positioned above the sample, while a motorized translation stage (Corvus, Märzhäuser, Wetzlar, Germany) moved the sample for scanning. A single-element 40 MHz transducer with a 9 mm focal length and -6dB bandwidth (made by VisualSonics, Fujifilm, Japan) was used. Excitation was provided by a monocycle pulse generator (Avtec Electrosystems, Nepean, Canada) operating at either 40 or 100 MHz with a 
15 kHz pulse repetition rate. The received signals were amplified by a 40 dB amplifier (Miteq, Hauppauge, NY) and digitized using a 14-bit, 10 GS/s ADQ7 digitizer (Teledyne SP Devices, Linköping, Sweden). The measurement system for detecting MP particles utilizing single-element transducers has been illustrated in Fig. 1b. Transducers scan the sample in the x-y plane with a resolution of 10 μm, capturing ultrasound echo signals (Fig. 1a, 1b). The acoustic signals are stored in the time domain, forming a tensor where x and y coordinates define spatial positioning, and time represents the third dimension. For visualization, a maximum projection image is generated by extracting the maximum amplitude along the time axis, effectively collapsing the temporal dimension. Fig. 1c demonstrates how a reflected, or backscattered, acoustic signal is represented in 2D using its maximum amplitude.
Optical microscopy images, captured from sample regions covering the entire sample, served as ground truth for validating the proposed peak extraction method and evaluating the performance of machine learning models. Imaging was conducted using an IX71 microscope equipped with a 4× objective lens, providing a broader field of view to observe the distribution and positioning of multiple spheres within the gel matrix. Optical and acoustic images were co-registered in the scanning acoustic microscope, which integrates the high-resolution optical microscope with a precision-aligned acoustic transducer. This configuration enables multimodal imaging of the same region of interest, facilitating direct correlation between acoustic and optical contrast.
Architecture of the 1D-CNN
One-dimensional convolutional networks (1D CNNs) excel in automating both feature extraction and signal classification. A network architecture has been implemented that is capable of automatic feature extraction and material identification. The proposed deep learning model is a sequential architecture designed for time-series classification, utilizing a series of D convolutional layers to extract hierarchical features from the input data of a specific shape. 
The architecture begins with two convolutional layers of 16 and 32 filters, respectively, both using a kernel size of 9 and ReLU activation, followed by batch normalization. These are coupled with a max-pooling layer (pool size of 16) to reduce the spatial dimensionality and a dropout layer with a rate of 0.1 to mitigate overfitting. The next block includes two convolutional layers with 64 filters and a kernel size of 3, again coupled with batch normalization, followed by a max-pooling layer (pool size of 4) and dropout. Subsequently, a 128-filter convolutional layer with batch normalization is used, followed by a global max-pooling operation to capture the most salient features across the temporal dimension. This is then combined with dropout at a higher rate of 0.2 to enforce regularization.
Finally, the model transitions into a dense network with fully connected layers of 128 and 64 units, using ReLU activations, culminating in an output layer with a softmax activation function to predict the class probabilities for the encoded labels. This design is optimized for extracting and hierarchically refining temporal patterns in sequential data, making it well-suited for signal processing tasks. The larger kernel size in the initial layers captures broad, global features of the signal, while the smaller kernels in deeper layers focus on finer, more localized variations. Max pooling and global max pooling help preserve critical features while reducing dimensionality, ensuring that the model can effectively learn from temporal dependencies in the signal.
Peak Extraction Algorithm
The peak extraction process, outlined in Supplementary Algorithm 1, takes as input the maximum projection image, an empirical coefficient (α), and the sliding window size (w), and outputs the extracted peak amplitudes along with their corresponding locations (Line 18). It begins by computing the local standard deviation of the maximum projection within a sliding window, implemented as the ComputeLocalStd function (Line 19). This function retrieves the image dimensions (Line 2), initializes an array of zeros with the same dimensions (Line 3), and iterates through every region of the image using a nested loop (Lines 5–14) to compute and store the local standard deviation (Line 16). The computed standard deviation values are then multiplied by the empirical constant α and added to the mean intensity of the image to define the prominence threshold for peak detection (Line 20). This threshold is used to identify local maxima in each region (Lines 21–22), and the locations of the prominent peaks along with their corresponding amplitudes are extracted and returned as the final output (Lines 22–25).

Supplementary Algorithm 1
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Data Labeling
After extracting peaks corresponding to the maximum temporal amplitude from each microsphere, the resulting signals must be accurately labeled to construct a dataset categorized by particle size and material type. This labeling is critical for training machine learning models to reliably classify particles based on their acoustic signatures. To address this challenge, optical microscope images were used as a reference. However, the process is time-consuming, as each particle in the acoustic image must be manually matched to its counterpart in the optical image. The task is further complicated by differences in resolution between acoustic and optical image patches. Labeling was straightforward for pure samples containing a single material and uniform particle size. In contrast, mixed-material samples with varying particle sizes required extensive manual annotation.
A semi-automated pipeline was developed to streamline this process (Supplementary Fig. 1), combining optical image stitching (Supplementary Fig. 1b), Hough-based1 particle detection, and template matching for classification (Supplementary Fig. 1c). The stitched optical image is then compared with extracted peaks of the acoustic image (Supplementary Fig. 1e-f), and the predicted label is verified by the human expert (Supplementary Fig. 1g). The full labeling procedure is described in Supplementary Algorithm 2.
Supplementary Algorithm 2
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The process begins with the acquisition of 9 high-resolution images, captured under consistent conditions. These images are automatically stitched into a single composite image by detecting overlapping regions along the edges of adjacent images. To ensure a cleaner visual transition, the stitched image undergoes edge-blurring at the overlap regions (Supplementary Fig. 1b). Once stitching is complete, particle detection is performed on the composite image using the Circle Hough Transform 1, which identifies particles based on their circular features (Supplementary Fig. 1c). Adjustable parameters such as minimum and maximum radii account for variations in particle size. Detected particles are then classified using a template-matching algorithm 2 that references previously saved labelled data. 
After each labeling session, user-confirmed labels are incorporated into the reference dataset. The stitched image overlaid on the acoustic image, shown in Supplementary Fig. 1g, enables users to compare each peak in the maximum projection image with its corresponding particle in the optical image. The accompanying output file, which contains the extracted signals along with material and size labels, serves as ground truth for benchmarking and evaluating the performance of the primary algorithm presented in this study. By combining automation with iterative user input, the system accelerates the labeling process while enhancing predictive accuracy, making it well-suited for detailed MPs analysis and algorithm validation.
Temporal and Spectral Feature Extraction
A set of quantitative features was extracted to characterize the backscattered ultrasound signals. These features were derived from both the time domain and the frequency domain, the latter obtained via the Fast Fourier Transform (FFT). The goal was to capture key statistical, energetic, and spectral properties that reflect how the acoustic waves interact with particles of different materials and sizes. In the time domain, features such as maximum amplitude, energy, entropy, and crest factor describe the signal’s intensity distribution and temporal variability. In the frequency domain, features such as spectral energy, centroid, bandwidth, and kurtosis represent how the acoustic energy is distributed across frequencies, providing insight into material-dependent scattering patterns. The complete list of features, their variable names, and corresponding formulas is summarized in Supplementary Table 1.



Supplementary [image: A screenshot of a computer generated image]Fig. 1| Overview of the semi-automated labeling process by comparing the strongest acoustic signals with their corresponding optical images. (a) High-resolution optical image patches were captured using an IDX71 microscope. These patches have different resolutions compared to the acoustic images, which introduces challenges for accurate labeling. (b) The optical image patches were stitched together, and edge blurring was applied to improve continuity. (c–d) Templates of each microsphere were used in a template matching algorithm to detect and label spheres in the optical images, utilizing the Hough Transform. (e–f) Signals with highest maximum amplitude were extracted using the proposed peak extraction algorithm. The resulting peaks (shown as red circles) were compared to the corresponding detected circles in the optical images. (g) An expert verified the predicted labels by comparing the matched results to the ground truth provided by the optical images.

Supplementary Table 1. Definition of extracted features and their abbreviations. A set of temporal and spectral features were extracted to characterize the backscattered signals. These features were derived from both the time domain and the frequency domain, the latter obtained using the FFT. The selected features aim to capture key statistical and energetic properties of the signals.
	Feature
	Variable
	Formula
	Feature
	Variable
	Formula

	Temporal Maximum
	maxt
	

	Spectral Skewness
	skes
	


	Temporal Energy
	engt
	

	Spectral Energy
	engs
	


	Temporal Entropy
	entt
	

	Spectral Entropy
	ents
	


	Temporal Crest Factor
	cft
	

	Spectral Crest Factor
	cfs
	


	Spectral Maximum
	maxs
	

	Spectral Centroid
	Cens
	


	Spectral Mean
	means
	

	Spectral Spread
	sprs
	


	Spectral Standard Deviation
	stds
	

	Bandwidth
	BW
	

       

	Spectral Kurtosis
	kurs
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Algorithm 2 Semi-Automatic Labeling Pipeline for Microplastic Classification

Require: High-resolution optical image patches Iy, I, ..., Iy, Maximum projection image Ipsp, Maximum projection image
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function LABELMICROPLASTICS(Iy, Iz, .

peaks A, Templates in reference dataset D,
Ensure: Labeled dataset with particle classifications and locations

Lstitched < STITCHIMAGES(Iy, I2, ..., IN)
Lstitched < APPLYEDGEBLURRING(Zstitched)
Pctected < DETECTPARTICLES(Issitched)
for each particle p in Pjepecreq do
classy < TEMPLATEMATCHING(p, D)
Store (p, class,) in labeled dataset
end for

MATCHPEAKS(Pictccted, Ap)
for each peak in A4, do
if FoundOpticalMatch then
Show predicted material type
else
Ask for the type of material and size of
end if
end for
return Labeled dataset

18: end function
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