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Methods
1.1 Calculation of Waste Heat Generation
For calculating the waste heat generation by the electrolysis system, the first law is applied to the total system (see Figure S 1). By adding all power demands, the total generated waste heat can be calculated as shown in the main document. Sweep gas air flow is not included, as the inlet and outlet mass and enthalpy stay the same. It is assumed that the generated oxygen can be purged at the operating temperature of the SOEC (800 °C) and does not need to be cooled down. The inlet as well as the outlet are assumed to be at 25 °C. All enthalpy data is taken from substance data tables1. The heat exchanger efficiency is included to account for heat losses to the environment. 
[image: Ein Bild, das Diagramm, technische Zeichnung, Plan, Text enthält.
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[bookmark: _Ref194242655]Figure S 1: System boundary of the considered SOEC system. The air flow is depicted but not included in the calculation, as inlet and outlet mass and enthalpy are the same. Waste heat generation can occur in all components but is not depicted. 
The calculation of the methanol synthesis unit’s waste heat generation is the same as for the electrolysis, considering all input and output mass flows and corresponding enthalpies. For methanol synthesis all input and output flows are assumed to be at 25 °C, including the purge gas stream. 
[bookmark: _Ref194301624]1.2 CO2-hydrogenation 
To parameterize the direct CO2-hydrogenation unit, a literature review was conducted in the same order as for CO-hydrogenation in our previous systematic literature review2. A total of 37 sources were evaluated and the data was harmonized to account for differences in the corresponding sources2. The literature review was conducted by searching web of science with the following search string and settings: 
	techno-economic AND (methanol synthesis OR methanol reactor) AND (CO2 OR green OR CO2 hydrogenation OR carbon dioxide)
	All fields, 2020-2024, Concluded at 05.11.2024
	No. results 209, Included in review 37


All abstracts were scanned for relevant information. In case the abstract seemed promising, the article was read and, if relevant information was found, it was added to the review.
The resulting specific capex and specific consumption are given in Figure S 2. All data employed in this study is based on the median values from the literature review and detailed in section Techno-economic Assumptions. 
[image: Ein Bild, das Text, Diagramm, Reihe, parallel enthält.
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[bookmark: _Ref194249156]Figure S 2: Results of the conducted literature review for CO2-hydrogenation after harmonization based on 37 sources3–39. The capex are given for different system sizes, where small corresponds to less than 100 kt/a, medium is 100-500 kt/a and large is >500 kt/a. The red line indicates the median value utilized for the assessment, while the blue diamond corresponds to the average value.
[bookmark: _Ref194302309]1.3 Air Cooling Model
[image: Ein Bild, das Screenshot, Kreis, Messgerät enthält.
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Figure S 3: Schematic representation of the air cooling system. The cooling water circuit is closed loop and transfers the heat from the process to the A-frame for cooling. A pump is used for water circulation and fans are utilized for generating the necessary air flow.

The cost of the air cooling system is calculated based on equations from a previous study40:
	
	(S1)

	
	(S2)

	
	(S3)


To derive the capex based on the purchase equipment cost (PEC) a Lang-factor of 2.8 is applied40. The capex is dependent on the needed installed power of fans and pumps and the size of the A-frame. While the A-frame size only depends on the cooling load, the needed power also depends on the air temperature. For simplification, the capex of the air cooling system have been calculated for a cooling load of 300 MWth and a design ambient air temperature of 20 °C, which results in specific capex of about 200 €/kWth. However, it should be noted that the specific capex heavily depends on the system size:
[image: Ein Bild, das Reihe, Text, Diagramm, Zahl enthält.
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Figure S 4: Specific capex of the air cooling system depending on the ambient air temperature.
At higher air temperature higher specific capex results, as more fan power needs to be installed. This relationship is incorporated into the model by limiting the maximum operation rate at ambient air temperatures differing from the design temperature:
[image: Ein Bild, das Text, Reihe, Diagramm, parallel enthält.
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Figure S 5: Maximum possible operation of the air cooling system relative to the installed capacity.
The influence of different ambient temperatures on the specific power demand of the air cooling system is illustrated in Figure S 6.
[image: Ein Bild, das Text, Screenshot, Display, Diagramm enthält.
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[bookmark: _Ref194252507]Figure S 6: Specific power demand of the air cooling system dependent on the air temperature.

1.4 [bookmark: _Ref194249242]Techno-economic Assumptions 
All techno-economic parameters have been converted to € and inflation adjusted as stated in the main document. 
Table S 1: Techno-economic parameters based on the indicated literature sources. The data was harmonized, i.e. inflation adjusted and converted to €. 
	Technology
	Capex
	Fix Opex (% of Capex)
	Efficiency / Energy
	Economic Lifetime
	Remarks

	DAC
	316 €/(t/a)2
	4%2
	See main document
	20 a2
	

	SOEC
	776 €/kWel2
	4%2
	80% LHV2
	20 a2
	

	CO-hydrogenation
	177 €/(t/a)2
	10%2
	See main document
	20 a2
	

	PEM
	553 €/kWel41
	2%42
	70% LHV41
	20 a42
	

	CO2-hydrogenation
	210 €/(t/a)
	3.5%
	See main document
	20 a
	Based on review, see 1.2 CO2-hydrogenation

	Horizontal single-axis tracking OFPV
	611 €/kW43
	2%43
	
	30 a43
	

	Onshore wind
	893 €/kW43
	2.5%43
	
	30 a43
	

	Heat pump
	665 €/kWth44
	2%44
	See main document
	25 a44
	

	Electric boiler
	148 €/kW44
	0.4%44
	99%44
	20 a44
	

	Air cooling
	200 €/kWth
	2%45
	
	25 a45
	See 1.3 Air Cooling Model

	CO2 liquefaction
	21 €/(t/a)46
	10%46
	83.1 kWh/t46
	25 a47
	

	CO2 gasification
	1.1 €/(t/a)46
	
	75.7 kWh/t
	25 a47
	Energy demand calculated by 1st law. Assumed liquid storage at 30 bar & -6 °C and heat up to 25 °C.

	Syngas compression
	460 €/kW48
	5.2%49
	1.32 MWh/t
	20 a48
	Energy demand calculated based on isentropic compression with an efficiency of 85%50 and a compression ratio of 300

	Battery
	170 €/kWh51
	2.5%51
	Charge- / Discharge: 96%/96%51
Self-discharge: 1.3%/h
	15 a51
	Self-discharge calculated based on round trip efficiency of 85% for 6h batteries43

	Heat storage
	1 €/kWh52
	2%51,52
	98%/98%51
0.01%/h51
	20 a51
	

	Water storage
	27 €/t53
	
	
	30 a
	

	CO2 storage
	1100 €/t46
	5%46
	
	25 a47
	Liquid storage

	Syngas storage
	60 €/kg54
	3.65%54
	
	10 a
	300 bar pressure tanks


Input Data
The yearly average values of all region-specific input data are given in this section. Since the model employs an hourly resolution, the yearly average does only give a general perspective about the input data. However, as described in the main document, significant correlations between the average data and different metrics have been observed. 
Figure S 7 shows the average yearly temperature and relative humidity for all analyzed regions. Yearly average temperatures as low as -10 °C in parts of China and up to more than 30 °C in parts of Africa, India and Australia can be observed. The yearly average relative humidity varies from below 20% in Northern Africa to close to 90% in Indonesia and Peru. 
Figure S 9 shows the yearly full load hors (FLH) of OFPV systems and onshore wind plants across the globe. While OFPV FLH vary between about 1000 h/a to approximately 3200 h/a, an even greater variation is observed for wind plants with FLH less than 1000 h/a to more than 5000 h/a in Patagonia. It should be noted that for each region all individual placements have been aggregated to receive FLH of the total installable capacity. Especially for wind turbines, individual placements can experience significantly higher FLH. To account for the differences between individual locations within one region, 10 different supply profiles for wind plants and 3 different supply profiles for OFPV systems have been included for each considered region. The supply profiles have been derived from simulation with historic weather data55,56.
Figure S 10 shows the maximal installable capacity for onshore wind turbines and horizontal single axis tracking (HSAT) OFPV systems in each region. These potentials have been derived in cooperation with the International Energy Agency for their Global Hydrogen Review 202456 and are based on land eligibility analysis performed for each region55. 

[image: Ein Bild, das Zeichnung, Text, Karte enthält.
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[bookmark: _Ref194246450]Figure S 7: Average temperature (A) and relative humidity (B) in all considered regions for the considered weather year 201857.
[image: Ein Bild, das Text, Karte enthält.
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Figure S 8: Number of hours per year with sufficient (>0.841 tH2O/tCO2) water supply by the DAC plant. The region with the lowest number of hours (456 h/a) can be found in southern Algeria.
[image: Ein Bild, das Text, Karte enthält.
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[bookmark: _Ref194246675]Figure S 9: Full load hours (FLH) of OFPV systems (A) and wind turbines (B) in the analyzed regions. All data was clustered for each region, therefore the depicted data is an average for all possible wind turbines / OFPV plants in the corresponding region and plants reaching higher FLH exist in each of the regions55,56. 
[image: Ein Bild, das Zeichnung, Karte, Darstellung enthält.
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[bookmark: _Ref194247224]Figure S 10: Aggregated OFPV / Onshore wind potential in all considered regions55,56.

[image: Ein Bild, das Text, Reihe, Schrift, Diagramm enthält.
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Figure S 11: Weather-dependent specific energy demand, water co-adsorption ratio and relative productivity from the alternative DAC model58. The data was scaled to incorporate future energy demand reductions as described in the main document. The T/RH dependency was evaluated at standard conditions of 1 bar and 420 ppm CO2 concentration.


Global Cost Potential and Further Analyses
3.1 Global Analyses
The global merit order curve (see Figure S 12) shows a total production potential close to 23 Gt/a at 10% of the technical potential. Supplying the projected methanol demand of 500 Mt/a by 205059 is feasible at marginal (average) cost of 656 (604) €/t. Regions with the lowest cost needed for this supply are located in Argentina, Australia, Chile, Egypt, Spain, Greece, Morocco, Mauretania, Portugal, the Philippines, USA, Yemen and South Africa. It should be noted that, since the regions considered are based on administrative boundaries and not equally sized, the production potential of 5 or 10% of the technical potential can differ severely. Therefore, lower production costs could be reached in multiple regions with low cost and high potential, i.e. in Australia. 
[image: Ein Bild, das Text, Screenshot, Schrift, Electric Blue (Farbe) enthält.
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[bookmark: _Ref194230993]Figure S 12: Merit order aggregated for all analyzed regions. The total production potential is close to 23 Gt/a at utilization of 10% of the available technical potential from onshore wind and OFPV plants. 
Figure S 13 shows the relationship between the share of OFPV on the total installed electricity generation capacity (wind + OFPV) and the oversizing ratio of the SOEC, as well as the resulting specific installed battery capacity. It is evident that both the SOEC oversizing as well as the specific installed battery capacity increase as the OFPV share exceeds 50%. Additionally, significant oversizing is also observed at low OFPV shares, especially in regions with unfavorable wind conditions. 
[image: Ein Bild, das Text, Diagramm, Reihe enthält.
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[bookmark: _Ref194244086]Figure S 13: Influence of the share of installed OFPV capacity. A. Resulting oversizing ratio of the SOEC. B. Installed specific battery capacity per produced ton of methanol.

Figure S 14 highlights the LCOM difference comparing the base and the unrestricted scenario with an additional free water source. Most of the 606 regions where no excess water production is observed in the base scenario are landlocked regions.

[image: Ein Bild, das Text, Karte enthält.
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[bookmark: _Ref206744514]Figure S 14: LCOM Increase in the base scenario compared to the unrestricted scenario. Only the 606 regions with no excess water production in the base scenario are shown.

Figure S 15 shows the influence of ambient air temperature on the specific power demand per cooled waste heat. Higher ambient temperature leads to more needed power, as the fans must blow more air through the A-frame for heat transfer. 
[image: Ein Bild, das Text, Screenshot, Diagramm, Schrift enthält.
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[bookmark: _Ref194245920]Figure S 15: Specific power demand of the air cooling system per cooled waste heat.


3.2 Operation in Selected Regions
Figure S 16 shows the operation of selected system components in three illustrative regions. It is observed that system operation generally follows wind and PV power generation and battery storage is only employed for increasing DAC operation.  Figure S 17 shows the operation of the heat system in the same three regions. Generally, electric boilers are only operated during times of high power supply by OFPV or wind turbines. 

[image: Ein Bild, das Text, Diagramm, Reihe, Schrift enthält.
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[bookmark: _Ref194241155]Figure S 16: Operation of some system components in three illustrative regions for 80 hours during the middle of the year. A. Operation in ARG.20.6_1 where a wind-based system is cost-optimal. B. Operation in MEX.16.24_1 where no wind potential is available. C. Operation in AUS.10.19_1 where a hybrid system results in the lowest cost. 

[image: Ein Bild, das Text, Diagramm, Reihe, parallel enthält.
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[bookmark: _Ref194245810]Figure S 17: Operation of the heat system in the same three regions as in Figure S 16.
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