

Equivalence of charged and neutral density functional formulations for correcting the many-body self-interaction of polarons

Stefano Falletta,^{1, 2,*} Jennifer Coulter,¹ Joel Varley,³ Daniel Åberg,³
Babak Sadigh,³ Boris Kozinsky,^{1, 4} and Alfredo Pasquarello²

¹*John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA*

²*Chaire de Simulation à l'Échelle Atomique (CSEA),*

Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

³*Lawrence Livermore National Laboratory, Livermore, California, USA*

⁴*Robert Bosch LLC Research and Technology Center, Watertown, MA, USA*

I. RESULTS OBTAINED WITH UNIT-CELL METHOD FOR POLARONS

We illustrate the results obtained with the unit-cell method for the various polarons considered in this work. Specifically, in Fig. S1 we show the generalized Fourier amplitudes $A_{n\mathbf{k}}$ and $B_{\mathbf{q}\eta}$, which describe the polaron wave function and the polaron lattice distortions, respectively. The strongly localized nature of small polarons is emphasized by the fact that the coefficients $A_{n\mathbf{k}}$ are spread across the entire Brillouin zone. Similarly, the localized nature of polaronic lattice distortions is related to the fact that the coefficients $B_{\mathbf{q}\eta}$ are spread across the phonon dispersion. In addition, we show in Fig. S1 the extrapolations of polaron formation energies for increasing \mathbf{k} meshes, which are used to determine the polaron formation energies in the dilute limit.

* stefanofalletta@g.harvard.edu

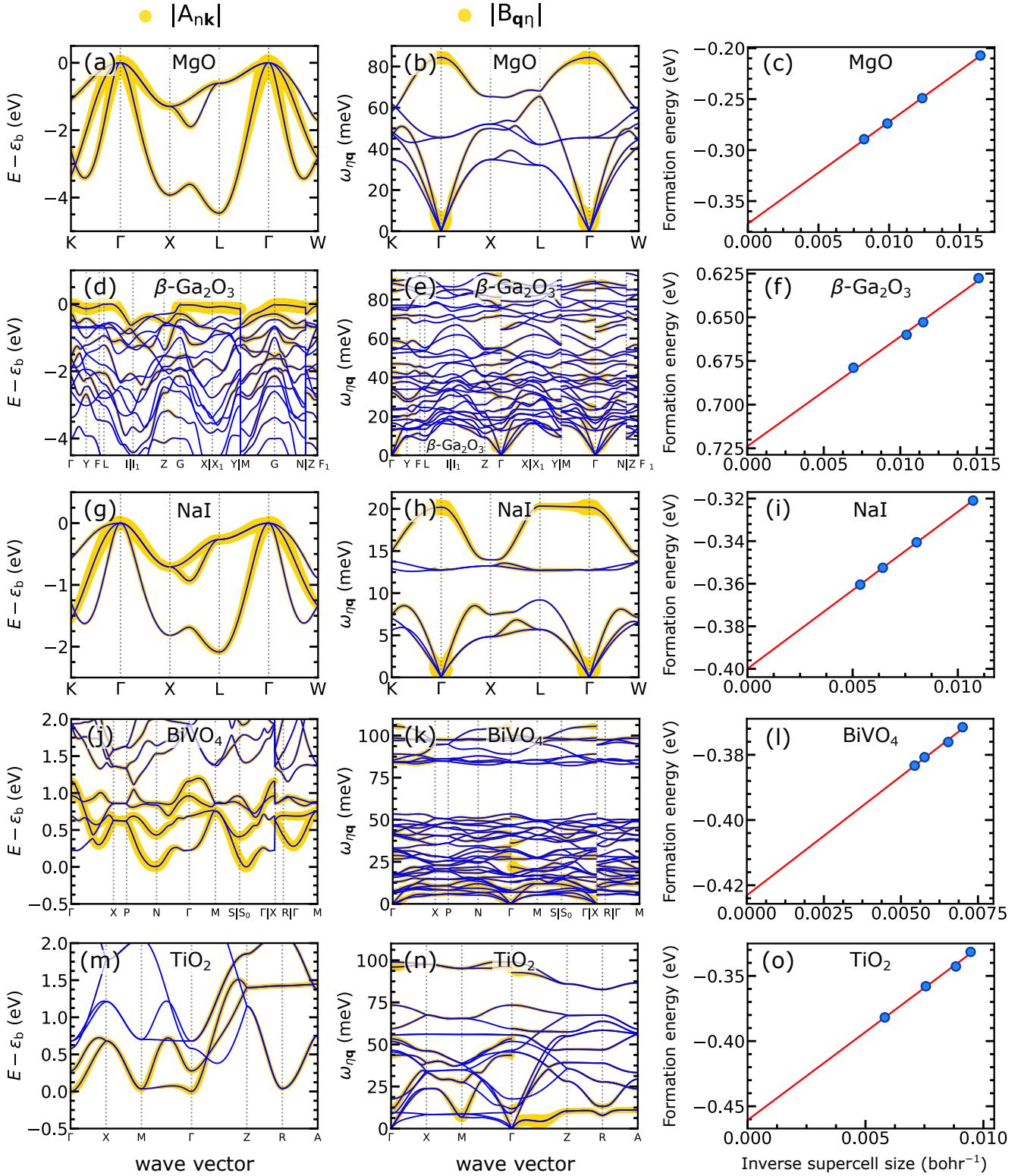


FIG. S1. Spectral decomposition of small polarons in MgO, β -Ga₂O₃, NaI, BiVO₄, and TiO₂ as obtained with the unit-cell method. (a,d,g,j,m) Generalized Fourier amplitudes A_{nk} plotted as circles on top of the band structure, with a radius proportional to $|A_{nk}|^2$. Energies are referred to the top of the valence band for hole polarons, and to the top of the conduction band for electron polarons. (b,e,h,k,n) Generalized Fourier amplitudes $B_{q\eta}$ plotted as circles on top of the phonon dispersion, with a radius proportional to $|B_{q\eta}|^2$. (c,f,i,l,o) Scaling with inverse supercell size L^{-1} of the polaron formation energy obtained by using increasingly dense \mathbf{k} -point meshes. The formation energies in the dilute limit are found by linear extrapolation.