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Abstract
The tomato borer Tuta absoluta is a major pest of tomato mainly controlled by chemical insecticides.
However, development of resistance to speci�c chemical classes has made control of the pest extremely
di�cult. Emamectin benzoate belongs to the avermectin mode of action and to date, low or no resistance
levels against this insecticide have been documented. Recently, reduced e�cacy of emamectin benzoate
was documented, in a �eld population from Crete (9-fold resistant ratio (RR)). Subsequent laboratory
selections with emamectin benzoate for eight sequential generations, resulted in an increase of the RR to
60-fold, the highest resistance level reported to the particular insecticide. Hereby, we are presenting the
characterization of emamectin benzoate resistance in T. absoluta. Sequencing of the GluCl and GABA
receptor (rdl) genes, the molecular targets of emamectin benzoate, indicted absence of non-synonymous
SNPs. The use of known enzyme inhibitors (PBO, DEF and DEM) revealed that P450s partially synergized
emamectin benzoate resistance, suggesting potential implication of metabolic resistance. RNA-seq
approach was used to identify differentially expressed genes, from emamectin benzoate resistant and
susceptible T. absoluta populations. Twelve libraries were sequenced using the Illumina platform, which
generated 81 Gbp, thus substantially increasing the number of publicly available genomic resources for
this species. The de novo transcriptome assembly consisted of 549,601 contigs, grouped in 233,453
unigenes. Differential expression analysis and qPCR validation revealed over-expression of one unigene
similar to cytochrome P450 (Clan 4) potentially implicated in emamectin benzoate resistance, supporting
further the involvement of P450s in the observed resistance phenotype.

Key Points:
Low resistance to avermectins was reported in Tuta absoluta

Laboratory selection with emamectin benzoate resulted in high resistance levels in the selected
strain (60-fold)

PBO synergised the emamectin benzoate activity, supporting further the potential involvement of
P450s

Differential expression analysis revealed over-expression of one cytochrome P450 enzyme

Introduction
The tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a multivoltine, invasive moth
originating from South America. It is considered as a major pest of tomato (Lycopersicon esculentum
Mill.). The tomato leaf miner invaded Spain in 2006 (Urbaneja et al. 2007) and since it has rapidly spread
in most tomato-growing regions of the world such as Europe, Africa, Middle East and Asia, threatening
tomato production globally in both greenhouse and open �eld crops (Desneux et al. 2010; Desneux et al.
2011).

The tomato leaf miner management relies heavily on applications with chemical insecticides (Siqueira et
al. 2000b; Roditakis et al. 2013) however, reports of control failure have clearly illustrated the potential of
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this pest to develop resistance to multiple classes of insecticide (Siqueira et al. 2000b; Siqueira et al.
2001; Silva et al. 2011; Roditakis et al. 2015; Silva et al. 2016a; Silva et al. 2016b; Haddi et al. 2017). The
most extensively used insecticides belong to four distinct chemical classes addressing different modes
of action, namely the diamides, the avermectins, the spinosyns and the oxadiazines (Sparks and Nauen
2015).

Avermectins (IRAC MoA Group 6) are activators of the glutamate-gated chloride channels (GluCls) and
cause neuronal and muscular system malfunctions (Lasota and Dybas 1991; Fisher and Mrozik 1992;
IRAC 2019). They are acting on the gamma-aminobutyric acid (GABA) or glutamate receptors and cause
abnormal chloride channel opening resulting in hyperexcitability and convulsions. Arena et al. (1995)
demonstrated in insects that stimulation of glutamate (inhibitory) chloride channels is the most sensitive
target site for the avermectins. The glutamate-gated chloride channels of insect and nematode skeletal
muscle are especially important as they mediate avermectin-induced muscle paralysis in these
organisms. These effects are mediated via a speci�c, high-a�nity (10−10 M) binding site (Turner and
Schaeffer 1989). To date, two representatives of this chemical group are registered for pest control; the
insecticides abamectin and the emamectin benzoate. Emamectin benzoate is a second-generation
avermectin insecticide and it is the benzoate salt forms of 4"-epi-methylami-no-4/1 deoxyavermectin B1
(Lasota and Dybas 1991; Fisher and Mrozik 1992; Lasota et al. 1996).

The insecticide emamectin benzoate is an extremely potent pest control tool for T. absoluta, resulting in
high e�cacy levels at the recommended label rate (Roditakis et al. 2013). In 2000, Siqueira et al. (2000b)
reported resistance of T. absoluta to abamectin in populations from Brazil, however no other resistance
cases involving avermectin have been detected since in South America. In year 2016, low resistance to
emamectin benzoate reported for the �rst time in populations from Italy and Greece, however no cases of
control failure have been detected (Roditakis et al. 2018). To date, additional reports for resistance to
avermectins for T. absoluta from other regions of the world are practically absent. Enhanced metabolic
detoxi�cation has been reported in abamectin resistant pests, but it was not considered a major
component of the resistance phenomenon (Rugg et al. 2005; Pu et al. 2010). The only fully documented
case of biochemical resistance to avermectins has been reported in the two spotted spider mite
Tetranychus urticae Koch, where Riga et al. (2014) demonstrated that the cytochrome P450 CYP392A16
is associated with high levels of abamectin resistance. Several mutations in GluCls, the target site of
avermectins, are associated with resistance to this class of insecticides in major pests, however high
�tness costs have been associated with abamectin resistant strains in some cases (Ishtiaq et al. 2014;
Zaka et al. 2014; Afzal and Shad 2016). These reports involve the oriental leaf worm moth Spodoptera
litura (F.) and the beet armyworm moth S. exigua (Hübner), suggesting that the advert effects of
abamectin resistance could pose a limiting factor in resistance development in lepidoptera pests.

Hereby, emamectin benzoate resistance in T. absoluta was investigated, based on laboratory selection of
a �eld strain that exhibited moderate susceptibility to the avermectin insecticide. Thereafter,
comprehensive investigation of the resistance mechanisms involved was performed in an attempt to
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identify the genetic basis of emamectin benzoate resistance as well as the potential implications in pest
management. 

Materials And Methods
2.1 Insect strains 

The T. absoluta population used in this study (GR-IER-16-6) was collected from infested greenhouse
tomato crops (Solanum lycopersicum L.) in Greece during 2016. Details on the strain collection protocol
are provided in Roditakis et al. (2018). The susceptible reference strain (ES-Sus) was collected in Spain in
2011 and was maintained under laboratory conditions without any exposure to insecticides. A detailed
record for each population used in the study is provided on Table 1.

Each population was maintained in special incest proof rearing cages. For the development of the strains,
3 week old potted tomato plants (S. lycopersicum, cv. Belladona) were used, which were maintained pest-
free in large insect-proof containers under semi-�eld conditions. No insecticides were used during the
plant development phase (for details see Roditakis et al. (Roditakis et al. 2013)). When adequate
numbers of adult insects were available per cage, approximately 100 moths were collected and were
allowed to oviposit on insect-free plants for 24 - 48h. Those plants were incubated separately until the
larvae reached the second instar (L2). All rearing cages were maintained at 26±1 oC, 65% RH and 16 h
light: 8 h dark photoperiod. 

2.2 Insecticides

The following avermectin insecticide were used in the toxicological bioassays (commercial
formulations): emamectin benzoate (A�rm® 095 SG, Syngenta, UK) and abamectin (Doble® 1.8 EC,
Syngenta Crop Protection AG, Switzerland). 

2.3 Selection for emamectin benzoate resistance

Selection of strain GR-IER-16-6 with emamectin benzoate was performed using foliar applied doses
between 3 mg L-1 (�rst selection cycle) and up to 30 mg L-1. At least one thousand 2nd instar larvae were
used for each selection cycle. Strain GR-IER-16-6-S8 was obtained after eight sequential selection cycles.

2.4 Toxicological bioassay method – Statistical analyses

The IRAC method 022 (www.irac-online. org) was adopted for the toxicological bioassays. The method
protocol is described in detail in Roditakis et al. (2013). Brie�y, aqueous dispersions of commercial
insecticide formulations were used in leaf dip bioassays. All bioassays were performed in a 32 cell repli
dish (RT32W, Bioserve, US, www.insectrearing.com). Tomato lea�ets, cut in square pieces were immersed
in serial insecticide concentrations containing Triton X-100 (0.2 g L−1) as non-ionic wetting agent. Treated
leaf pieces were allowed to dry for about 1 h and subsequently placed with their abaxial site on moist
tissue paper in a multi-well repli-dish. A single second instar T. absoluta larva was carefully removed out
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of the galleries in infested tomato leaves, placed in each well and then the repli-dish was sealed with
transparent ventilated adhesive lids. All treatments were conducted in a large insect rearing room with
controlled environment (26 (±1) oC, 50-60% RH, 16 h L: 8 h D). Larval mortality was assessed after 72 h of
exposure. Mortality evaluations were performed with the aid of a light source and magnifying glass. A
larva was considered dead if no movement could be observed. A larva was recorded as moribund if no
coordinated movement or de�cient response to external stimulus was observed (i.e. after gentle probing
with a �ne paint brush). The % mortality was expressed by combining the total number of dead and
moribund insects.

Mortality data from all dose-response bioassays were subjected to probit analysis based on
Finney (1964) using PriProbit 3.4 (Sakuma 1998). The software tests the linearity of dose-mortality
response and provides the slope, the lethal concentrations (LC) and the 95% con�dence limits (CL) of the
lethal concentration for each mortality line. Using the appropriate function, the relative potency ratio
among responses was calculated. Responses were considered significantly different when the 95%
confidence interval of relative potency ratio did not include the value 1. Percentage mortality values
generated in bioassays was corrected using Abbott's formula (Abbott 1925). Results were compared to
the reference strain to estimate the resistance ratio.

2.5 Synergistic studies 

Synergists were used as tool to investigate the role of metabolic detoxi�cation in emamectin benzoate
resistance. For the synergism bioassays, second instar larvae of the emamectin benzoate selected GR-
IER-16-6-S8 strain, were exposed to sublethal concentrations of the synergists piperonyl butoxide (PBO,
Sigma, UK), S,S,S tributyl phosphorotrithioate (DEF, Sigma, UK) and diethyl maleate (DEM, Sigma, UK),
known to inhibit cytochrome P450 monooxygenases, esterases and glutathione S-transferases
respectively. Exposure was achieved via tarsal contact on fresh dried synergist residues in coated glass
vials (30 ml volume). For vial coating 300 μl of acetonic solutions of PBO (0.1 g L-1), DEF (0.1 g L-1) or
DEM (0.3 g L-1) were added into each vial. Afterwards vials were placed horizontally on rotating metal
rods for 1 h. After rotation the vials were allowed to dry further for one more hour and then second instar
larvae were placed into the vial and exposed to the synergist for 2 hours. Subsequently, the pre-exposed
insects were used in bioassays with emamectin benzoate following IRAC method 022 as previously (2.3)
described. The synergism ratio was calculated by dividing the LC50- value of synergist-exposed larvae by
the LC50- value of non-exposed larvae.

2.6 RNA isolation, RNAseq, cDNA synthesis 

In total, three different strains were included in the RNAseq experiment. 1) The laboratory susceptible
strain ES-Sus was used as a reference strain, 2) the resistant strain 16-6-S which was selected with
emamectin benzoate for eight consecutive generations and 3) its corresponding parental strain 16-6-P
issued from the population GR-IER-16-6 which maintained in laboratory without selection pressure for 8
generations. RNA was extracted from a pool of twenty L2 larvae using the RNeasy mini kit (Qiagen). Four
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independent RNA extractions were included for each strain. The extracted RNA was further digested with
Turbo DNase (Ambion) for the removal of genomic DNA contaminations. The integrity and the
concentration of the RNA samples were assessed by Nanodrop spectrophotometer and by visualization
on 1% agarose gel. RNA samples were sent to Macrogen (Seoul, Korea) for strand-speci�c, paired end
sequencing using the Illumina HiSeq 2500 platform with 100 bp per read. An aliquot of 1 μg total RNA
from each of the three aforementioned strains, served as a template for cDNA synthesis with Superscript
III (Invitrogen, Carlsbad, CA, USA) using oligo-dT20, according to the manufacturer’s instructions.

2.7 Computational analyses (RNAseq)

RNAseq reads from all three strains (total of 817.8 million reads) were assembled with Trinity
v2.5.1 (Grabherr et al. 2011), using parameters “--seqType fq --SS_lib_type RF --max_memory 350G --CPU
20”. InterProScan v5.28-67 (Jones et al. 2014) was used in order to identify conserved domains within
each assembled transcript. Moreover, BLAST v2.8.0+ (Camacho et al. 2009) searches were run in order to
identify similarities using the Uniref50 database (Suzek et al. 2015) that is speci�cally built for similarity-
based functional annotation.

Transcript abundance was estimated with Kallisto (Bray et al. 2016). Next, the scripts bundled with Trinity
were used for running the differential expression analysis with EdgeR (McCarthy et al. 2012) in order to
�nd transcripts that were differentially expressed between the three populations (FDR <0.001). Custom
Perl and bash scripts were used for parsing the EdgeR output and identifying genes of interest. Gene
Ontology (GO) term analyses were done using gPro�ler (Reimand et al. 2016).

In order to identify transcripts with similarity to cytochrome P450 (CYP) genes we �rst ran the
TransDecoder program that is bundled with Trinity and obtained the encoded peptides in each transcript.
Subsequently, putative CYP-related proteins were identi�ed by the presence of the IPR001128 InterPro
domain. Contaminating sequences were removed using the BLAST results against Uniref50; transcripts
with a �rst hit not in lepidoptera or in any of its direct ancestors were treated as contaminants. The
curated set of CYPs identi�ed in the cotton bollworm H. armigera were obtained from Pearce et al. (2017)
and used as a reference for classifying the T. absoluta P450s. Finally, the early-diverged CYP51A1
(Nelson 1999) from Homo sapiens was used as an outgroup. Multiple sequence alignment was
performed with MAFFT v7.271 (Katoh and Standley 2013) with parameters “--auto --threads 8” and
trimming was done with Trimal v1.2rev59 (Capella-Gutiérrez et al. 2009), with parameters “--gt 0.75”. A
Maximum Likelihood phylogeny with 100 bootstrap replicates was inferred with RAxML v8.2.11
(Stamatakis 2014), with parameters “-m PROTGAMMAAUTO”. Branches with <50% bootstrap support
were collapsed with TreeGraph2 (Stöver and Müller 2010) and the resulting Newick tree was loaded to a
locally deployed instance of EvolView v2 (He et al. 2016) for post-processing. The vector graphics editor
Inkscape v0.92 was used for the �nal polishing.

2.8 Analysis of insecticide target polymorphism 
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For the detection of polymorphisms in the gamma aminobutyric acid (GABA) receptor and the glutamate-
gated chloride channel (GluCl) genes we �rstly mapped the raw reads to the Trinity transcripts using
hisat2 (Kim et al. 2015), then generated a mpileup �le with samtools (Li et al. 2009), and searched for
SNPs with VarScan v2.4.4 (Koboldt et al. 2012). Finally, the identi�ed SNPs were visually inspected in the
Integrative Genomics Viewer v2.8.4 (Robinson et al. 2011).

PCR ampli�cation of GluCl and GABA gene fragments encompassing previously identi�ed resistance
mutations was also performed with primers listed in Supplementary �le 1. PCR reactions (50ul) contained
1μl cDNA, 0.2 μΜ primers, 0.2 μΜ dNTPs, 5 μL of 10X Buffer and 1 U KAPA Taq DNA polymerase (Kapa-
Biosystems). PCR was performed under the temperature cycling conditions of: 5 min at 95 °C, 35 cycles
of 30 s at 95 °C, 30 s at 57 °C, 30 s at 72 °C, followed by �nal extension of 2 min at 72 °C. PCR products
were puri�ed by using the nucleospin extract 2.0 kit (Macherey Nagel, Düren, Germany), according to
manufacturer’s instructions. Nucleotide sequences of puri�ed PCR products were determined for both
strands at CeMIA sequencing facility (CEMIA, SA., Greece). Obtained sequences were analysed with
BioEdit v 7.0 (Hall 1999). The presence/absence of target site mutations was based on visual
examination of sequencing chromatographs and RNAseq analysis. 

2.9 RNAseq validation by quantitive PCR

P450s identi�ed over-expressed among the studied strains were selected for validation using qPCR.
Primers for the contigs of interest and a set of two reference genes (ribosomal protein RPL32A and
elongation factor EFDelta) are listed in Supplementary �le 1. RNA isolation, DNAse treatment and cDNA
synthesis were described above (2.6). Quantitive PCR reactions were performed in quatriplate on
QuantStudio 3 Real-Time PCR System (Applied biosystems) using 10ng of cDNA, 0.2 μΜ primers and
KAPA SYBR FAST qPCR Master Mix (KAPA BIOSYSTEMS) with the addition of ROX solution (KAPA
BIOSYSTEMS). A 4-fold dilution series of pooled cDNA was used to access the e�ciency of the qPCR
reaction for each gene-speci�c primer pair. A no template control (NTC) was also included to detect
possible contaminations. Experiments were performed using 4 biological and 2 technical replicates for
each gene. A dissociation curve analysis was performed to check for the presence of a single amplicon.
Relative expression levels were calculated according to Pfa� (2001). Signi�cant differences in gene
expression were identi�ed by pair-wise �xed reallocation randomization (Pfa� et al. 2002).

Results
3.1 Selection, resistance and cross resistance to emamectin benzoate

Laboratory selections were conducted with emamectin benzoate on strain GR-IER-16-6 for eight
sequential generations. Doses were adjusted to result in 60%-80% mortality in all cases, maintaining
similar levels of selection pressure throughout. The probit analysis results are shown on Table 2. The
slope ranged between 0.73 and 1.48 indicating low level variability in the response of the tested strains.
In all cases low chi-square values were observed indicating good �t of the probit model to the actual
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bioassay data. The estimated LC50 value for emamectin benzoate in the susceptible reference strain ES-

Sus was at 0.09 mg L-1. The selected strain GR-IER-16-6-S8 exhibited LC50 5.46 mgL-1, indicating a 60-
fold resistance ratio (RR) and a substantial 7-fold increase compared to the parental strain GR-IER-16-6
(LC50 0.81 mgL-1, RR 9-fold, Table 2).

The cross-resistance pattern against the other registered avermectin insecticide, abamectin, was
investigated (Table 2). The susceptible reference strain ES-Sus exhibited an LC50 at 0.05 mgL-1, the �eld

collected strain GR-IER-16-6 0.24mgL-1 while the selected strain GR-IER-16-6-S8 0.66 mgL-1. The
resistance ratio to abamectin increased after selection with emamectin benzoate from 4-fold to 13-fold,
suggesting a moderate but clear cross resistance pattern between the two chemical compounds.

3.2 Effect of synergists

The probit analysis results from the synergistic bioassays are presented in Table 3. Pre-exposure to PBO
resulted in signi�cant reduction of LC50 levels to emamectin benzoate. More speci�cally, the LC50 was

reduced from 5.46 mgL-1 to 0.91 mgL-1 after exposure to PBO, resulting in a 6-fold synergism ratio
indicating that P450s monooxygenases may play a key role in emamectin benzoate toxicity and/or
resistance. Pre-exposure to DEM resulted in partially synergized emamectin benzoate resistance (3.8-fold
synergism ratio). Analogous synergistic effects were not observed in the susceptible reference strain ES-
Sus. When the esterase inhibitor DEF was used, a low synergistic ratio of 1.6-fold was observed,
indicating no signi�cant effects and minimal involvement of esterase EST in the phenotype (Table 3).

3.3 Investigation of target site resistance mechanisms

The glutamate-gated chloride channel (GluCl), the gamma amino butyric acid (GABA) gated chloride
channel and the histamine-gated chloride channel (HisCl) interact with avermectins (Clark et al. 1995;
Ludmerer et al. 2002; Wolstenholme and Rogers 2005; Prichard et al. 2012) although GluCl is considered
the main target-site in arthropods (Sparks and Nauen 2015). Several point mutations in GluCl
(G314D/G326E, I32IT) (Kwon et al. 2010; Dermauw et al. 2012; Wang et al. 2016a; Xue et al. 2020), and
GABA (I281T, A301S/G/N, T305L, V332I, T350M and R357Q) reviewed by Feyereisen et al. (2015) have
been previously tightly associated in arthropods with abamectin and cyclodien/phenylpyrazoles
resistance respectively. Gene fragments of GluCl and GABA (transmembrane domains TM1-TM3)
encompassing known SNPs were ampli�ed and sequenced in order to investigate whether the presence
of point mutations could explain the resistance phenotype. From the aforementioned mutations in all
three strains the A301S mutation was identi�ed in segregation, indicating that this mutation is unlikely to
be associated with emamectin benzoate resistance in the studied strains. In all the other previously
published positions all strains harbored the wild type allele (Figure 1). Additionally, the 36-bp deletion in
GluCl, previously associated with abamectin resistance in Plutella xylostella, was detected in all three
strains, while a non-synonymous SNP at position 310 (E to V, T. absoluta numbering) was found in
segregation and low frequency in GABA of the 16-6-P and the ES-Sus strains but not in the 16-6-S strain.
Hence, their involvement in emamectin benzoate resistance is highly unlikely.
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3.4 RNA sequencing

Resistance of T. absoluta to emamectin benzoate was studied at the molecular level using RNA
sequencing (RNAseq) on three populations of different resistance status; (a) the laboratory susceptible
strain (ES-Sus), (b) the parental strain derived from the population GR-IER-16-6, which was maintained in
the laboratory without emamectin benzoate selection pressure (16-6-P), and (c) the resistant strain
selected with emamectin benzoate for eight consecutive generations (16-6-S) (Table 2). The Principal
Components Analysis (PCA) revealed that 21.44% of the total variation could be explained by principal
component 1 (PC1) while 16.91% could be explained by PC2 (Supplementary File 2). The replicates from
these three strains are clearly separated from each other, further con�rming their quality and also the
meaningfulness of downstream comparisons. It should be noted that replicates from populations 16-6-P
and 16-6-S are only separated on PC2. In contrast, ES-Sus is obviously different from either 16-6-P or 16-
6-S on both PC1 and PC2. Such �nding is expected due to the fact that 16-6-S and 16-6-P share the same
genetic background (originating from the same populations GR-IER-16-6, whereas the strain ES-Sus
originates from Spain.

All RNAseq reads were pooled and assembled de novo with Trinity (Grabherr et al. 2011) into 549,601
transcripts >200 bp, originating from 233,453 unigenes. Running BUSCO (Waterhouse et al. 2018) on the
transcriptome assembly showed that it is fairly complete, since it contains the complete sequence of
79.5% Insecta BUSCOs (Supplementary File 3). TransDecoder predicted proteins for 92,134 of the
transcripts, with the majority of them having a signi�cant hit against the Uniref50 database (Table 4). A
set of unigenes was obtained after removing the following three types of proteins; (a) non-lepidopteran,
contaminating sequences, (b) multiple isoforms of a unigene, and (c) proteins that were entirely
contained within other, larger proteins. This �nal gene set included 32,502 proteins and, according to
BUSCO, contained 75% of the Insecta BUSCO, only 4.3% of which was duplicated. An additional 16.5% of
the BUSCOs were found as fragmented and 8.1% were missing (Supplementary File 4). As a result of this
strict �ltering scheme, the number of missing genes increased in the gene set. However, this was an
acceptable trade-off in order to obtain a very clean unigene set.

A total of 143 P450s were identi�ed in the aforementioned unigene set of T. absoluta. This number is
higher than the 114 P450s previously identi�ed in the genome of another lepidopteran insect, the cotton
bollworm Helicoverpa armigera (Pearce et al. 2017). Such an increase is explained by the inclusion of
P450 fragments in T. absoluta. We opted for including fragmented P450s because the present study has
an exploratory nature and we aim at giving an exhaustive list of all candidate P450s. In this data set,
representatives of all four major insect P450 clades were found. The majority of T. absoluta P450s (62
out of 143) belonged to Clan 4, 57 to Clan 3, 13 to the mitochondrial Clan, and 11 to Clan 2 (Table 5). The
phylogenetic analysis allowed the classi�cation of the T. absoluta P450s into clans and even into speci�c
families, using the P450s from H. armigera as a reference (Figure 2). Moreover, it enabled the
identi�cation of P450s that are either duplicated or missing in T. absoluta, compared to H. armigera. More
speci�cally, it appears that there is at least one H. armigera P450 (CYP4CG14) that is duplicated in T.
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absoluta. Moreover, it is worth mentioning that no CYP18B1 ortholog was found in T. absoluta (Figure 2),
most probably due to low expression levels.

3.5 Differential expression summary

Differential expression analysis on the entire set of 233,453 unigenes showed that 4,199 unigenes were
signi�cantly over-expressed (log2|FC| >2, FDR <0.001) in the 16-6-S strain (emamectin benzoate-selected)
against either 16-6-P (parental), or ES-Sus (reference susceptible) (Supplementary File 5). Similarly,
another 4,887 were signi�cantly under-expressed in either one of the same comparisons (Supplementary
File 6). This list includes two cytochrome P450s (DN75966_c4_g1, DN60698_c0_g2), two GSTs
(DN60153_c3_g2, DN65736_c3_g1) and three ABC transporters (DN48209_c0_g2, DN52519_c0_g1,
DN80907_c5_g2) (Table 6). It should be noted that the majority of these unigenes do not contain a
protein-coding gene, according to the TransDecoder results (see above). More speci�cally, only 350 of the
over-expressed unigenes contain a protein-coding gene, of which 290 have a signi�cant similarity to
another protein in the Uniref50 database. Similarly, there are 937 under-expressed unigenes that contain a
predicted peptide, of which 859 have a signi�cant similarity in Uniref50.

Among the 4,199 over-expressed unigenes there were 15 that (a) are commonly over-expressed in 16-6-S
against either 16-6-P, or ES-Sus, (b) are full-length, and (c) have a signi�cant hit in Uniref50
(Supplementary File 5). The majority of these genes are similar to uncharacterized proteins (n =11),
whereas the remaining four include a trypsin and a ribosomal protein. Using the same criteria we found
278 unigenes in the 4,887 under-expressed unigenes (Supplementary File 6).

Moreover, differential expression analysis revealed that two P450s were signi�cantly over-expressed
(log2|FC| >2, FDR <0.001) in the 16-6-S resistant strain (Table 6). One of these genes (DN75966_c4_g1) is
similar to CYP9G5 and therefore belongs to Clan 3, whereas the other (DN60698_c0_g2) is similar to
CYP4AU1 and therefore belongs to Clan 4 (Figure 2). Despite an almost 32-fold over-expression for the
DN75966_c4_g1 in the selected (16-6-S) compared to the parental one (16-6-P) strain, it should be noted
that it is fragmented because the ORF encodes is only 113 amino acids (Table 6), In contrast,
DN60698_c0_g2 appears to be full-length.

3.6 RNAseq qPCR P450 validation 

Among the seven detoxi�cation genes found over-expressed in the 16-6-S resistant strain we selected two
P450 genes for qPCR validation; DN75966_c4_g1 and DN60698_c0_g2. The former was signi�cantly
over-expressed against the parental 16-6-P strain, whereas the latter was over-expressed compared to the
Es-Sus strain. Quantitive PCR con�rmed the levels of expression of DN60698_c0_g2 (log2FC=2.29, p-
value <0.001) and supported the signi�cant up-regulation calculated from the transcriptomic analysis
(log2FC=2.212, p-value <0.001; Table 6). In the contrary, DN75966_c4_g1 up-regulation in 16-6-S vs 16-6-P
was not con�rmed via qPCR.

Discussion
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The tomato leaf miner exhibits extremely high capacity to develop resistance to wide range of
insecticides. First resistance cases date back to early 2000 in South America (Siqueira et al. 2000a;
Siqueira et al. 2000b; Lietti et al. 2005). However, the potency of the pest in resistance development was
highlighted a few years later after its global invasion (Desneux et al. 2010). Resistance to several major
classes of insecticides, including diamides, spinosyns, oxadiazines, pyrethrins and organophosphates
have been reported over the past ten years while the pest was rapidly expanding to new areas
worldwide (Biondi et al. 2018; Guedes et al. 2019).

Resistance monitoring is one of the main tools to evaluate the capacity of the pest to develop resistance
to insecticides. The insecticide resistance of the tomato borer T. absoluta to insecticides has been
monitored over the past years (Guedes and Picanço 2012; Campos et al. 2014; Silva et al. 2015; Yalcin et
al. 2015; Silva et al. 2016a; Silva et al. 2016b; Roditakis et al. 2017; Grant et al. 2019) highlighting the
trends in resistance development at a global scale. Such studies play a key role in evinced based crop
protection and resistance management. An exception to the extreme resistance cases reported for T.
absoluta is the class of avermectins.

In 2000, Siqueira et al. (2000b) reported up to 9.4-fold resistance levels to abamectin in populations from
Brazil; however, no other cases have been detected since. In these strains, e�cacy of abamectin was
synergized by piperonyl butoxide and triphenyl phosphate suggesting potential involvement of
detoxi�cation enzymes in abamectin resistance (Siqueira et al. 2001). The insecticide emamectin
benzoate is an extremely potent pest control tool for T. absoluta. Although, it is extensively used in current
IPM schemes, the resistance levels detected in general were low (>10-fold) and no cases of control failure
cases have reported in Europe to date (Roditakis et al. 2018). However, in year 2016, in three cases (Italy
and Greece) resistance ratio reached 16-fold, suggesting detection of low resistant levels and indicating a
potential shift in the responses of T. absoluta populations to emamectin benzoate and development of
incipient resistance to the chemical insecticide (Roditakis et al. 2018).

In other lepidopteran pests resistance studies to emamectin benzoate are limited or resistance is not fully
de�ned. More speci�cally during an extensive survey in Pakistani (2005–2010) six S. litura populations
exhibited low resistance levels (1.9–8.7-fold at LC50 and 4–10-fold at LC90)(Ahmad and Mehmood 2015).
Lethal effect of emamectin benzoate against the fourth-instar larvae of S. littoralis from Egypt was
investigated and results indicated high susceptibility to the product but insecticide resistance was not
evaluated (Kandil et al. 2020). There are reports for resistance development to P. xylostella in
China (Wang and Wu 2014) but such studies involve mostly laboratory selection while extensive �eld
surveys are missing. Resistance monitoring in US and Mexico for emamectin benzoate, dating back to
2006 indicated a resistance ratio <61-fold for P. xylostella (Zhao et al. 2006). More recently, regional
surveys in Georgia and Florida, highlighted high e�cacy levels of emamectin benzoate at the maximum
level rate against P. xylostella, however resistance levels were not investigated (Riley et al. 2020).
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In this study, after 8 laboratory selection cycles with emamectin benzoate the LC50 increased to 5.46 mgL-

1 resulting in a 60- fold resistance ratio (RR). This is the highest resistance level ever reported for T.
absoluta to emamectin benzoate, signi�cantly higher to the respective RR values reported in Roditakis et
al. (2018). However, compared to respective laboratory selection experiments conducted on T. absoluta
with other chemical classes (examples indoxacarb, cyantraniliprole and spinosad), the observed 7-fold
increase of the RR of the selected strain could be considerate as moderate. In other major pests, selection
experiments with emamectin benzoate, resulted in higher RR values compared to this study. For example,
selection with emamectin benzoate in S. exingua after inbreeding resulted in 1110-fold RR (Che et al.
2015). In a different study again with S. exingua, selection with emamectin benzoate for 6 generations
resulted in increased RR by 526-fold (Ishtiaq et al. 2014). Laboratory selection of P. xylostella with
abamectin resulted in a selected lab strain exhibiting 670-fold resistance (Wang and Wu 2014). One
hypothesis suggested is that the T. absoluta population collected during the �eld surveys may not include
genotypes that could exhibit high resistance levels to emamectin benzoate. On the other hand, T.
absoluta is intensively treated for at least 10 years with avermectins and the absence of
resistant genotypes may also indicate that the emamectin benzoate resistance is associated with
reduced viability parameters in resistant individuals signi�cantly restricting resistance development.

Cross resistance within the class of avermectins has been demonstrated in lepidopteran pests. The beet
armyworm S. exingua exhibited cross resistance between emamectin benzoate and abamectin (Che et al.
2015). In the current study, selection with emamectin benzoate in T. absoluta resulted in analogous
increase of resistance to abamectin suggesting potential cross resistance among the two avermectin
insecticides however, abamectin resistance levels were moderate (RR=13).

The synergist PBO strongly synergized emamectin benzoate and signi�cantly reduced resistance levels in
the selected strain (6-fold synergistic ratio, SR). It’s indicative that the LC50 of the selected strain
pretreated with PBO dropped at the LC50 levels of the parental strain. It is suggested that P450s could be
one of the main mechanisms involved in emamectin benzoate resistance. The synergist DEM exhibited a
moderate 3.8-fold synergistic effect and the difference in the responses were not statistically signi�cant.
In addition, the synergist DEF hand no effect on emamectin benzoate resistance. Based on these outputs
EST and GSTs may have minimal involvement in emamectin benzoate resistance. Our results are in
agreement with analogous prior studies on T. absoluta from Brazil, where PBO synergized abamectin
toxicity (SR: 3- to 5-fold) in �eld collected populations (Siqueira et al. 2001). In an abamectin selected P.
xylostella strain, all tested synergist exhibited no effect on abamectin toxicity (Wang et al.
2016a) however, in a different study by Pu et al. (2010) a 7.5-fold synergism with PBO was observed.

The glutamate-gated chloride channel (GluCl) and gamma amino butyric acid (GABA) interact with
avermectins in insects and arthropods, causing abnormal chloride channel opening resulting in hyper
excitability and convulsions. However, GluCl is considered as the main molecular target in arthropods. To
date, no resistance mutations have been previously associated with T. absoluta resistance to
avermectins. In P. xylostella a point mutation in the third transmembrane domain (TM3) of GluCl (A309V)

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/convulsion
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has been strongly associated with abamectin resistance (Wang et al. 2016a), while a 36bp deletion was
detected in higher frequency in an abamectin-selected strain (Liu et al. 2014). Additionally, G314D in
GluCl1 and G326E, I321T in GluCl3 have been strongly correlated with abamectin resistance in T.
urticae (Kwon et al. 2010; Dermauw et al. 2012; Xue et al. 2020). In the T. absoluta strains studied here we
did not detected any of the aforementioned resistance mutations, but we detected the 36bp deletion,
equally distributed among the three strains. Thus, it is highly unlikely for this deletion to be implicated in
the observed resistance phenotype. Additionally, the presence of resistance mutations in GABA was also
investigated. Several resistance mutations in GABA have been previously associated with resistance to
cyclodiens and phenypirazoles in various arthropod species (reviewed by (Feyereisen et al. 2015)). In all
studied strains we detected only the previously mentioned A301S substitution which was not �xed, as
well as a novel non-synonymous SNP (Ε310V), in low frequency in the 16-6-P and the susceptible strain
ES-Sus, but absent in the 16-6-S strain. Therefore it is also highly unlikely that these two mutations in
GABA can be linked with emamectin benzoate resistance.

We compared gene expressions of the susceptible, the parental and the emamectin benzoate-selected
strain and identi�ed seven unigenes encoding for detoxi�cation enzymes (2 P450s, 2 GSTs and 3 ABC
transporters) that are overexpressed in the 16-6-S strain. The synergistic experiments combined with the
absence of resistance mutations in target genes indicates the potential involvement of P450s in
emamectin benzoate resistance. We focus on transcripts encoding for P450s since PBO caused
signi�cant reduction of emamectin benzoate toxicity and P450s are one of the most frequent players in
insecticide metabolism (Dermauw et al. 2020). Detailed phylogenetic analysis revealed that P450
members of clan 3 (belonging to CYP9 family) and Clan 4 (belonging to CYP4 family) are overexpressed
in the emamectin benzoate-selected strain (16-6-S). Clans 3 and 4 of CYP are the major arthropod CYP
clans and the CYP4 and CYP9 families have been previously associated with insecticide resistance in
several arthropods (Dermauw et al. 2020). To our knowledge, resistance to emamectin benzoate in T.
absoluta and other lepidoptera species has not been analyzed at the gene level. Apart from P450s we
also found other detoxi�cation genes (GSTs and ABCs) that are overexpressed between the 16-6-S and
the 16_6_P or ES_Sus. However, the involvement of GSTs and ABCs in emamectin benzoate resistant are
not supported by our synergistic experiments since a) synergism with DEM, GST inhibitor, as not detected
in the selected strain and b) the inhibitor of ABCs was not tested in the selected strain.

Combining data from RNAseq and qPCR, one P450 unigene (DN60698_c0_g2) was found signi�cantly
over-expressed in 16-6-S against ES-Sus. According to our phylogenetic analysis DN60698_c0_g2 is
grouped with CYP4AU1 from H. armigera and therefore belongs to Clan 4. P450 members of the CYP4
family have been previously associated with insecticide resistance in lepidoptera species such as
Spodoptera sp (Huang et al. 2010; Wang et al. 2016b), P. xylostella (Baek et al. 2010). In non lepidopteran
species the role of Clan 4 P450s in insecticide resistance has been functionally validated in vitro or in
vivo in a number of species such as Diaphorina citri (Killiny et al. 2014), Laodelphax striatellus (Elzaki et
al. 2015; Xiao et al. 2020), Locusta migratoria (Wu et al. 2020), Nilaparvata lugens (Zhang et al. 2016; Xu
et al. 2020), Sogatella furcifera (Wang et al. 2019) and Leptinotarsa decemlineata (Kaplanoglu et al.
2017). Based on our transcriptomic and synergistic data, DN60698_c0_g2 quali�es as an excellent
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candidate for additional functional experiments, in order to elucidate its role in emamectin benzoate
resistance.

Hereby, we present the �rst in-depth investigation of mechanisms involved in emamectin benzoate
resistance in the tomato pest T. absoluta. Absence of mutations in the genes targeted by avermectins in
combination with the synergistic action by PBO suggests the involvement of a metabolic detoxi�cation
mechanism. RNA sequencing and Qpcr con�rmed the aforementioned hypothesis and identi�ed the over-
expression of one cytochrome P450 enzymes that could potentially be involved in emamectin benzoate
metabolism. Moreover, the RNAseq were also analyzed in order to obtain a comprehensive set of 143 T.
absoluta cytochrome P450s that were further phylogenetically classi�ed into one of the established
clans. As a result, this study contributes signi�cantly towards the rational resistance management of the
most important tomato pest at a global level.
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Figure 1

Aminoacid Alignment of the transmembrane regions 1-3 (TM1-TM3) of Tuta absoluta strains (ES-Sus,
16_6_S and 16_6_P) for GluCl (A) and GABA (B) gene. P. xylostella A309V and T. urticae I321T and G314D
resistance mutations, in GluCl gene associated with abamectin resistance, are indicated with red triangle
and green circles respectively. Re-sistance mutations in GABA genes associated with
cyclodien/phenylpyrazoles resistance in arthropods are indicated by blue circles, while aminoacid
position A301S detected in segre-gation in all T. absoluta strains is indicated in red font.
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Figure 2

Phylogeny of all identi�ed T. absoluta CYPs (names in red), compared to those previously identi�ed in H.
armigera (names in blue). This comparison allowed for the classi�cation of T. absoluta CYPs, using H.
armigera as a reference. CYPs marked with a star denote CYPs that are signi�cantly up-regulated in a
resistant population compared to a more susceptible one (p <0.001, log2FC >2). CYPs marked with a
square denote nearly full-length unigenes (>400 amino acids). Bootstrap support is shown with dots;
black for >75% and grey for 50 – 75%. Nodes with a support <50% were collapsed.
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