
Supplementary Materials for
Organic Carbon Burial in Global Continental Margin
Sediments

Sandra Arndt1,2,∗, Dominik Hülse3,∗

Markus Diesing4, Sarah Paradis5, Craig Smeaton6

1Universite libre de Bruxelles, Brussels, Belgium

2UiT The Arctic University of Norway, Tromsø, Norway

3MARUM University of Bremen, Bremen, Germany

4Geological Survey of Norway, Trondheim, Norway
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Supplementary Methods

MARCATS region, RECCAP-2 segmentation, and Exclusive Economic Zones

We here define the continental margin according to the extended Margins and CATchment Seg-

mentation (MARCATS) approach1 that divides the global continental margin into 45 different

segments. MARCATS aggregate the finer COSCAT (COastal Segmentation and related CATch-

ments) segmentation of the global coastline2 into larger geographical regions with broadly sim-

ilar climatological, morphological, and oceanographic characteristics of the shelf sea. In addi-

tion, for a coarser segmentation, the 45 different MARCATS segments can be further aggregated

into 7 classes (Eastern boundary currents, Western boundary currents, tropical margins, subpo-

lar margins, polar margins, marginal seas, and Indian margins, ED Fig. 1a). The extended

MARCATS region extends 300 km away from the shoreline, includes the global continental

shelf and part of the global continental slope and rise, and covers a total global surface area of

∼74 million km2. To represent estuaries, tidal wetlands and inland water bodies our resolution

of 0.25° is too coarse and a more specific modelling approach would be needed. Therefore,

these areas are excluded from our analysis. This definition of the continental margin is fully

aligned with the major global budget synthesis efforts (e.g., RECCAP-13; RECCAP-24; Global

Carbon Project syntheses5) and creates a zone of overlap with open ocean definitions that allows

for the comparison of results at the dynamic interface between the continental margin and the

open ocean.

In addition to the MARCATS segmentation, we use two other classifications to partition
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Extended Data Figure 1: Maps of segmentations used to estimate organic carbon flux budgets:

(a) MARCATS regions after1, 6, (b) RECCAP2 regions (adapted from7). (c) Latitudinal distri-

bution of the continental margin area, aggregated in 20◦ bands.

our local estimates. First, we use eleven oceanic regions covering the entire globe that are

based on the RECCAP-2 regions, produced to estimate land4 and coastal ecosystem carbon

fluxes7. We adapted the ten RECCAP-2 regions of7 to extend 300 km away from the shoreline

and included the continental margins around Antarctica to the segmentation (ED Fig. 1b).

Second, we adopt the definition of a nation’s Exclusive Economic Zone (EEZ) under the United

Nations Convention on the Law of the Sea (UNCLOS) as the ocean area extending up to 200

nautical miles (approximately 370 kilometers) from a country’s baseline – typically the low-

water line along its coast – which is a maritime zone legally recognized under international

law 8, 9. EEZs are used to calculate OC flux estimates on a national level, which may provide

a useful, policy-relevant framework for greenhouse gas emission accounting and developing

coastal management strategies.

General framework
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We force the global reaction-transport model (RTM) OMEN-SED10, 11 on a 0.25◦ global grid

with maps of organic carbon (OC) content, OC reactivity, sedimentation rate, sediment porosity,

bioturbation depths and intensity in continental margin sediments to derive global maps of OC

transfer fluxes through multiple defined sediment age horizons.

Reaction Transport Model

The one-dimensional reaction-transport model OMEN-SED solves the vertically resolved con-

servation equation for OC in porous media12, 13:

∂(1− ϕ)OC

∂t
=

∂

∂z

(
Db(1− ϕ)

∂OC

∂z

)
− ∂(1− ϕ)ωOC

∂z
+ (1− ω)ROC (1)

using an analytical approach that is based on ref.10. Here, OC (in gC
cm3 dry sediment) is

the concentration of organic carbon and ϕ is the porosity of the sediment. The term t is time,

z denotes sediment depth, Db (in cm2

yr
) is the bioturbation intensity, ω (in cm

yr
) represents the

sedimentation rate, and ROC (in gC
cm3yr

) the degradation rate of bulk OC.

The degradation of OC is simulated using a 500-G approximation of a reactive-continuum

model (RCM,11, 14). The advantage of this approximation is that it can be analytically solved for

both the bioturbated as well as non-bioturbated zones of the sediment. The RCM describes the

initial distribution of organic carbon compounds over the reactivity spectrum using a continuous

Gamma distribution (Γ,14). We divide this initial distribution into 500 finite fractions, OCi, each

with its own first-order degradation rate constant, ki. We divide the reactivity range, k = [10−15,
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10(−log(a)+2)], into 499 equal reactivity classes15. The least reactive class is given a degradation

rate constant of k1 = 10−15 yr−1, the most reactive class a constant of k500 = 10−log(a)+2,

and for the intermediate reactivity classes we calculate the degradation rate constant as ki =

kj−1 + (kj − kj−1)/2.

The fraction of OC in the least reactive class is calculated based on the lower incomplete

Gamma function:

f1 =
∫ a10−15

0
xν−1 · exp(−x)dx. (2)

The fraction of OC within the highest reactivity class is calculated based on the upper incom-

plete Gamma function:

f500 =
Γ(ν, ak500)

Γ(ν)
. (3)

Fractions of OC in intermediate reactivity classes, i ∈ [2, 499], are calculated as

fi =
Γ(ν, 0, aki+1)− Γ(ν, 0, aki)

Γ(ν)
(4)

where a is the average initial age of the initial OC mixture, and ν is a dimensionless parameter

defining the shape of the OC distribution. All fractions add up to unity.

The OC flux through a specific sediment depth (z), i.e., the respective transfer or burial

flux, is calculated from the OC concentration at that depth according to

F (z) = −(1− ϕ) ·
(
−Db ·

∂OC(z)

∂z
+ ω ·OC(z)

)
(5)

Determining the depth of a sediment age layer
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To calculate the depth, z, of the respective sediment age layers below the depth of the biotur-

bated zone (i.e., target ages 100, 1000, and 5000 years) we consider the exponential decrease in

porosity with depth and relate time, compaction length scale, and sedimentation rate to depth12.

The porosity profile, ϕ, was calculated as

ϕ(z) = ϕ0 · exp(−c0 · z)

where ϕ0 denotes the porosity at the sediment-water interface (SWI) and c0 (per centimeter)

stands for the compaction length scale, which characterizes how a given sediment type will

compact under its own weight. We used a value of c0 = 0.5 × 10−5 cm−1 for shelf sediments

(i.e., seafloor depth < 200m) and a value of c0 = 1.7 × 10−6 cm−1 for sediments at depths >

200m16, 17.

The age t of sediment at depth z is determined by integrating downcore sedimentation

rate, adjusted for compaction:

t(z) =
∫ z

0

1

ωs(z′)dz′

with ωs(z
′) being the burial velocity, which itself depends on porosity and initial accumulation

rate. For an exponential porosity law, this is typically expressed as:

ωs(z) = ω0
1− ϕ0

1− ϕ(z)

where ω0 is the sediment accumulation rate at the surface.

The Lambert W function, as implemented in MATLAB18, is used for inverting expressions

of the form x = w · exp(w)19, like the exponentials arising from the porosity equation. By
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combining these expressions, the layer depth (z) is determined for each target age, and the OC

transfer fluxes are subsequently simulated at the corresponding depths.

Model forcing

Sediment porosity

We spatially predict the porosity (ϕ0) of global ocean surface sediments based on publicly avail-

able measurements and predictor variables with the quantile regression forests? machine learn-

ing algorithm. A global compilation of sediment porosity20 (in %) was supplemented with

records published on the PANGAEA database21 between 2016 and 2022, i.e., after the publica-

tion of ref.20. Predictor variables (bathymetry and derived terrain attributes, primary productiv-

ity, chlorophyll, sea ice concentration, temperature, salinity, current speed, dissolved oxygen,

iron, nitrate, silicate, and phosphate) were retrieved from Bio-ORACLE22, 23 and supplemented

with global sediment thickness24 and the distance to spreading ridges25. The predictor variables

were submitted to a systematic variable selection process. The Boruta variable selection wrap-

per algorithm26 identified important predictor variables. A subsequent de-correlation analysis27

reduced the set of predictor variables to those with a variance inflation factor below 2.5. The

final set of predictor variables was determined with forward feature selection28 during model

tuning.

Spatial auto-correlation in the training data is known to inflate estimates of predictive

performance29, 30. Our modelling framework accounts for this effect by generating spatially
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separated folds for a ten-fold cross-validation31 and estimates the area of applicability where

the estimated cross-validation performance holds32. To assess model performance, we calculate

the explained variance (R2) and the root mean square error (RMSE).

We then use the quantile regression forest (QRF) algorithm? to predict porosity spa-

tially and to quantify the prediction uncertainty. QRF is a generalisation of the random for-

est algorithm33, which aggregates the conditional mean from each tree in a forest to derive an

ensemble prediction. QRF returns the whole conditional distribution of the response variable.

This allows us to determine the median (q50) of the distribution and the underlying variability

of the estimate by means of the 90% prediction interval (PI90), which is defined as:

PI90 = q95 − q5; (6)

with q95 and q5 the 95th and 5th quantile of the conditional distribution, respectively. The

complete analysis was carried out in R 4.1.3 statistical software. We use the median porosity

distribution for our ’best-estimate’ calculations and the q95 and q5 quantiles to quantify conser-

vative uncertainty estimates (see Section ”Quantification of Model Uncertainty”). A map of the

median porosity is shown in ED Fig. 2a.

Surface sediment OC content

We predict OC content of surface sediments with the same spatial modelling framework that was

employed to model porosity. Measurements of OC content (in weight-%) have been retrieved
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Extended Data Figure 2: Maps of model forcings and boundary conditions: Median surface

sediment organic carbon (OC) content (a), porosity (ϕ, b), and seafloor depth (c).

from the MOSAIC database34 and are limited to 0 - 1 cm sediment depth. Predictor variables

include Bio-ORACLE data22, 23 (as above), predicted sediment porosity, sediment thickness24

and partial pressure of CO2 at the sea-air interface35. We, again, estimate the median, q95 and

q5 quantiles of the distribution (the median OC wt% is plotted in ED Fig. 2b) and use them

to quantify conservative boundary condition uncertainties (see Section on ”Quantification of

Model Uncertainty”).

Sedimentation rate and non-depositional mask

Sedimentation rate estimates are very uncertain and have been shown to have a large effect

on simulated benthic OC transfer efficiencies15. We use estimates from the k-nearest neighbor

(k-NN) algorithm of Restreppo et al.36, which follows a data-driven approach and uses para-
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metrically, not geospatially, nearest observed data points to calculate probable sedimentation

rates in areas with no data. Restreppo et al.36 use known predictor features (e.g., water depth,

distance from a river mouth, etc.) to produce the most probable sedimentation rate predic-

tions on a 5-arc-minute global map. To our knowledge this is the only data product resolving

the heterogeneity in sedimentation rates beyond simple water depth relationships. Predicted

sedimentation rates decrease progressively with increasing distance from the coast and river

mouths36, a trend generally observed in the ocean (e.g., refs.37, 38). We transformed the available

map to our resolution (i.e., 0.25◦) and restricted the data to the continental margin grid (ED Fig.

3a). Restreppo et al.36 further provide standard deviations for their ’best’ predictions which we

use for a ’coherent-bias’ stress test (see Section ”Quantification of Model Uncertainty”).

The approach of Restreppo et al.36 does not account for erosion and non-deposition, which

prevail over large swathes of highly dynamic coastal zones and continental shelves39, 40. To ac-

count for areas where sedimentation rates over longer time scales (years to millennia) are effec-

tively zero, we assume that coarse-grained siliciclastic sediments (sand, gravel and coarser) are

indicative of erosional and non-depositional environments41. To identify these areas, we predict

the spatial distribution of biogenic, transitional, fine-grained siliciclastic and coarse-grained

siliciclastic sediments by utilising sediment data from refs.41, 42 and predictor variables from

Bio-ORACLE22, 23 as well as predicted surface OC and porosity. The modelling framework is

based on ref.43 but updated to include a spatial ten-fold cross validation31 and an estimate of

the area of applicability32. The output of biogenic, transitional, fine-grained siliciclastic and
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coarse-grained siliciclastic sediments is converted to a binary mask with 0 indicating erosion

and non-deposition (coarse-grained siliciclastic sediments) and 1 indicating deposition (bio-

genic, transitional and fine-grained siliciclastic sediments, ED Fig. 3b). The mask is finally

multiplied with the sedimentation rates as obtained by the approaches described above.
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Extended Data Figure 3: Maps of sedimentation rate (ω, a) after Restreppo et al.36 and the

non-depositional mask (b) used to force the diagenetic model, OMEN-SED. A blue colour in

(b) indicates areas of erosion and non-deposition, i.e., areas that are excluded in our budget

analysis.

Model parameters

Bioturbation

To predict the bioturbation intensity coefficient, Db (in cm2/yr), we derive an empirical equation

based on the data of Solan et al.44. Therefore, we restrict the Solan et al.44 data to our continental

margin region of interest (N=918) and follow the approach of Middelburg et al.45 – which is, we

use an exponential relationship with water depth (d) as an independent variable of the general

form Db = CF · 10(a+b·d), with CF = exp(2.65s2) being a correction factor to account for the
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systematic bias due to skewness and s2 the variance of the distribution.
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Extended Data Figure 4: Bioturbation intensity (a: on log-scale, b: linear-scale) vs. wa-

ter depth plots. Symbols indicate the data from Solan et al.44, lines are the regression curves

(red-solid is equation (7) and blue-dashed is equation (8)) using the form indicated above the

subplots.

Our empirical predictive equation for Db based on the data of Solan et al.44 is then:

Db = 14.9998 · 100.8268−0.0005401·d (7)

We also tested the classic empirical relationship of Middelburg et al.45:

DM
b = 5.2 · 100.7624−0.0003972·d (8)
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which was based on N=132 global data points. Extended Datta Fig. 4 compares both ap-

proaches with the observations compiled by Solan et al.44. Both approaches lead to very similar

OC burial estimates (not shown), which was expected as simulated OC burial rates are less sen-

sitive to variations in bioturbation intensity15. Extended Datta Fig. 5a shows the corresponding

bioturbation intensity map calculated from equation (7).
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Extended Data Figure 5: Maps of bioturbation intensity parameter (a) and mixed layer depth

(b) used to force the diagenetic model, OMEN-SED. Bioturbation intensity, Db, is estimated

from equation (7) based on the data of Solan et al.44 (a). The mixed layer depth map (b) has

been interpolated from the data compiled by Song et al.42. TODO: calculate the area-weighted

mean and std, and add this to the figures.

Traditionally, it was believed that globally, the extent of the mixed layer depth is largely

restricted to the upper 10 cm of the sediments and largely independent of water depth and sedi-

mentation rate46, 47. However, more recent observations show that highly dynamic regions such

as large estuaries have thicker mixed layer depths than most oceanic sediments42. To account

for this variability, we interpolated the data compiled by Song et al.42 on our global map of the

continental margins (see ED Fig. 5b) using the MATLAB function griddata. We tested vari-
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ous interpolation methods (i.e., ’linear’, ’natural’, ’cubic’). Because all lead to similar results

we used the triangulation-based ’natural’ neighbour interpolation, which represents an efficient

tradeoff between the ’linear’ and ’cubic’ methods. We also tested a globally fixed mixed layer

depth of 5.75 cm47 and 9.7 cm46 – again leading to very similar results (not shown), since OC

burial rates are less sensitive to variations in mixed layer depth15.

OC Reactivity

We build on the approach of Pika et al.48, who inversely determined organic matter reactivity

parameters from benthic diffusive oxygen uptake (DOU) measurements at 392 drill sites and

derived a predictive equation for the reactivity parameter a. Global maps of a were then gen-

erated by applying this equation to extrapolated DOU maps from Jørgensen et al.49 and Seiter

et al.50. Here, we refine the approach of Pika et al.48 by more directly linking benthic DOU

rates to OM reactivity and configuring OMEN-SED explicitly for each continental margin grid

cell. Rather than deriving a predictive equation for the RCM parameter a from a limited set

of DOU observations, we use the global DOU map of Jørgensen et al.49 to inversely calculate

RCM parameter a. This enables the model to reproduce the local DOU rate in every grid cell.

For the global mapping of benthic DOU rates, Jørgensen et al.49 developed a multicom-

ponent linear regression model that relates measured DOU rates (mmol O2 m−2 d−1) to water

depth (m) and sea-surface net primary production (NPP, g C m−2 y−1). This predictive relation-
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ship was combined with a gridded global dataset of water depth 51 and annual mean sea-surface

NPP (see ref.49 for details) to generate a global map of benthic DOU rates at 0.1◦ resolution,

which we regridded to 0.25◦. Missing DOU values in continental margin grids were filled with

the mean of adjacent cells; if no neighbors were available, the global mean predicted for the

corresponding depth interval was assigned (see Table 4 in ref.49).

To inversely estimate parameter a from this DOU map, we configured OMEN-SED with

our new set of spatially explicit boundary conditions, including sediment porosity, surface

sediment OC content, sedimentation rate, and bioturbation intensity and depth. Parameter a

was iteratively adjusted until the simulated DOU rate matched with the local DOU rate from

Jørgensen et al.49, within a 5% tolerance.

ED Fig. 6 shows the resulting global distribution of the RCM parameter a along continen-

tal margins. Low OC reactivities (high a values, > 10−100 yr; green–yellow) dominate Eastern

boundary upwelling systems (e.g., Peru–Chile, California, West Africa, Namibia), the margins

of the Indian Ocean, as well as higher latitude shelves and Arctic/Antarctic margins. Regions

with high reactivity (low a values, < 1 yr; blue–purple) are more localized, often around tropi-

cal/subtropical margins (e.g., parts of Southeast Asia, equatorial West Africa, Amazon outflow),

semi-enclosed, marginal seas, and shallower environments closer to the coast. We note that our

results indicating low organic carbon reactivities in eastern boundary systems should be inter-

preted with caution, as these regions often experience low-oxygen bottom waters, where DOU

15
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Extended Data Figure 6: Map of organic carbon (OC) reactivity or average initial age (i.e.,

parameter a) using sediment rate estimates based on the approaches of Restreppo et al.36. For

all other model forcings and boundary conditions (i.e., OC content, porosity, bioturbation pa-

rameters) we used our ’default’ estimates as decribed in the text.

may not be a reliable predictor of organic matter degradation reactivity or rates.

Quantification of Model Uncertainty

Parameters and boundary conditions used to drive the diagenetic model are a primary and large

source of uncertainty for our estimates. We quantify uncertainties resulting from three of the

most important model parameters and boundary conditions15: surface sediment OC content,

sediment porosity and sedimentation rate. Because uncertainties in these boundary conditions

are large, we simulate conservative upper and lower estimates based on the 5th and 95th quan-

tile of the conditional distributions for sediment OC content and porosity, as well as the local

standard deviation for sedimentation rate based on the machine learning estimates of ref.36. The
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available data on biotubation depth42 and efficiency44 lack uncertainty estimates. Moreover,

because geological OC tranfer efficiency is largely insensitive to bioturbation parameters15, we

exclude these parameters from our uncertainty analysis. We also excluded the reactivity param-

eter a, as it is a derived quantity that depends on sedimentation rate, organic carbon content,

porosity, and DOU rates.

Uncertainty related to surface sediment OC and porosity

Typical surface sediment OC density distributions are unimodal but asymmetric, with a steep

decline below the median and a heavier right tail (not shown). To capture the skewness and

obtain a parsimonious representation for sampling, we approximate the distribution with two

components: For values below the median, the density is relatively flat and drops sharply around

the q5. A uniform distribution between q5 and the median provides a simple yet conservative

representation of this range without overweighting rare low-end values. For values above the

median, the distribution resembles a bell-shaped curve with a longer tail. We therefore approxi-

mate it with a normal distribution, using a standard deviation of 0.25 × (q95 - median) to ensure

that the spread reflects the observed variability in the upper tail while keeping the bulk of the

probability mass close to the median. This piecewise approach balances realism and simplicity:

it reproduces the observed asymmetry of the distribution while avoiding overparameterization,

and it ties the assumed spread directly to robust quantile statistics rather than being sensitive to

extreme values.
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For each grid cell, based on the piecewise approximation of the distribution (uniform

below the median, normal above the median), we sample 10 surface sediment OC values below

the median to represent the lower half of the distribution. Each sampled value is used as a

boundary condition in a separate diagenetic model run. The mean of these 10 simulations

provides the lower uncertainty estimate related to surface sediment OC content of our model

results. We apply the same approach to the upper half of the distribution by sampling 10 values

above the median, yielding an upper uncertainty estimate. Uncertainty estimates for global

organic carbon fluxes across all sediment ages, associated with surface sediment OC content,

are shown as dashed grey lines in Extended Data Figure 7.

By sampling 10 values from each half of the distribution and averaging the resulting

model runs, we avoid overemphasizing extreme values and reduce sensitivity to outliers. This

approach does not attempt to reproduce the full distributional complexity, but instead provides

a robust and transparent bracketing of possible outcomes that is consistent with the observed

variability in the data. In this way, the bounds should be interpreted as conservative estimates

of uncertainty, rather than formal confidence intervals.

Since the typical density distribution for porosity looks similar but are left-skewed, we

use an analogues, piecewise way to approximate the distribution, which is using a normal dis-

tribution with a standard deviation of 0.25 × (median - q5) for values below the median and

a uniform distribution between the median and q95. Uncertainty estimates for global organic
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carbon fluxes across all sediment ages, associated with sediment porosity, are shown as dotted

grey lines in Extended Data Figure 7.
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Extended Data Figure 7: Model uncertainties in simulated global organic carbon (OC) burial

flux as a function of burial age for continental margin sediments. The black solid line shows the

best estimate; dashed brown lines indicate uncertainties associated with sediment accumulation

rates; dashed grey lines represent uncertainties related to surface sediment OC content; and the

grey dotted line shows uncertainties arising from porosity estimates.

’Coherent-bias’ stress test for sedimentation rate

Sedimentation rate is a key parameter because it influences both sediment transport and the pre-

dicted organic carbon reactivities and fluxes, and therefore has a major impact on our analysis.
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Uncertainties in local sedimentation rates are large36 and the distributions are strongly skewed

and positive-only. In such cases, the reported standard deviations by Restreppo et al.36 are likely

dominated by a few high-end values and can exaggerate the plausible spread, while also imply-

ing negative values on the low side that are physically impossible. Because only the mean (µ)

and standard deviation (σ) per grid cell are reported by Restreppo et al.36, we therefore apply a

reduced factor of 0.25×σ as a pragmatic shrinkage to the uncertainty band. By scaling σ down,

we acknowledge that σ is not a good symmetric uncertainty descriptor for a positive-skewed

variable. The ±0.25 × σ band is a pragmatic shrinkage and still proportional to the reported

variability, while avoiding letting a handful of extreme tails dominate the uncertainty analysis

if the full ±σ range is applied. In addition, we impose the global minimum of the mean values

(µmin) as a hard lower bound, so that µ− 0.25× σ can never fall below µmin. This ensures that

perturbations remain physically realistic. Our choice acknowledges the limitations of (µ, σ) as

descriptors of a non-normal variable, while still scaling perturbations to the reported variability.

Importantly, this band (dashed brown line in Fig. 1a and ED Fig. 7) is not used as a proba-

bilistic interval, but rather as a controlled ’coherent-bias’ stress test of systematic shifts in the

sedimentation field. Stochastic perturbations within the reported ±σ range produced negligible

model responses, indicating that diagenetic outputs are much more sensitive to systematic bias

than to local random noise. Future sensitivity analysis should therefore prioritize improving

sedimentation rate estimates and their local distributions, so that uncertainties can be quantified

more rigorously.
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