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Notation

For clarity, throughout this Supplementary Information, we use ‘log’ to denote the base-2 logarithm, and ‘In’ to
denote the natural logarithm (base e). All variables s are assumed to satisfy Re(s) > 0 and Re(s) # 1, ensuring the
applicability of the alternating Dirichlet series. 5 denote the real part of s and ¢ denote the imaginary part of s.

The Big-O notation O(-) represents the worst-case upper bound, while the Big-Theta notation ©(-) denotes the
exact asymptotic behavior. The notation Poly(-) signifies that the growth follows a polynomial function of the input.

The symbol || - || denotes the Euclidean norm on state vectors. The distance between two pure quantum states |1,
and |1y is defined as d(|v.), [1s)) = reni]lg [¥a) — € [0p)|| = 1/2(1 — |(¥ha|tbs)|), which satisfies the triangle inequality.
€

The distance between two unitary operators is defined as D(Uy,Us) = rﬂ?)X d(Uy ), Uslp)), which is the worst-case

distance over all input states |1)). We say that a quantum state (or unitary operator) is prepared to precision x if its
distance from the corresponding ideal target state (or ideal unitary) is at most .
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Supplementary Note 1: Asymptotic behavior of Sy (s)

The N-term partial sum of the alternating Dirichlet series is

N (_1)n—1
S _ 1.1
N () ; e (1.1)
Case 1. At the nontrivial zeros of the zeta function, we have Sy(s) = —Rn(s), where
e 1 n—1
A= Y E (12)
n=N+1
Each term has the following integral representation,
1 T[> .,
_ S— —an 1 3
ns  I(s) /0 T e e (1.3)
yielding
e (_1)71—1 1 0 . S 4 (_1)N o] Ts—le—(N-‘,-l)T
Rn(s) = —_— = T8 (=) e "dr = dr. (1.4)
D OV M e
Using the identity
1 1 T
L (D), s
1o 2 gy (15)
we obtain
_ (=)Nr1 s—1_—(N+1)r O —(N+1)7 T
Ry(s) = T(s) [5 ; T e dT+§ ; T e tanh(§>d7}. (1.6)
Let us define
1 > s—1,—(N+1)7 1 —s 1 > s—1,—(N+1)1 T
M= - T e dr = -T(s)(N +1)7%, J = T e tanh<7)d7. (1.7)
2 Jo 2 2 Jo 2
This leads to
(—) N( 1 J
Ry (s) = M+J) = (-1 ( ) 1.8
() =5 M) =D ow s T i (18)
We now show that for sufficiently large N,
1
|| < ZP(s)(NH)—B, 5= +it. (1.9)
Fix A > 0, which depends on s but not on N, and split the integral for J at 7 = A/(N + 1):
1 A/(N+1) T e T 1
J== / ol (NFUT tanh(f)dT —|—/ TS lem(N+ DT tanh(7>dr = (I + I). (1.10)
2\ Jo 2 A/(N+1) 2 2
For I, we apply the inequality |tanh(r/2)| < |7/2|, so
A/(N+1) T 1 A
|| < / Tﬂfle*W“)TidT =5(N+ 1)~ (A+1) / uPedu = C1 (8, A)(N + 1)~ A+, (1.11)
0 0

Here, C1(B, A) := % fOA uPe~"du is a constant depending on A and 3. For I, we use the trivial bound |tanh(7/2)| < 1,

SO

|ms/‘ ”*fw“mh=w+ww/‘W*f”wﬂmamw+n”. (1.12)
A/(N+1) A
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Here Cy(8, A) := fjo uP~le~"du is also a constant that depends on A and §.
Since I'(s) is non-vanishing and C2(8, A) — 0 as A — oo, we can choose A large enough so that

Ca(5,4) < 706 (1.13)
Thus,
1] < FIPG)IN + 1) (1.14)
Combining the two contributions gives
1< S (01 1) < 5 (CuB. AN + )=+ 4+ pe) v +1)77). (1.15)

Consequently, for all N > Ny := [4C1(8, A)/[T(s)]],

1 J 1
< - -8 <= 1)~ 1.1
1S PN+ D7 || s (V1) (1.16)
Substituting this bound into Equation (1.8) gives for N > Ny,
]. 7,8 3 76
FN 1) < [Ry(s)] < SN +1)77, (1.17)
Therefore,
. 1 .
]\}gl})o “logN In|Sn(s)] = 1\}1an<1>oilogN In|Ry(s)| = Bln2. (1.18)

Case 2. For s with ((s) # 0, the partial sums converge, and in particular

lim Sy(s) = (1 —2'%)¢(s) #0. (1.19)
N —oc0
It follows that
- A}E)noo Tog N In|Sn(s)| =0. (1.20)
Thus, we obtain the final result:
In2, if =0,
~ lim I [Sy(s) = 402 ) (1.21)
N—oo log N 0, if {(s) #0.

Supplementary Note 2: Asymptotic behavior of Z(3, H,)

The partition function can be written as

N
Z(B,Ho)=> nP. (2.1)
n=1
Case 1. For 5 > 1, Z(8,Ho) converges as
Jim_ 35, Ho) = C(5). (22)
Thus,
lim ——In Z(8, Ho) = 0. (2.3)

N—oo logN
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Case 2. For 0 < 8 < 1, the series diverges. Specifically,

N+1 N N
/ x Pdx < Zn‘ﬂ < 1—|—/ z P da, (2.4)
1 1

n=1

which simplifies to

(N+1)1P -1 N8 1
-_— < < _ .
o < Z(BH) < 1+ (25)
yielding
. 1
- ngnoo log N InZ(5,Ho) =(8—1)In2. (2.6)
Thus,
. _J(B=1)In2, 0<pB<1,
_J\}gnoo Tog N In Z(8,Ho) = {07 51, (2.7)

Supplementary Note 3: Construction of the preliminary oracles

This section details the construction of polynomial and logarithm oracles, which serve as foundational components
for subsequent quantum state preparation and time evolution operators in our quantum algorithms.

Lemma 3.1 (Polynomial oracle (Methods, Lemma 1)). Let O(f) denote an oracle implementing the transformation
Y aul2)|0) = Y aglz)|f(x), (3.1)

where f(x) is a polynomial of degree at most D. Suppose the coefficients of f and the input x are specified to a; and
ay significant digits, respectively. The output is encoded with r1 integer qubits and ro fractional qubits. Then O(f)
can be implemented using

O(DQa% + D%ajas + D(ry + 7‘2)) gates, and (2Das + a1) ancilla qubits.

Proof. Write the polynomial as f(n) = Ef:o cqn®. Evaluation proceeds through sequential construction of the
monomials ¢, multiplication by coefficients ¢4, and accumulation of the results.

Step 1: Computation of Monomials. Multiplying an mi-qubit register by an ms-qubit register requires
O(mims) gates and O(m; + ms) qubits using quantum schoolbook multiplication!. To compute x9*+! from z¢, a
das-qubit register (storing x¢) is multiplied by an as-qubit register (storing ). The total gate cost for generating

monomials up to degree D is
D-1
2 Z ay - dag = O(D%a3), (3.2)
d=1

where the factor 2 arises from uncomputing intermediate results and resetting ancilla qubits.
Step 2: Multiplication by coeflicients. Multiplying a degree-d monomial (which requires das qubits) by cq4
costs O(dajasz) gates. Summing over all degrees gives

D
2 Z da1a2 = O(D2a1a2), (33)
d=1

again with the factor 2 from uncomputation.

Step 3: Accumulation of output. The results are accumulated into an output register of size r; 4+ ro. Each of
the D +1 additions costs O(r; +12) gates, yielding a total gate cost of O(D(r1 +132)). Adding all contributions yields
a total gate complexity

O(DQag + D?%aqas + D(r + 7‘2)) . (3.4)

During computation, at most Das qubits are used for monomial storage and (Dasg + a;) for intermediate products,
giving a total ancilla requirement of (2Das + aq). O
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Lemma 3.2 (Logarithm oracle (Methods, Lemma 2)). Let L denote an oracle implementing the transformation

ap|n)|0) — an|n) |10g (3.5)
> Z

n=1

where log(n) approzimates log(n) to within error n. Then L can be implemented using O((log N)3log?(1/n)) gates
and O((log N)?log(1/n)) ancilla qubits.

Proof. We proceed constructively.
Step 1: Input Partitioning. Define k; = [log( )] For 3 < n < 3-2%1 partition the integers into k; subsets,
defined as

P, 3.2"7l<n, <32, 1<v<k. (3.6)

Each 3 <n < N lies in exactly one partition P,. For n, € P,, define

n, — 2Vl 1 1
. A— I < .
d TESu 1S d< 5 (3.7
This allows the logarithm to be expressed as
log(n,) = log(2”+1) + log(1 + d). (3.8)

Step 2: Taylor expansion of log(1 4 d). Using the Taylor series expansion for log(1 + d), we have:

1 & JH .
log(1+d) = 3 (3.9)

Jj=1
The remainder after [; terms satisfies

RO

j=l1+1 J

o _1)i+1 .
Z &dﬂ <
J

j=li+1

Hence, truncating after I; = [log(1/7)] + 2 terms yields an approximation error of less than 7. Coefficients stored to
[log(2/n)] fractional bits introduce an additional rounding error bounded by

n Lol n
—-1+=4+(= )< = 3.11
U rs TG+ =g (3.11)
giving total error of less than 7. The resulting approximation
b j+1
log(n,)=v+1 + Z (3.12)

is thus approximated within error 7.

The partition index v is determined using multi-controlled operations that compare n with partition bounds. Each
such comparison uses at most O(k;) Toffoli gates and O(k1) ancilla qubits. A flag register composing of at most
O(k1) qubits marks the unique partition P, containing n. This flag controls addition of the corresponding polynomial
output to the output register. Exactly one flag is set for each input across 3 <n < N.

For each v, Equation (3.12) is a degree-l; polynomial in d, with coeflicients specified to [log(2/n)] qubits and input
d to (k1 + 2) significant digits. The output requires ([log k1] + 2) integer qubits and [log(1/n)] fractional qubits.
Applying Lemma 3.1, evaluating this polynomial within a partition requires

O(13k3 + 13k log(2/n) + L1 (log(k1) +log(1/n))) = O(ki log*(1/n)) (3.13)
gates, and

201ky + log(1/n) = O(ky log(1/9)) (3.14)

ancilla qubits. Summing over all k; partitions gives total resource requirements:

O(k‘f 10g2(1/n)) = O((log N) log (1/n)) gates, O(kf log(1/n)) = O((log N)2 log(1/7n)) ancilla qubits.  (3.15)

The special cases n = 1,2 can be handled separately at negligible cost. O



S6
Supplementary Note 4: Construction of the initial state

This section details the construction of the initial state, which is outlined as follows:

Our first key result is provided in Theorem 4.2 (Methods, Theorem 1), which describes the preparation of the
truncated state |¢p)1. Central to this construction is the angle-preparation oracle (Methods, Theorem 2) that computes
the required rotation angles. Its action is defined in Definition 4.3 and its implementation is outlined in Theorem 4.4.
A central subroutine of this oracle is the evaluation of a zeta function related partial sum (Lemma 4.7), built upon
Proposition 4.5 with detailed calculations given in Propositions 4.8 and 4.9.

Our second key result, Theorem 4.11 (Methods, Theorem 3), presents the construction of our initial state |1)g).
Starting with the truncated state |¢)g)1 prepared in Theorem 4.2, we extend it via the Linear Combination of Unitaries
(LCU) method to combine it with |1g)2 (Corollary 4.10); a final post-selection removes the high-index component
[0)3 , yielding the desired initial state.

Definition 4.1. The controlled-rotation gate CR implements the transformation

> aglf)|0) = > aglf)(cos0]0) +sinf]1)). (4.1)
6

0

It can be implemented using a sequence of controlled-R, rotations, each conditioned on a qubit of the register encoding
0, followed by a phase gate on the target qubit.

Theorem 4.2 (Truncated state preparation (Methods, Theorem 1)). Let 8 > 0, 8 # 1, and let ng,n1 € N with
ni1 — ng = 2% for some integer k > 0. Define

nip—1

1
lvo)r = Cy Z n= P2 In — no), C, =

n=ngo

(4.2)

Then |1o)1 can be prepared on a standard gate-based quantum computer to precision € > 0, using a number of gates
and ancilla qubits bounded by

Poly(log(l/s)7 log(ny), log(ﬁ), B, v), (4.3)

where v denotes the number of significant digits used to represent 3. The parameters are required to satisfy

c= {; logzﬂ(i)“ ) no > [B + 2c]. (4.4)

Proof sketch. We adapt Grover’s recursive amplitude-splitting method?, replacing integration with partial summation.
The 2* computational basis states are encoded on k qubits initialized in [0)®*. At iteration step m (0 < m < k — 1),
each bit string w € {0,1}™ is split into two branches w0 and wl. Define

Qk—m _1
1
o=z ; (25— 4 i 4 ng) P, (4.5)
Normalization is preserved, as
1 2k—m—1_1 1 Qk—m—1_1
Cu0 = & ; 26w+ i +10) 7, e = el ; (2F=m(w 4 1) +i+no) ", (4.6)

satisfy 2, + 2, = 2. For each w, we compute a rotation angle 6,, ,, such that the amplitude split ¢y, = (Cuwy, Cu, )

can be implemented by a CR gate acting on the next qubit. All rotations corresponding to strings of the same length
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m are applied in parallel. The transformation at step m is written as
Y. cwlw)[0)*F™ o)
we{0,1}™

Unm —-m
“)ZCUJ |w) |0>®(k ) |0u,m)

B S [w) (€08 Bun [0) + 50 Oy [1)) [0)EF71 [0, )

Ut e
—5 > (Cug [w0) + €, [w)) [0)2ETm=1 0). (4.7)

w

Here, U,, denote an oracle that computes 8,, ,,, into an angle register, which is uncomputed after applying CR gate.
Iterating the transformation in Equation (4.7) for m =0,1,...,k — 1 yields the desired state

ni—1
|tho) = Z n= P2 n —ng). (4.8)
n=no
Thus, the central task reduces to constructing U,,, defined as follows. O]

Definition 4.3 (Angle-preparation oracle U,,). The gate U, implements the transformation

Yo aulwlo) s DT awlw)lbum), (4.9)

we{0,1}m we{0,1}m

where the rotation angle 0y, ,, satisfies

gk—m-1_1
. szil ) 22%’1 (?k—m—1(2w +1) +i+mng)~? ) S(2k_:_1£?w L)+ no’k%k_i_1(2w +2)— 14no, B)
2o 5 - (25-m=1(2w) + i + ng)—? S(2F—m=1(2w) 4+ ng, 2812w + 1) — 1 + no, B)
i=0
. (4.10)
S(a,b,B) = zb: n=h. (4.11)
Equivalently, _

0 —arctan( S(2k=m=1(2w + 1) + ng, 2k~ 12w +2) — 1 + no,ﬁ))
e S(2k=m=1(2w) + ng, 2k=m=1(2w + 1) — 1 + ng, B)

_arcsin( S(2k=m=1(2w + 1) + ng, 2k=m=12w +2) — 1 + no,ﬁ))
B S(2k=m=1(2w) + ng, 2k=m=1(2w + 2) — 1 +ng, B) /

(4.12)

Notation. In practice, U,, computes an approximation 5w7m, which results in an error in the state preparation. The
deviation between the ideal and approximate states at step m is bounded as follows:

> cwlw) (€08(Bu m)|0) + Sin (B ) 1)) [0)2E=D10) = >~ ey fw) (08 (s m ) 0) + sin (6 m ) 1)) [0)E="=D]0)

w w

ch|w [ cos( w m) — c08(0w,m))|0) + (sm(Qw m> . sin(@w,m))|1>} H

‘VZ o (B )

<max|0wmf Ow.m]- (4.13)
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To achieve overall precision ¢, each 6,, ,, must be computed with an error of at most £/k over all m. The CR gate is
decomposed into controlled- R, rotations conditioned on the qubits encoding 6, ., followed by a phase gate, requiring
O(log(k/e)) gates and no ancilla qubits. Therefore, the dominant resource cost comes from implementing U, to an
accuracy of €/k.

Theorem 4.4 (Implementation of oracle U,,, (Methods, Theorem 2)). The gate U,,, as defined in Definition 4.3, can
be implemented such that each rotation angle is estimated to within error €/k, using a number of gates and ancilla
qubits bounded by

Poly (log(1/2), log(n1), 1og 15, 6, v), (4.14)
where v denotes the number of significant digits used to represent [3.

Proof. The angle 6,, ., represented with log(k/e) qubits, is determined using a bisection procedure applied iteratively
on each qubit. For a trial angle 0,, we compare

sin?(0,)S(2" "™ 2w + ng, 287 (2w 4+ 2) — 1+ ng, B), (4.15)
with  S(28=™71 (2w + 1) 4 ng, 2812w + 2) — 1+ ng, B). (4.16)

This comparison decides whether 8., ,, > 0,. After log(k/e) comparison, 6., , is computed to within error £/k. Define
d = sin?(0,)S(2 ™1 2wtng, 287" (2w+2) —14ng, B)—S (28T (2w+1) +ng, 287 (2w42) —14ng, B). (4.17)

Since S(a,b,3) > ni # and relevant angles 0 satisfy 6 + £ < 7, consider two angles differing by at least ¢/k. The
difference in sin?6:

sin?(0 + £) — sin®(#) = (sin(0 + £) — sin(6))(sin(0 + £) + sin(6)) > ‘Cf sin(£) > . (4.18)

Thus, angles differing by ¢/k yield a difference in d of at least 5= n1 . To distinguish such angles correctly, the error

E

TR # . Since S(a,b, 8) < ny, requ1rements.

in d must be less than

2 —pB 2 —1-p8
. .. e’n 2 ..
(1) computing S to precision <55, (2) sin” 0, to precision ~—3=—,

ensures the total error meets this requirement.
Step 1: Calculation of sin®(0). Using the expansion

9. _ L —cos(20) = . _(—1ntign

we approximate sin®(6) for 6 < 7. Truncating after [ > 5 terms, the error is:

(1)212+2 (£)212+2
2 2
2(2ly +2)!  (2at2)20x+2

_ (T a2 L1, 4.2

2 —1-p8
. . . . . . . . E™n
using Stirling’s approximation. To achieve precision —};>—, we choose:

k
Iy = 210g(g) + (14 B)log(n1) + 5. (4.21)
—1-8
Storing coefficients d,, to precision 29# ensures that the rounding error is bounded by:
eni' ™ o ow, e2ny P
T4z . i) S 4.22
oo 1 T < e (4.22)

2
Thus, the total truncation and rounding error is within £ satisfying the requirement (1).

1o
LY
12k2
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The expression approximating sin? (9) is a polynomial of degree 2l;. The parameter 0 is encoded using log( )
2 —1-8 e2n 71
qubits, the coefficients require log (%) qubits, and the output requires W qubits. By Lemma 3.1, the gate
complexity is

B k 96k2n, 7 , 12k2n]+P
4log (g)12+4log - log T 15+ 2l5 log T = Poly(log(n1),log(1/¢), 8), (4.23)

and the ancilla qubit count is

2, 1+8
41y log<§> + 10g<96k€2> = Poly(log(n1),log(1/¢), B). (4.24)

Step 2: Estimation of S. We will prove Lemma 4.7, which states that the partial sum S(a, b, 5) can be computed
to precision € with:

Poly (log(l/e), log ny,log (|115|> ,v) (4.25)

2,
gates and ancilla qubits, where v denotes the significant digits of 3. To satisfy requirement (2), we set ¢ = =1 and

. 12k2
the complexity becomes:

Poly (log (12]; ) log(ny), log (|1 i ,8) ,v) = Poly (log(l/e),log(nl),log (|1—15|) ,ﬁ,v) .

Conclusively, we give a total count of required resourced for constructing U,,. The bisection procedure requires
[log(k/e)] comparisons to compute 6., ,, to precision ¢/k. Each comparison involves two evaluations of S (for the
partial sums in (4.15) and (4.16)) and one evaluation of sin®6@,. Thus, the total resource cost for U, is multiplied
by a factor of O(log(k/e)), which is absorbed into the overall polynormal complexity. Combining the resource costs
from Steps 1 and 2 (concluded in Equation (4.23),(4.24),(4.25)), the total gate and ancilla qubit complexity for
implementing the oracle U, is bounded by

Poly (log(1/2), log(m), log 157, 6, v), (4.26)
as stated. As a preliminary step of Lemma 4.7, an approximation of S is introduced in Proposition 4.5. O
Proposition 4.5 (Euler-Maclaurin approximation of S). For 8 > 0, 8 # 1, and integers a < b, there ezists an

approximation m to the partial sum S(a,b,3) = Zb, n=h, such that

n=a

€
[S(a.b.8) ~ S(a,b.8)| < 5, (4.27)
where
1 Fybh By, T 2
S@.b.8) = 150! —a ) + T Z : 2 SRR Nb*”“ — a7 iRy, (4.28)
T
with I3 = [§log22], provided a > [B + 2m].
Proof. Recall the Euler-Maclaurin summation formula:
I3
+ f By — .
0= [ ryans LTI L5 B (e - i) 4, (129)
r=1 :

where Bs,. are Bernoulli Numbers, and the remainder is given by

l3+1
o 21 / By (@ — |2)) f29)(2) da. (4.30)
3



510

Setting f(z) = 27?, we have

_ _ l 2r—2
Sans) :/bxﬁ do 4+ @ B4ph +2‘°’: Bs, (_1)2%1( H (5_‘_1-))(()7[372#1 _ g B2 4R,
T a 2 (2r)! bl °
1 16 _ -6y 4 @ P + b7’ By, T'( + 27“ D) opoortl  —fo2rt1
=1 75(11 )+ Z 20T (3 (b a )+ Ru, (4.31)
in which the reminder term is given by
1)kt I'(B + 2l3)

= B — A2 g, 4.32
Ry, — 213 / (o= o) a0 e (4.32)

Using the bound on Bernoulli numbers:

2(213)! 1 2l 2l 1
(g(ﬂ)?;i, 9= < B2l = (2( )3223 ¢(2s) < (2( )3223 IETTE

(4.33)

we obtain
b

ol < B854 1) s - [

_|B(B+1)- - (B+2l5 —1)By, (a” P72+t — p=FA=2lst)
a (203)1(B + 213 — 1)
B(B+1)-(B+2l3 —2)2a P2l
(27T)2l3(1 _ 21—2l3)
4 BB+1)---(B+25-2)

(27-[-)2[3 a5+2l3 1

<

(4.34)

Thus, choosing I3 = [1 log,, 2] guarantees |R;,| < §, provided a > [ + 2I3]. O
Corollary 4.6. The Bernoulli numbers satisfy Bo = 1, and for all ¢ > 1,

Zq: (q; 1>Bp = 0. (4.35)

p=0

The Bernoulli numbers can be computed efficiently using the Akiyama-Tanigawa algorithm?®, with a complexity O(p?)
for computing B,,.

Lemma 4.7 (S(a,b, 8) calculation oracle). Let S(8) be an oracle implementing

S awlBo = S awla)b)S(ab,8), (4.36)

no<a<bt<ng—1 no<a<b<ni-—1

where S(a, b, 3) is an §-approxvimation ofm as defined in Equation (4.28), and therefore an e-approximation

of S(a,b,B). Then S(B) can be constructed using
Poly(log(1/€), log(n1), log (125 ) v) (4.37)
gates and ancilla qubits, where I3 = (% log,.. %1, ng > B+ 2ls, and v is the number of significant digits of B.

Proof sketch. We compute m, as defined in Equation (4.28), with an error of at most €/2 by evaluating its
exponential terms and finite Bernoulli-series sums:

l
— 5 1 1 o By, T (B+2r—1) 5.
B—2l3+1 203 | Tp2l3—1 2 213 —2r
S(a,b,8) =b (1_66 + 26 E @I () b )

r=

I3
e 1 1, BoT(B+2r —1) 4.
_ B—2l3+1 2l3 _ = 2l3—1 _ 2 2l3—27
“ ST 2 enrE ¢ )

_pB2s+1 p,(3) — g B2t p (), (4.38)



where

l3
1 1 B, T 2r—1
P,(B) = S E R 5les—l _ E : 2r[(B + 2r )b2l3—2r

1-p (2r)!T(B)
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)

l3
1 ) 1 5. By, T'(B4+2r—1) 4. _
P, _ 203~ 2l3—1 2r 2s—2r
(B) =15~ - L= i
Define the r-th term in the sum of Py(3):
By D(B42r —1) 9,5
Tb T)= b,
"= )
Then the ratio of consecutive terms is
To(r+1)| _|Barg2| (B+2r—1)(B+2r) 1
Ty(r) | | Bar (2r+2)(2r+1) b2’
Using the bounds of Bernoulli number
2(2r)! 1 2(2r)! 2(2r)! 1
———— < |Byy| = —=((2 —_— 4.39
(2m)2r 1 — 2-2r < |Ba| (27(-)2T<( r) < (2m)2r 1 — 21-2r (4.39)
for b > 8 + 2I3, we obtain:
Ty(r+1)|  (B+2r—1)(B+2r)(1—272) L
Ty (r) (2m)20% (1 — 21-20+1)) 212
Thus the Bernoulli series decreases geometrically,
ls 203—2 203—2 2031
By, T’ 2r—1 _ Bypb*'s b*'s b='s
Z 2 ['(8 + 2r )b2l3—27 28 - B < . (4.40)
< (2r)!IT(B) 2(1-5) 6 2
By combining the fact that bzl?’% < %, we obtain
2p%'s
[Po(B)] < Toa (4.41)
and similarly,
2a2ls
|Pa(B)] < Tk (4.42)
Hence, to achieve overall precision 3, it suffices to:
1. Compute a—#~23+1 and b=F~2s+1 to precisions:
€1 —p| €1 —p|
T6a2ls and 607 (4.43)
respectively. We will prove in Proposition 4.8 that these require at most
Poly(log(n1), log<r1ﬂ|), log(1/€),v) (4.44)

gates and ancilla qubits.

2. Compute the polynomial-Bernoulli sums P,(3) and Py(3) to precision g,

both smaller than 1. We will prove in Proposition 4.9 that these require:

Poly(log(1/e€),log(n1), log(ﬁ> ,0)

gates and ancilla qubits.

since a=P#~2s+1 gnd p—F—2s+1 gre

(4.45)
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3. Perform final multiplications and additions to combine terms. As the exponential terms and Bernoulli-series

sums require at most
16n3' 2n3" 8
lo L), lo L +1lo (7>
g(u—me) g(u—m B\

Conclusively, the total number of required gates and ancilla qubits can be bounded by

significant qubits, respectively.

Poly(log(1/e€),log(n), 10g<ﬁ), v), (4.46)
given that l3 = [% log,.. %] Hence the Lemma, follows. Next, we detail Proposition 4.8 and Proposition 4.9. O
Proposition 4.8. The oracles
ni—1 ni—1 S ni—1 nyi—1 .
Z ap|b)|0) — Z ap|by|b—B—2ls+1) and Z agla)|0) — Z agla)|a=B—2ls+1) (4.47)
b=ng b=ng a=ng a=ng
can be constructed with error bounds
A a1 B e[l — B Ry e S €1 - B
|b A-2lst+l — b o 2l3+1| < 16b2l3 ’ |a A2+l a o 2l3+1| < 16a213 ’ (448)
usIng
Poly(log(n1), log (1257 ) log(1/€), v) (4.49)

gates and ancilla qubits, where ng > B + 2l3, and v denotes the number of significant digits of B.

Proof. We focus on constructing the oracle for b—A-2ls+1; the case for a is analogous. Writing b=A—2ls+1 =
2= (A+2l3—1)logb " the computation proceeds by approximating logb, multiplying by —(3 + 2I3 — 1), and exponen-
tiating. We require the approximation errors from the logarithm and from the exponentiation to be both bounded by

;I;b;i‘, so that the total error is bounded by El‘éb;gl.

Step 1: Approximating log(b). If (8 + 2l3 — 1)[log(b) — log(b)| < %, then

|2 (B+21s=1) log(h) _ 2*(ﬁ+21371)f@)|

— 9—(B+2la—1)log(b) |1 _ 2*(ﬂ+2l371)(11>§(33710g(b))‘

—_—

< b B2 (5 4 20, — 1) [log(b) — log(b)], (4.50)
since |1 — 27| < |z| for |z| < . To bound this error by %, it suffices to compute log(b) to precision
ell — b2l b lell — 1 _
14| _ 11— 4| n?1— Ble, (4.51)

3202 (B+25—1) 32(8+25—1) ~ 32

which satisfies 3—12nf2|1 — Ble(B+2l5 — 1) < 35€ < 5. Therefore, we set the required qubit of precision as

1
P = log(32n%ﬁg> =5+ 2log(ny) + log(lliﬂl) + log(%). (4.52)

By Lemma 3.2, computing log(b) to p; digits of precision requires
O(log(n1)’p?) gates and O(log(ny)’p1) ancilla qubits.

Step 2: Multiplication with 3 + 2l3 — 1. Multiplying logb by 8 + 2I3 — 1, which are represented to at most
log(n1) + p1 and log(ng) + v bits respectively, requires:

(log(n1) + p1)(log(ng) + v) gates and (log(n1) + p1) + (log(no) + v) ancilla qubits,
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where v is the number of significant digits of 3.
Step 3: Exponentiation. Decompose

p=B-2lat1 — gl=(B+2ls—1)log(h)] . o{~(A+2ls—1)log(b)} (4.53)

where |y] denote the nearest integer of y and {y} = y — |y| denote the fractional part. The fractional exponential is
evaluated by:

z _ In2-x __ - (1n2)n n 1 1
2" =2 =" Tt g <e<y (4.54)
n=0
To bound the total error by 3|2b2lﬁ3‘, we target an error of
ell — 8] 1 e S R ST 1
32b2l3 \@b*(fpﬂls*l) - 32\&1)213 > @b |1 5‘6 > 7711 |1 — 5|6 (4.55)
in fractional exponential. Let
1
1y =10 64m1 175+ ) = 6+ Tog(m) +los(;r457) +los(2). (4.56)
Because |z| < %, truncating the exponential series at degree 4 gives an error
2(In2/2)k 1
< = 1-— 4.57
(Ia)! 2t 128 ny 'L = Ble (4:57)
With coeflicients stored with Iy + 1 fractional qubits the rounding error is at most
| 1 1 nf1
— 1—pBle(1 1-— < — 1-— 4.58

yielding a total error at most g;n; i
By Lemma 3.1, evaluating the degree-l4 polynomial in the argument {—(5 + 2l3 — 1) log(b)}, which is represented
with at most (p1 + log(n1) + log(ng) 4+ v) bits through multiplication, and with coefficients stored with I4 4+ 1 qubits,

. . . 1— .
to achieve precision < requires

32023

392l
13(p1 +log(no) + log(n1) + v)? + 13 (p1 + log(ng) + log(ny) +v)(ly + 1) + log( )l

1= Ble
=Poly(log(n1), log( Iliﬁ\ ) Jlog(1),v) (4.59)
gates, and
2(p1 + log(ng) + log(n1) + v)%ls + Iy + 1 = Poly(log(n1), log(ﬁ),log(%),v) (4.60)
ancilla qubits. Thus, combine the three parts and the claimed resource bounds follow. O

Proposition 4.9. The oracles

DYoo)y = Y aplb)B(8))  and Y aala)|0) = Y aala)|Pa(8)), (4.61)
b=ng b=ng a=ng a=ng

where

l3
1 1 By, T(B+2r —1
Pb(ﬁ) — 7[)213 + §b2l3—1 _ 2 : 2 (B"’ T )b2l3—27"
r=1

1-p5 (2r)!T(B) ’
I3
1 1y h Bo,I(B+2r—1) 4
P _ 2l * 2l3—1 2r 203 —2r 4.62
can be constructed to precision g using
Poly(log(l/e),log(n1)7log( 1E5|)) (4.63)

gates and ancilla qubits, in which ng > B+ 2l3.
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Proof. We focus on constructing the oracle for P,(f), as the case for P,(3) is analogous. All the coefficients are stored
with precision 16%13, so the total rounding is bounded by
my

€
1671?13

2% < £ (4.64)

21 203—1
(6™ + b7 +~--)<16 o, <3

Hence the required number of qubit for each coefficient is at most

16n3"
P2 = log< e ) = log(1/€) + 4 + 2l3log(ny). (4.65)
€
The polynomial in Equation (4.62) has degree 2l3, with input b requiring at most log(ni) qubits, and the output
targeted to precision g with absolute magnitude bounded by log( = 2 ‘n%h) Lemma 3.1 implies that this computation

can be performed using at most

2 8
Blog?(m) + 3 1og(ns)ps + 1 (loa( = ) + 1og( 2))

11—l
=Poly (log(nl)7 log( = |) log(%)) (4.66)
gates, and
2l3log(n1) + p2 = Poly(log(n1),log(1/€)) (4.67)
ancilla qubits. O

Corollary 4.10 (Extended state preparation). Let 8> 0, 8 # 1. Define

ni—1

|¥0)e Z n=2|n), (4.68)

where ¢ = [1log,, QE—H , ng — 1 is the smallest power of 2 greater than [B + 2¢]|, and ny —ng is a power of 2. Then the
state |1o)e can be prepared on a gate-based quantum computer to precision € > 0 using

Poly(log(1/¢), log(n1), log(r257), 8, v), (4.69)
gates and ancilla qubits, where v is the number of significant digits used to represent (3.

Proof. By Theorem 4.2, the truncated state

ny— 1
[4bo) = Z n=2|n) (4.70)
n=ngo
can be prepared to precision § with
Poly(log(l/a),log(nl),log<ﬁ),6,1}) (4.71)

gates and ancilla qubits, for ¢ = [4log,, 28] and ng greater than [8 + 2¢] + 1. Following the approach of direct
amplitude splitting?, we can also prepare

’n()l

Y1) = Z n=P2n), (4.72)

to precision %, using Poly(no,log(1/¢)) gates. An auxiliary qubit coherently combines the two states:

0} |4ho) +4[1)[¢1)
VET

0) +~[1)

NS

10) — (4.73)



S15

Applying a Hadamard gate gives:
A, (10) +[1)]%o) +9(10) = [1)[¥1) _ [00(1%0) +1¢1)) +[1) (o) —7(¥1))

= . 4.74
29242 V2242 (4.74)
Here, v = % = %, where the denominator estimated via Euler-Maclaurin summation method and the

numerator is computed directly. If the ancilla is measured in |0), the desired normalized superposition is obtained. If
not, a correction step—using an additional register for comparison with ng and a controlled-Z operation-restores the
target state. The comparator writes a 1 in an auxiliary qubit iff the index is smaller than ng. The process is listed as
follows:

controlled-Z undo comparator
%

(o) = Y[1))10) B2 [aho) [0) — y[ghr) 1) <2225 [450)[0) + vl ) 1)

If v is approximated by 7, the error is bounded by

(Itho) +71¢1))[0). (4.75)

o) +7101) [t} +le) \/ 77 \/2 ) \/1_ 7
V1i+7? Vi+r? VA7) 1+7 (1+75)
<\/2_2\/1_ (v —3)2 < /2]y - 7. (4.76)

82

Thus, computing v to precision Iz ensures an additional error at most 5. This can be achieved by estimat-
. . —B g2 . 2 2 p 28 2 _1-2 . . : :
ing C with error nOﬁ £5 and Cp with error 2—6%1 g—ﬁn%[) = 5N o using Euler-Maclaurin summation with

Poly(log(1/e), log( Him),ﬂ, log(ny),v) classical computations. Hence, |1)g)e can be prepared with accuracy e using

Poly(log(1/e),log(nq), log<‘1 ﬁl) B,v) (4.77)
gates and ancilla qubits. O
Theorem 4.11 (Initial state preparation (Methods, Theorem 3)). Let 8 >0, 8 # 1 and N € N. Define

|vo) = Zn—ﬁ/2|n (4.78)

Then |1g) can be prepared on a quantum computer to precision € > 0, with success probability at least (% —5)- The
required number of gates and ancilla qubits is bounded by

Poly(log(1/¢),log(N), log (125 ), 8, v), (4.79)

where v denotes the number of significant digits used to represent [3.

Proof. Set ¢ = |3 1og27r( 134) , and choose ng so that (ng — 1) is the smallest power of 2 larger than [3 + 2¢]. Let

ny be the smallest integer larger than N with n; — ng a power of 2. By Corollary 4.10, the extended state

nll

[bo) = Z n=P2n) (4.80)

can be constructed to precision § using

Poly(log(1/¢),log(n), log( 457 ). 8,v) = Poly(log(1/2), log(N), log(r257) 5, v) (4.81)

gates and ancilla qubits.
Let P denote the projector onto the subspace spanned by {|n) : 1 <n < N}, given by:

P = Z |n){(n|, (4.82)
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which can be implemented using an ancilla qubit, a comparator, and a measurement. After projection P, the system

ideally collapses to the desired state

1 N
[¥) = 5 > n ")
n=1

with ideal success possibility

N
-8
> 2 > >
"12—1 5 m—172(N—mng)+ng—172N-3" 2
n
n=1

since n~# is positive and decreasing for 8 > 0.

(4.83)

(4.84)

In practice, the extended state is prepared to precision ¢. Let [¢) and |%>e denote the ideal and actual extended

state. Then the ideal and actual post-selected states can be written as

Plio)e

v/ (GolePlto)e

P|w0>e
V <w0|eP|w0>e7

The precision in |%>e and the contractive property of P imply that

1/ (%olePltbo)eltbo) — v/ (dole PltoYeltbo)ll = [|P[o)e — Pltbodell < lltoo)e — [t0)ell < &-

Furthermore, using the triangle inequality

o) = o) =

|<¢0|6P|¢0>e - <%‘6P|%>e| < |<w0‘eP|{pv0>e - <{/Jv0|epl%>e| + |<¢0‘6P|w0>e - <1/J0|6P|%>e| < %

Since (¢o|ePlto)e > %, it follows that

[/ @olePlobe = V (Gl Pldo).

_ _[(WolePlYo)e ~ (WolePldo)el  _ v2e

ol PldoYe + (ol Pltbo)e 3

Using the triangle inequality and combining the Equations (4.86) and (4.88),

v/ (Wole Plo)e l[1b0) — [o)ll = ll/ (ole Pltbodeltho) — v/ {wole Pltbo)e o)

</ Wole Pltbo)elto) — v/ (Wole Pltbo)eltolll + 1/ (wole PlwoYelto) — V (olePlio)elwo) |
€ \/56

<=4+ —.
_6+ 3

Given (Y| P 1) > %, we have the stated bound

b} = o)l < 12626 <,

and success possibility satisfies

N =
Wl M

($olePlibo)e >

Thus, the ideal state |¢)g) can be prepared with precision € with at least the success probability as claimed.

Supplementary Note 5: Construction of the evolution operator

We now demonstrate the construction of the evolution operator.

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)
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Theorem 5.1 (Evolution operator construction (Methods, Theorem 4)). Define the time evolution operator

N
U(t)=e ! Hy="Y log(n)[n)(nl, (5.1)

n=1

where the evolution time t is specified with u significant digits. Then U(t) can be implemented to precision & using

Poly (log(IV), log|#]), log(1/€), u) (5.2)

gates and ancilla qubits.

Proof. Consider an input state of the form

N
> anln)|0), (5.3)

where |0) represents the ancilla register. Applying the logarithm oracle L produces

N
> anln)|log(n)). (5.4)

Multiplying log(n) by ¢ yields

N
> anln)|log(n)t). (5:5)
n=1

Applying controlled R, rotations results in

N
Z e 108 ) log (n)t). (5.6)
n=1

Uncomputing the multiplication and applying inverse logarithm oracle L' leaves

N ) N
> ape MR 0) = U ayln)|0). (5.7)
n=1 n=1

In practice, the logarithm log(n) is approximated by log(n) with error at most £/|t|. This ensures that

N .
Hzan (e—ilog(n)t _ e—ilog(n)t)|n>H S 2S11’l<§> < 5 (58)
n=1

Thus, the distance between the achieved and ideal U is bounded by £. By Lemma 3.2, the logarithm oracle and its
inverse can be realized using log” (V) log?(|t|/€) gates and log®(N)log(|t|/€) ancilla qubits. Multiplying log(n) by t
requires (log(|t|/€) + log(N)) u gate operations and (log(|t|/€) + log(N)) + w ancilla qubits. The controlled R, gates
can be implemented qubit by qubit with O(log(N) + log(|t|/€)) gates. Combining these bounds, the total resource
requirement for implementing U (¢) is

Poly(log(N), log([t]), log(1/£), u) (5.9)

gates and ancilla qubits, completing the proof. O

Supplementary Note 6: Order of |x(s)| for 0 < 5 < 1

Recall that

x(s) = 2°7°Lsin (%8) I(1 - s). (6.1)
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Thus,
Ix(s)| = 2°77~1|sin %IIF(I —3)|. (6.2)
We focus on s =+ it with 0 < 8 < 1,
sin(%2) = sin(% + %) = sin(”—f) cosh(%t) + icos(%) sinh (%), (6.3)
so we obtain
|sin(rs)| = y/sin?(%2) cosh®(ZL) + cos?(Z2) sinh?(Z) = 1/sinh?(Z) + sin?(Z2) = O(e™*1/2), (6.4)

Using Stirling’s formula in the sector |arg z| < 7 — ¢,

I(z) = vVam 2" 36 * (14 0(|2 1)), (6.5)
Taking absolute values gives
D(:)] = Var |27 2 e (14 0(2| ). (6.6)
Note that
|zz_%| = exp(Re(In(z)(z — %))) = exp(In(|z])(Re(z) — %) —arg(z)Im(2)) = |z|Re(z)_%e_ arg(2) Im(2) (6.7)

Now we set 2 =1—s = (1 — ) — it, then
ID(1 = 5)| = V2 |1 — /2 Petare=)e= =0 (1 1 O(Jt|71)). (6.8)
For t < 0, arg z = arctan (), so
exp(targ z) = exp(t arccot 2 ) = exp(t(§ — 25 + O([t|™*))) = exp(—x[t|/2) exp((1 — B))(1 + O(|t|2)).  (6.9)
For t > 0, arg(z) = — arctan (15, so
exp(targ(z)) = exp(—tarccot:52) = exp((—t(5 — 52+ O(|t|7%))) = exp(—nt/2) exp((1 — B))(1 + O(t~2)). (6.10)

In both cases,

exp(targ z) = exp(—lt]/2) exp((1 — £))(1 + O([t|~?)). (6.11)
Therefore,
IP(1— )| = V2 |1 — 8"/ exp(—lt]/2)(1 + O(I1] ). (6.12)
Combining terms,
x(s)| = ©(1)2°7"  exp(rt|/2) V2wl — s'/27F exp(—n|t] /2)(1 + O(Jt| 7)), (6.13)

The exponential terms cancel, leaving

x(s)] = ©(|1 = s/27%) = ©(Jt|/*~7). (6.14)

Supplementary Note 7: Upper bound of {'(s) for 0 < 8 < 1

We establish upper bounds for the Dirichlet eta function 7(s) and its derivative 7/(s), defined as

o0

n(s) = Z(—l)"“n_s, n/(s) =— Z(—l)”'|r1 Innn~?°. (7.1)

n=1 n=1
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Then 7(s) can be expressed as:

o0 [es} o0 2n
n(s)=> ()"t =3 (2n-1)"" = (2n) ") = > s/ v . (7.2)
n=1 n=1 n=1 2n—1
Taking the absolute value, we obtain
oo 2n 0 |S|
ns) < |s v P dr < |s v P dy = —. .
P=ld P=td 7.3
—1J/2n—1 1 B
Similarly, for the derivative 7/(s), we have
e} oo oo 2n
nl(s) =— Z(—l)"+1(lnn)n_3 = Z(ln (2n)2n)"* —=In(2n—-1)(2n—1)"7%) = Z/ (—sv ™ tnv 4+ v Hdv.
n=1 n=1 n=1v2n-1
(7.4)
Hence,
, oo oo o0 oo 1
n(s)] <]|s v Invdy + v dv =|s v " lnvdy + [ V:ﬂJr—. 7.5
"1nvd d “llnvd 51 gy = | E
1 1 1 1 pz B
Since the zeta function is related to n(s) by
1 (=1t 1
O e e ] (7.6)
Its derivative ('(s) is:
/ d, 1 (D ()1 —27%) — 21 In2p(s)
C (S) - %(1 _9l-s ; ns ) - (1 — 2175)2 . (77)
Using the previously established bounds
5] / s 1
S S a0 S S — T o
()l < 7 M)l =3+ 5
we obtain the bound for ¢'(s):
' 5] 27 2(]s|8 + 1) 5] ls|B+1 “1 g1
< = = Poly(Jt|,|1 — .
|C (8)| = |21_ﬁ_1|5+ ‘21_6_”262 O(ﬁu_ﬁ‘ |1_B|262) OY(| |7| B‘ aﬁ )7 (78)

given that [2!7% — 1| > In(2)|1 — B| for all 0 < 8 < 1.
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