
Supplementary information for "The Riemann Hypothesis Emerges in Dynamical
Quantum Phase Transitions"

Shijie Wei,1, ∗ Yue Zhai,2, 3, † Quanfeng Lu,4, † Wentao Yang,4 Pan Gao,1 Chao
Wei,2, 3 Junda Song,2, 3 Franco Nori,5, 6 Tao Xin,2, ‡ and Guilu Long4, 7, 1, §

1Beijing Academy of Quantum Information Sciences, Beijing 100193, China
2International Quantum Academy, Futian District, Shenzhen, Guangdong 518048, China

3Shenzhen Institute for Quantum Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China

4State Key Laboratory of Low-Dimensional Quantum Physics and
Department of Physics, Tsinghua University, Beijing 100084, China

5Center for Quantum Computing, RIKEN, Wakoshi, Saitama, 351-0198, Japan
6Quantum Research Institute, The University of Michigan, Ann Arbor, 48109-1040, MI, USA

7Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, People’s Republic of China

Contents

Supplementary Note 1. Asymptotic behavior of SN (s) S2

Supplementary Note 2. Asymptotic behavior of Z(β,H0) S3

Supplementary Note 3. Construction of the preliminary oracles S4

Supplementary Note 4. Construction of the initial state S6

Supplementary Note 5. Construction of the evolution operator S16

Supplementary Note 6. Order of |χ(s)| for 0 < β < 1 S17

Supplementary Note 7. Upper bound of ζ ′(s) for 0 < β < 1 S18

References S19

Notation

For clarity, throughout this Supplementary Information, we use ‘log’ to denote the base-2 logarithm, and ‘ln’ to
denote the natural logarithm (base e). All variables s are assumed to satisfy Re(s) > 0 and Re(s) ̸= 1, ensuring the
applicability of the alternating Dirichlet series. β denote the real part of s and t denote the imaginary part of s.

The Big-O notation O(·) represents the worst-case upper bound, while the Big-Theta notation Θ(·) denotes the
exact asymptotic behavior. The notation Poly(·) signifies that the growth follows a polynomial function of the input.

The symbol ∥ · ∥ denotes the Euclidean norm on state vectors. The distance between two pure quantum states |ψa⟩
and |ψb⟩ is defined as d(|ψa⟩, |ψb⟩) = min

θ∈R
∥|ψa⟩ − eiθ|ψb⟩∥ =

»
2(1− |⟨ψa|ψb⟩|), which satisfies the triangle inequality.

The distance between two unitary operators is defined as D(U1, U2) = max
|ψ⟩

d(U1|ψ⟩, U2|ψ⟩), which is the worst-case

distance over all input states |ψ⟩. We say that a quantum state (or unitary operator) is prepared to precision κ if its
distance from the corresponding ideal target state (or ideal unitary) is at most κ.

∗ weisj@baqis.ac.cn; These authors contributed equally to this work.
† These authors contributed equally to this work.
‡ xintao@iqasz.cn
§ gllong@tsinghua.edu.cn

mailto:weisj@baqis.ac.cn
mailto:xintao@iqasz.cn
mailto:gllong@tsinghua.edu.cn

S2

Supplementary Note 1: Asymptotic behavior of SN (s)

The N -term partial sum of the alternating Dirichlet series is

SN (s) =

N∑
n=1

(−1)n−1

ns
. (1.1)

Case 1. At the nontrivial zeros of the zeta function, we have SN (s) = −RN (s), where

RN (s) =

∞∑
n=N+1

(−1)n−1

ns
. (1.2)

Each term has the following integral representation,

1

ns
=

1

Γ(s)

∫ ∞

0

τs−1e−nτdτ, (1.3)

yielding

RN (s) =

∞∑
n=N+1

(−1)n−1

ns
=

1

Γ(s)

∫ ∞

0

τs−1
∞∑

n=N+1

(−1)n−1e−nτdτ =
(−1)N

Γ(s)

∫ ∞

0

τs−1e−(N+1)τ

1 + e−τ
dτ. (1.4)

Using the identity

1

1 + e−τ
=

1

2
+

1

2
tanh

(τ
2

)
, (1.5)

we obtain

RN (s) =
(−1)N

Γ(s)

[1
2

∫ ∞

0

τs−1e−(N+1)τdτ +
1

2

∫ ∞

0

τs−1e−(N+1)τ tanh
(τ
2

)
dτ
]
. (1.6)

Let us define

M :=
1

2

∫ ∞

0

τs−1e−(N+1)τdτ =
1

2
Γ(s)(N + 1)−s, J :=

1

2

∫ ∞

0

τs−1e−(N+1)τ tanh
(τ
2

)
dτ. (1.7)

This leads to

RN (s) =
(−1)N

Γ(s)

(
M + J

)
= (−1)N

(1

2(N + 1)s
+

J

Γ(s)

)
, (1.8)

We now show that for sufficiently large N ,

|J | ≤ 1

4
Γ(s)(N + 1)−β , s = β + it. (1.9)

Fix A > 0, which depends on s but not on N , and split the integral for J at τ = A/(N + 1):

J =
1

2

(∫ A/(N+1)

0

τs−1e−(N+1)τ tanh
(τ
2

)
dτ +

∫ ∞

A/(N+1)

τs−1e−(N+1)τ tanh
(τ
2

)
dτ

)
:=

1

2
(I1 + I2). (1.10)

For I1, we apply the inequality | tanh(τ/2)| ≤ |τ/2|, so

|I1| ≤
∫ A/(N+1)

0

τβ−1e−(N+1)τ τ

2
dτ =

1

2
(N + 1)−(β+1)

∫ A

0

uβe−udu = C1(β,A)(N + 1)−(β+1). (1.11)

Here, C1(β,A) :=
1
2

∫ A
0
uβe−udu is a constant depending on A and β. For I2, we use the trivial bound | tanh(τ/2)| ≤ 1,

so

|I2| ≤
∫ ∞

A/(N+1)

τβ−1e−(N+1)τdτ = (N + 1)−β
∫ ∞

A

uβ−1e−udu = C2(β,A)(N + 1)−β . (1.12)

S3

Here C2(β,A) :=
∫∞
A
uβ−1e−udu is also a constant that depends on A and β.

Since Γ(s) is non-vanishing and C2(β,A) → 0 as A→ ∞, we can choose A large enough so that

C2(β,A) ≤
1

4
|Γ(s)|. (1.13)

Thus,

|I2| ≤
1

4
|Γ(s)|(N + 1)−β . (1.14)

Combining the two contributions gives

|J | ≤ 1

2

(
|I1|+ |I2|

)
≤ 1

2

(
C1(β,A)(N + 1)−(β+1) +

1

4
|Γ(s)|(N + 1)−β

)
. (1.15)

Consequently, for all N ≥ N0 :=
⌈
4C1(β,A)/|Γ(s)|

⌉
,

|J | ≤ 1

4
|Γ(s)|(N + 1)−β ,

∣∣∣ J

Γ(s)

∣∣∣ ≤ 1

4
(N + 1)−β . (1.16)

Substituting this bound into Equation (1.8) gives for N ≥ N0,

1

4
(N + 1)−β ≤ |RN (s)| ≤ 3

4
(N + 1)−β . (1.17)

Therefore,

lim
N→∞

− 1

logN
ln |SN (s)| = lim

N→∞
− 1

logN
ln |RN (s)| = β ln 2. (1.18)

Case 2. For s with ζ(s) ̸= 0, the partial sums converge, and in particular

lim
N→∞

SN (s) = (1− 2 1−s) ζ(s) ̸= 0. (1.19)

It follows that

− lim
N→∞

1

logN
ln |SN (s)| = 0. (1.20)

Thus, we obtain the final result:

− lim
N→∞

1

logN
ln |SN (s)| =

®
β ln 2, if ζ(s) = 0,

0, if ζ(s) ̸= 0.
(1.21)

Supplementary Note 2: Asymptotic behavior of Z(β,H0)

The partition function can be written as

Z(β,H0) =

N∑
n=1

n−β . (2.1)

Case 1. For β > 1, Z(β,H0) converges as

lim
N→∞

Z(β,H0) = ζ(β). (2.2)

Thus,

lim
N→∞

− 1

logN
lnZ(β,H0) = 0. (2.3)

S4

Case 2. For 0 < β < 1, the series diverges. Specifically,∫ N+1

1

x−β dx ≤
N∑
n=1

n−β ≤ 1 +

∫ N

1

x−β dx, (2.4)

which simplifies to

(N + 1)1−β − 1

1− β
≤ Z(β,H0) ≤ 1 +

N1−β − 1

1− β
, (2.5)

yielding

− lim
N→∞

1

logN
lnZ(β,H0) = (β − 1) ln 2. (2.6)

Thus,

− lim
N→∞

1

logN
lnZ(β,H0) =

®
(β − 1) ln 2, 0 < β < 1,

0, β > 1.
(2.7)

Supplementary Note 3: Construction of the preliminary oracles

This section details the construction of polynomial and logarithm oracles, which serve as foundational components
for subsequent quantum state preparation and time evolution operators in our quantum algorithms.

Lemma 3.1 (Polynomial oracle (Methods, Lemma 1)). Let O(f) denote an oracle implementing the transformation∑
x

αx|x⟩|0⟩ 7→
∑
x

αx|x⟩|f(x)⟩, (3.1)

where f(x) is a polynomial of degree at most D. Suppose the coefficients of f and the input x are specified to a1 and
a2 significant digits, respectively. The output is encoded with r1 integer qubits and r2 fractional qubits. Then O(f)
can be implemented using

O
(
D2a22 +D2a1a2 +D(r1 + r2)

)
gates, and (2Da2 + a1) ancilla qubits.

Proof. Write the polynomial as f(n) =
∑D
d=0 cdn

d. Evaluation proceeds through sequential construction of the
monomials xd, multiplication by coefficients cd, and accumulation of the results.

Step 1: Computation of Monomials. Multiplying an m1-qubit register by an m2-qubit register requires
O(m1m2) gates and O(m1 + m2) qubits using quantum schoolbook multiplication1. To compute xd+1 from xd, a
da2-qubit register (storing xd) is multiplied by an a2-qubit register (storing x). The total gate cost for generating
monomials up to degree D is

2

D−1∑
d=1

a2 · da2 = O(D2a22), (3.2)

where the factor 2 arises from uncomputing intermediate results and resetting ancilla qubits.
Step 2: Multiplication by coefficients. Multiplying a degree-d monomial (which requires da2 qubits) by cd

costs O(da1a2) gates. Summing over all degrees gives

2

D∑
d=1

da1a2 = O(D2a1a2), (3.3)

again with the factor 2 from uncomputation.
Step 3: Accumulation of output. The results are accumulated into an output register of size r1 + r2. Each of

the D+1 additions costs O(r1+ r2) gates, yielding a total gate cost of O(D(r1+ r2)). Adding all contributions yields
a total gate complexity

O
(
D2a22 +D2a1a2 +D(r1 + r2)

)
. (3.4)

During computation, at most Da2 qubits are used for monomial storage and (Da2 + a1) for intermediate products,
giving a total ancilla requirement of (2Da2 + a1).

S5

Lemma 3.2 (Logarithm oracle (Methods, Lemma 2)). Let L denote an oracle implementing the transformation

N∑
n=1

αn|n⟩|0⟩ 7→
N∑
n=1

αn|n⟩|‡log(n)⟩, (3.5)

where ‡log(n) approximates log(n) to within error η. Then L can be implemented using O((logN)3 log2(1/η)) gates
and O((logN)2 log(1/η)) ancilla qubits.

Proof. We proceed constructively.
Step 1: Input Partitioning. Define k1 = ⌈log

(
N+1
3

)
⌉. For 3 ≤ n < 3 · 2k1 , partition the integers into k1 subsets,

defined as

Pν : 3 · 2ν−1 ≤ nν < 3 · 2ν , 1 ≤ ν ≤ k1. (3.6)

Each 3 ≤ n ≤ N lies in exactly one partition Pν . For nν ∈ Pν , define

d =
nν − 2ν+1

2ν+1
, −1

4
≤ d <

1

2
. (3.7)

This allows the logarithm to be expressed as

log(nν) = log
(
2ν+1

)
+ log(1 + d). (3.8)

Step 2: Taylor expansion of log(1 + d). Using the Taylor series expansion for log(1 + d), we have:

log(1 + d) =
1

ln 2

∞∑
j=1

(−1)j+1

j
dj . (3.9)

The remainder after l1 terms satisfies∣∣∣∣∣
∞∑

j=l1+1

(−1)j+1

j
dj

∣∣∣∣∣ ≤
∞∑

j=l1+1

1

j

(1
2

)j
≤ 1

2l1
. (3.10)

Hence, truncating after l1 = ⌈log(1/η)⌉+ 2 terms yields an approximation error of less than η
2 . Coefficients stored to

⌈log(2/η)⌉ fractional bits introduce an additional rounding error bounded by

η

2
(1 +

1

2
+ (

1

2
)2 + · · ·) ≤ η

2
, (3.11)

giving total error of less than η. The resulting approximation·�log(nν) = ν + 1 +
1

ln(2)

l1∑
j=1

(−1)j+1

j
dj (3.12)

is thus approximated within error η.
The partition index ν is determined using multi-controlled operations that compare n with partition bounds. Each

such comparison uses at most O(k1) Toffoli gates and O(k1) ancilla qubits. A flag register composing of at most
O(k1) qubits marks the unique partition Pν containing n. This flag controls addition of the corresponding polynomial
output to the output register. Exactly one flag is set for each input across 3 ≤ n ≤ N .

For each ν, Equation (3.12) is a degree-l1 polynomial in d, with coefficients specified to ⌈log(2/η)⌉ qubits and input
d to (k1 + 2) significant digits. The output requires (⌈log k1⌉ + 2) integer qubits and ⌈log(1/η)⌉ fractional qubits.
Applying Lemma 3.1, evaluating this polynomial within a partition requires

O(l21k
2
1 + l21k1 log(2/η) + l1(log(k1) + log(1/η))) = O(k21 log

2(1/η)) (3.13)

gates, and

2l1k1 + log(1/η) = O(k1 log(1/η)) (3.14)

ancilla qubits. Summing over all k1 partitions gives total resource requirements:

O(k31 log
2(1/η)) = O((logN)3 log2(1/η)) gates, O(k21 log(1/η)) = O((logN)2 log(1/η)) ancilla qubits. (3.15)

The special cases n = 1, 2 can be handled separately at negligible cost.

S6

Supplementary Note 4: Construction of the initial state

This section details the construction of the initial state, which is outlined as follows:
Our first key result is provided in Theorem 4.2 (Methods, Theorem 1), which describes the preparation of the

truncated state |ψ0⟩1. Central to this construction is the angle-preparation oracle (Methods, Theorem 2) that computes
the required rotation angles. Its action is defined in Definition 4.3 and its implementation is outlined in Theorem 4.4.
A central subroutine of this oracle is the evaluation of a zeta function related partial sum (Lemma 4.7), built upon
Proposition 4.5 with detailed calculations given in Propositions 4.8 and 4.9.

Our second key result, Theorem 4.11 (Methods, Theorem 3), presents the construction of our initial state |ψ0⟩.
Starting with the truncated state |ψ0⟩1 prepared in Theorem 4.2, we extend it via the Linear Combination of Unitaries
(LCU) method to combine it with |ψ0⟩2 (Corollary 4.10); a final post-selection removes the high-index component
|ψ0⟩3 , yielding the desired initial state.

Definition 4.1. The controlled-rotation gate CR implements the transformation∑
θ

αθ|θ⟩|0⟩ 7→
∑
θ

αθ|θ⟩
(
cos θ |0⟩+ sin θ |1⟩

)
. (4.1)

It can be implemented using a sequence of controlled-Rx rotations, each conditioned on a qubit of the register encoding
θ, followed by a phase gate on the target qubit.

Theorem 4.2 (Truncated state preparation (Methods, Theorem 1)). Let β > 0, β ̸= 1, and let n0, n1 ∈ N with
n1 − n0 = 2k for some integer k > 0. Define

|ψ0⟩1 =
1

C1

n1−1∑
n=n0

n−β/2 |n− n0⟩, C1 =

Ã
n1−1∑
n=n0

n−β . (4.2)

Then |ψ0⟩1 can be prepared on a standard gate-based quantum computer to precision ε > 0, using a number of gates
and ancilla qubits bounded by

Poly
Ä
log(1/ε), log(n1), log

Ä
1

|1−β|

ä
, β, v

ä
, (4.3)

where v denotes the number of significant digits used to represent β. The parameters are required to satisfy

c =

⌈
1

2
log2π

(8
ε

)⌉
, n0 > ⌈β + 2c⌉. (4.4)

Proof sketch. We adapt Grover’s recursive amplitude-splitting method2, replacing integration with partial summation.
The 2k computational basis states are encoded on k qubits initialized in |0⟩⊗k. At iteration step m (0 ≤ m ≤ k − 1),
each bit string w ∈ {0, 1}m is split into two branches w0 and w1. Define

cw =
1

C

Ã
2k−m−1∑
i=0

(2k−mw + i+ n0)−β . (4.5)

Normalization is preserved, as

cw0 =
1

C

Ã
2k−m−1−1∑

i=0

(
2k−mw + i+ n0

)−β
, cw1 =

1

C

Ã
2k−m−1−1∑

i=0

(
2k−m(w + 1) + i+ n0

)−β
, (4.6)

satisfy c2w0 + c2w1 = c2w. For each w, we compute a rotation angle θw,m such that the amplitude split cw 7→ (cw0
, cw1

)
can be implemented by a CR gate acting on the next qubit. All rotations corresponding to strings of the same length

S7

m are applied in parallel. The transformation at step m is written as∑
w∈{0,1}m

cw |w⟩ |0⟩⊗(k−m) |0⟩

Um−−−→
∑
w

cw |w⟩ |0⟩⊗(k−m) |θw,m⟩

CR−−→
∑
w

cw |w⟩
(
cos θw,m |0⟩+ sin θw,m |1⟩

)
|0⟩⊗(k−m−1) |θw,m⟩

U†
m−−−→

∑
w

(
cw0 |w0⟩+ cw1 |w1⟩

)
|0⟩⊗(k−m−1) |0⟩. (4.7)

Here, Um denote an oracle that computes θw,m into an angle register, which is uncomputed after applying CR gate.
Iterating the transformation in Equation (4.7) for m = 0, 1, . . . , k − 1 yields the desired state

|ψ0⟩ =
1

C

n1−1∑
n=n0

n−β/2|n− n0⟩. (4.8)

Thus, the central task reduces to constructing Um, defined as follows.

Definition 4.3 (Angle–preparation oracle Um). The gate Um implements the transformation∑
w∈{0,1}m

αw|w⟩|0⟩ 7→
∑

w∈{0,1}m

αw|w⟩|θw,m⟩, (4.9)

where the rotation angle θw,m satisfies

tan2(θw,m) =
c2w1

c2w0

=

2k−m−1−1∑
i=0

(2k−m−1(2w + 1) + i+ n0)
−β

2k−m−1−1∑
i=0

(2k−m−1(2w) + i+ n0)−β
=
S(2k−m−1(2w + 1) + n0, 2

k−m−1(2w + 2)− 1 + n0, β)

S(2k−m−1(2w) + n0, 2k−m−1(2w + 1)− 1 + n0, β)
,

(4.10)
with

S(a, b, β) =

b∑
n=a

n−β . (4.11)

Equivalently,

θw,m =arctan
(S(2k−m−1(2w + 1) + n0, 2k−m−1(2w + 2)− 1 + n0, β)

S(2k−m−1(2w) + n0, 2k−m−1(2w + 1)− 1 + n0, β)

)
=arcsin

(S(2k−m−1(2w + 1) + n0, 2k−m−1(2w + 2)− 1 + n0, β)

S(2k−m−1(2w) + n0, 2k−m−1(2w + 2)− 1 + n0, β)

)
. (4.12)

Notation. In practice, Um computes an approximation θ̃w,m, which results in an error in the state preparation. The
deviation between the ideal and approximate states at step m is bounded as follows:∥∥∥∥∥∑

w

cw|w⟩ (cos(θw,m)|0⟩+ sin(θw,m)|1⟩) |0⟩⊗(k−m−1)|0⟩ −
∑
w

cw|w⟩
Ä
cos
Ä
θ̃w,m

ä
|0⟩+ sin

Ä
θ̃w,m

ä
|1⟩
ä
|0⟩⊗(k−m−1)|0⟩

∥∥∥∥∥
=

∥∥∥∥∥∑
w

cw|w⟩
î
(cos

Ä
θ̃w,m

ä
− cos(θw,m))|0⟩+ (sin

Ä
θ̃w,m

ä
− sin(θw,m))|1⟩

ó∥∥∥∥∥
=

Ã∑
w

c2w · 4 sin2
Ç
θ̃w,m − θw,m

2

å
≤max

w
|θ̃w,m − θw,m|. (4.13)

S8

To achieve overall precision ε, each θw,m must be computed with an error of at most ε/k over all m. The CR gate is
decomposed into controlled-Rx rotations conditioned on the qubits encoding θw,m, followed by a phase gate, requiring
O(log(k/ε)) gates and no ancilla qubits. Therefore, the dominant resource cost comes from implementing Um to an
accuracy of ε/k.

Theorem 4.4 (Implementation of oracle Um (Methods, Theorem 2)). The gate Um, as defined in Definition 4.3, can
be implemented such that each rotation angle is estimated to within error ε/k, using a number of gates and ancilla
qubits bounded by

Poly
(
log(1/ε), log(n1), log

1
|1−β| , β, v

)
, (4.14)

where v denotes the number of significant digits used to represent β.

Proof. The angle θw,m, represented with log(k/ε) qubits, is determined using a bisection procedure applied iteratively
on each qubit. For a trial angle θg, we compare

sin2(θg)S(2
k−m−12w + n0, 2

k−m−1(2w + 2)− 1 + n0, β), (4.15)

with S(2k−m−1(2w + 1) + n0, 2
k−m−1(2w + 2)− 1 + n0, β). (4.16)

This comparison decides whether θw,m > θg. After log(k/ε) comparison, θw,m is computed to within error ε/k. Define

d = sin2(θg)S(2
k−m−1·2w+n0, 2k−m−1(2w+2)−1+n0, β)−S(2k−m−1(2w+1)+n0, 2

k−m−1(2w+2)−1+n0, β). (4.17)

Since S(a, b, β) ≥ n−β1 and relevant angles θ satisfy θ + ε
k <

π
4 , consider two angles differing by at least ε/k. The

difference in sin2 θ:

sin2(θ + ε
k)− sin2(θ) = (sin

(
θ + ε

k

)
− sin(θ))(sin

(
θ + ε

k

)
+ sin(θ)) >

√
2ε

2k sin
(
ε
k

)
> ε2

2k2 . (4.18)

Thus, angles differing by ε/k yield a difference in d of at least ε2

2k2n
−β
1 . To distinguish such angles correctly, the error

in d must be less than ε2

2k2n
−β
1 . Since S(a, b, β) ≤ n1, requirements:

(1) computing S to precision ε2n−β
1

12k2 , (2) sin2 θg to precision ε2n−1−β
1

12k2 ,

ensures the total error meets this requirement.
Step 1: Calculation of sin2(θ). Using the expansion

sin2(θ) =
1− cos(2θ)

2
=

∞∑
n=1

dnθ
2n, dn =

(−1)n+122n

2(2n)!
, (4.19)

we approximate sin2(θ) for θ < π
4 . Truncating after l2 > 5 terms, the error is:

(π2)
2l2+2

2(2l2 + 2)!
<

(π2)
2l2+2

(2l2+2
e)2l2+2

= (
eπ

4l2 + 4
)2l2+2 < (

1

2
)l2 , (4.20)

using Stirling’s approximation. To achieve precision ε2n−1−β
1

24k2 , we choose:

l2 = 2 log
(k
ε

)
+ (1 + β) log(n1) + 5. (4.21)

Storing coefficients dn to precision ε2n−1−β
1

96k2 ensures that the rounding error is bounded by:

ε2n−1−β
1

96k2
(
π

4
+ (

π

4
)2 + · · ·) < ε2n−1−β

1

24k2
. (4.22)

Thus, the total truncation and rounding error is within ε2n−1−β
1

12k2 , satisfying the requirement (1).

S9

The expression approximating sin2(θ) is a polynomial of degree 2l2. The parameter θ is encoded using log
(
k
ε

)
qubits, the coefficients require log

(
ε2n−1−β

1

96k2

)
qubits, and the output requires ε2n−1−β

1

12k2 qubits. By Lemma 3.1, the gate
complexity is

4 log2(
k

ε
)l22 + 4 log

Å
k

ε

ã
log

Ç
96k2n1+β1

ε2

å
l22 + 2l2 log

Ç
12k2n1+β1

ε2

å
= Poly(log(n1), log(1/ε), β), (4.23)

and the ancilla qubit count is

4l2 log

Å
k

ε

ã
+ log

Ç
96k2n1+β1

ε2

å
= Poly(log(n1), log(1/ε), β). (4.24)

Step 2: Estimation of S. We will prove Lemma 4.7, which states that the partial sum S(a, b, β) can be computed
to precision ϵ with:

Poly

Å
log(1/ϵ), log n1, log

Å
1

|1− β|

ã
, v

ã
(4.25)

gates and ancilla qubits, where v denotes the significant digits of β. To satisfy requirement (2), we set ϵ = ε2n−β
1

12k2 and
the complexity becomes:

Poly

Ç
log

Ç
12k2nβ1
ε2

å
, log(n1), log

Å
1

|1− β|

ã
, v

å
= Poly

Å
log(1/ε), log(n1), log

Å
1

|1− β|

ã
, β, v

ã
.

Conclusively, we give a total count of required resourced for constructing Um. The bisection procedure requires
⌈log(k/ε)⌉ comparisons to compute θw,m to precision ε/k. Each comparison involves two evaluations of S (for the
partial sums in (4.15) and (4.16)) and one evaluation of sin2 θg. Thus, the total resource cost for Um is multiplied
by a factor of O(log(k/ε)), which is absorbed into the overall polynomial complexity. Combining the resource costs
from Steps 1 and 2 (concluded in Equation (4.23),(4.24),(4.25)), the total gate and ancilla qubit complexity for
implementing the oracle Um is bounded by

Poly
(
log(1/ε), log(n1), log

1
|1−β| , β, v

)
, (4.26)

as stated. As a preliminary step of Lemma 4.7, an approximation of S is introduced in Proposition 4.5.

Proposition 4.5 (Euler–Maclaurin approximation of S). For β > 0, β ̸= 1, and integers a ≤ b, there exists an
approximation „�S(a, b, β) to the partial sum S(a, b, β) =

∑b
n=a n

−β, such that∣∣∣S(a, b, β)−„�S(a, b, β)
∣∣∣ < ϵ

2
, (4.27)

where „�S(a, b, β) =
1

1− β
(b1−β − a1−β) +

a−β + b−β

2
−

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
(b−β−2r+1 − a−β−2r+1), (4.28)

with l3 = ⌈ 1
2 log2π

8
ϵ ⌉, provided a > ⌈β + 2m⌉.

Proof. Recall the Euler–Maclaurin summation formula:

b∑
k=a

f(k) =

∫ b

a

f(x) dx+
f(a) + f(b)

2
+

l3∑
r=1

B2r

(2r)!

(
f (2r−1)(b)− f (2r−1)(a)

)
+Rl3 , (4.29)

where B2r are Bernoulli Numbers, and the remainder is given by

Rl3 =
(−1)l3+1

(2l3)!

∫ b

a

B2l3(x− ⌊x⌋) f (2l3)(x) dx. (4.30)

S10

Setting f(x) = x−β , we have

S(a, b, β) =

∫ b

a

x−β dx+
a−β + b−β

2
+

l3∑
r=1

B2r

(2r)!
(−1)2r−1

(2r−2∏
i=0

(β + i)
)
(b−β−2r+1 − a−β−2r+1) +Rl3

=
1

1− β
(b1−β − a1−β) +

a−β + b−β

2
−

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
(b−β−2r+1 − a−β−2r+1) +Rl3 , (4.31)

in which the reminder term is given by

Rl3 =
(−1)l3+1

(2l3)!

∫ b

a

B2l3(x− ⌊x⌋) Γ(β + 2l3)

Γ(β)
x−β−2l3 dx. (4.32)

Using the bound on Bernoulli numbers:

2(2l3)!

(2π)2l3
1

1− 2−2l3
< |B2l3 | =

2(2l3)!

(2π)2l3
ζ(2l3) <

2(2l3)!

(2π)2l3
1

1− 21−2l3
, (4.33)

we obtain

|Rl3 | ≤
|B2l3 |
(2l3)!

β(β + 1) · · · (β + 2l3 − 1)

∫ b

a

x−β−2l3 dx

=

∣∣∣∣β(β + 1) · · · (β + 2l3 − 1)B2l3(a
−β−2l3+1 − b−β−2l3+1)

(2l3)!(β + 2l3 − 1)

∣∣∣∣
<
β(β + 1) · · · (β + 2l3 − 2)2a−β−2l3+1

(2π)2l3(1− 21−2l3)

<
4

(2π)2l3
β(β + 1) · · · (β + 2l3 − 2)

aβ+2l3−1
. (4.34)

Thus, choosing l3 = ⌈ 1
2 log2π

8
ϵ ⌉ guarantees |Rl3 | < ϵ

2 , provided a > ⌈β + 2l3⌉.
Corollary 4.6. The Bernoulli numbers satisfy B0 = 1, and for all q ≥ 1,

q∑
p=0

Ç
q + 1

p

å
Bp = 0. (4.35)

The Bernoulli numbers can be computed efficiently using the Akiyama–Tanigawa algorithm3, with a complexity O(p2)
for computing Bp.

Lemma 4.7 (Ÿ�S(a, b, β) calculation oracle). Let S(β) be an oracle implementing∑
n0≤a≤b≤n1−1

αab|a⟩|b⟩|0⟩ 7→
∑

n0≤a≤b≤n1−1

αab|a⟩|b⟩|Ÿ�S(a, b, β)⟩, (4.36)

where Ÿ�S(a, b, β) is an ϵ
2 -approximation of „�S(a, b, β) as defined in Equation (4.28), and therefore an ϵ-approximation

of S(a, b, β). Then S(β) can be constructed using

Poly(log(1/ϵ), log(n1), log
Ä

1
|1−β|

ä
, v) (4.37)

gates and ancilla qubits, where l3 = ⌈ 1
2 log2π

8
ϵ ⌉, n0 > β + 2l3, and v is the number of significant digits of β.

Proof sketch. We compute „�S(a, b, β), as defined in Equation (4.28), with an error of at most ϵ/2 by evaluating its
exponential terms and finite Bernoulli-series sums:„�S(a, b, β) =b−β−2l3+1(

1

1− β
b2l3 +

1

2
b2l3−1 −

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
b2l3−2r)

−a−β−2l3+1(
1

1− β
a2l3 − 1

2
a2l3−1 −

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
a2l3−2r)

=b−β−2l3+1 Pb(β)− a−β−2l3+1 Pa(β), (4.38)

S11

where

Pb(β) =
1

1− β
b2l3 +

1

2
b2l3−1 −

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
b2l3−2r,

Pa(β) =
1

1− β
a2l3 − 1

2
a2l3−1 −

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
a2l3−2r.

Define the r-th term in the sum of Pb(β):

Tb(r) =
B2r Γ(β + 2r − 1)

(2r)! Γ(β)
b2l3−2r.

Then the ratio of consecutive terms is∣∣∣∣Tb(r + 1)

Tb(r)

∣∣∣∣ = ∣∣∣∣B2r+2

B2r

∣∣∣∣ (β + 2r − 1)(β + 2r)

(2r + 2)(2r + 1)

1

b2
.

Using the bounds of Bernoulli number

2(2r)!

(2π)2r
1

1− 2−2r
< |B2r| =

2(2r)!

(2π)2r
ζ(2r) <

2(2r)!

(2π)2r
1

1− 21−2r
, (4.39)

for b > β + 2l3, we obtain: ∣∣∣∣Tb(r + 1)

Tb(r)

∣∣∣∣ < (β + 2r − 1)(β + 2r)
(
1− 2−2r

)
(2π)2b2

(
1− 21−2(r+1)

) <
1

2π2
.

Thus the Bernoulli series decreases geometrically,∣∣∣∣∣
l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)!Γ(β)
b2l3−2r

∣∣∣∣∣ <
∣∣∣∣∣ B2βb

2l3−2

2
(
1− 1

2π2

) ∣∣∣∣∣ < βb2l3−2

6
<
b2l3−1

2
. (4.40)

By combining the fact that b2l3−1

2 < b2l3

2|1−β| , we obtain

|Pb(β)| <
2b2l3

|1− β|
, (4.41)

and similarly,

|Pa(β)| <
2a2l3

|1− β|
. (4.42)

Hence, to achieve overall precision ϵ
2 , it suffices to:

1. Compute a−β−2l3+1 and b−β−2l3+1 to precisions:

ϵ|1− β|
16a2l3

and
ϵ|1− β|
16b2l3

, (4.43)

respectively. We will prove in Proposition 4.8 that these require at most

Poly(log(n1), log
Ä

1
|1−β|

ä
, log(1/ϵ), v) (4.44)

gates and ancilla qubits.

2. Compute the polynomial–Bernoulli sums Pa(β) and Pb(β) to precision ϵ
8 , since a−β−2l3+1 and b−β−2l3+1 are

both smaller than 1. We will prove in Proposition 4.9 that these require:

Poly(log(1/ϵ), log(n1), log
Ä

1
|1−β|

ä
, v) (4.45)

gates and ancilla qubits.

S12

3. Perform final multiplications and additions to combine terms. As the exponential terms and Bernoulli-series
sums require at most

log

Ç
16n2l31

|1− β|ϵ

å
, log

Ç
2n2l31

|1− β|

å
+ log

Å
8

ϵ

ã
significant qubits, respectively.

Conclusively, the total number of required gates and ancilla qubits can be bounded by

Poly(log(1/ϵ), log(n1), log
Ä

1
|1−β|

ä
, v), (4.46)

given that l3 = ⌈ 1
2 log2π

8
ϵ ⌉. Hence the Lemma follows. Next, we detail Proposition 4.8 and Proposition 4.9.

Proposition 4.8. The oracles

n1−1∑
b=n0

αb|b⟩|0⟩ 7→
n1−1∑
b=n0

αb|b⟩|„�b−β−2l3+1⟩ and

n1−1∑
a=n0

αa|a⟩|0⟩ 7→
n1−1∑
a=n0

αa|a⟩|‰�a−β−2l3+1⟩ (4.47)

can be constructed with error bounds

|„�b−β−2l3+1 − b−β−2l3+1| < ϵ|1− β|
16b2l3

, |‰�a−β−2l3+1 − a−β−2l3+1| < ϵ|1− β|
16a2l3

, (4.48)

using

Poly(log(n1), log
Ä

1
|1−β|

ä
, log(1/ϵ), v) (4.49)

gates and ancilla qubits, where n0 > β + 2l3, and v denotes the number of significant digits of β.

Proof. We focus on constructing the oracle for „�b−β−2l3+1; the case for a is analogous. Writing b−β−2l3+1 =
2−(β+2l3−1) log b , the computation proceeds by approximating log b, multiplying by −(β + 2l3 − 1), and exponen-
tiating. We require the approximation errors from the logarithm and from the exponentiation to be both bounded by
ϵ|1−β|
32b2l3

, so that the total error is bounded by ϵ|1−β|
16b2l3

.

Step 1: Approximating log(b). If (β + 2l3 − 1)|fllog(b)− log(b)| < 1
2 , then∣∣2−(β+2l3−1) log(b) − 2−(β+2l3−1)‡log(b)∣∣

= 2−(β+2l3−1) log(b)
∣∣∣1− 2−(β+2l3−1)(‡log(b)−log(b))

∣∣∣
< b−β−2l3+1(β + 2l3 − 1) |fllog(b)− log(b)|, (4.50)

since |1− 2x| ≤ |x| for |x| ≤ 1
2 . To bound this error by ϵ|1−β|

32b2l3
, it suffices to compute log(b) to precision

ϵ|1− β|
32b2l3

bβ+2l3−1

(β + 2l3 − 1)
=

bβ−1ϵ|1− β|
32(β + 2l3 − 1)

>
1

32
n−2
1 |1− β| ϵ, (4.51)

which satisfies 1
32n

−2
1 |1− β| ϵ(β + 2l3 − 1) < 1

32ϵ <
1
2 . Therefore, we set the required qubit of precision as

p1 = log

Å
32n21

1
|1−β|

1

ϵ

ã
= 5 + 2 log(n1) + log

Ä
1

|1−β|

ä
+ log

(
1
ϵ

)
. (4.52)

By Lemma 3.2, computing log(b) to p1 digits of precision requires

O(log(n1)
3
p21) gates and O(log(n1)

2
p1) ancilla qubits.

Step 2: Multiplication with β + 2l3 − 1. Multiplying log b by β + 2l3 − 1, which are represented to at most
log(n1) + p1 and log(n0) + v bits respectively, requires:

(log(n1) + p1)(log(n0) + v) gates and (log(n1) + p1) + (log(n0) + v) ancilla qubits,

S13

where v is the number of significant digits of β.
Step 3: Exponentiation. Decompose

b−β−2l3+1 = 2⌊−(β+2l3−1) log(b)⌉ · 2{−(β+2l3−1) log(b)}, (4.53)

where ⌊y⌉ denote the nearest integer of y and {y} = y − ⌊y⌉ denote the fractional part. The fractional exponential is
evaluated by:

2x = eln 2·x =

∞∑
n=0

(ln 2)n

n!
xn, −1

2
≤ x <

1

2
. (4.54)

To bound the total error by ϵ|1−β|
32b2l3

, we target an error of

ϵ|1− β|
32b2l3

1√
2b−(β+2l3−1)

=
bβ+2l3−1ϵ|1− β|

32
√
2b2l3

>
1

64
bβ−1|1− β|ϵ > 1

64
n−1
1 |1− β|ϵ. (4.55)

in fractional exponential. Let

l4 = log

Å
64n1

1
|1−β|

1

ϵ

ã
= 6 + log(n1) + log

Ä
1

|1−β|

ä
+ log

(
1
ϵ

)
. (4.56)

Because |x| ≤ 1
2 , truncating the exponential series at degree l4 gives an error

2(ln 2/2)l4

(l4)!
<

1

2l4+1
=

1

128
n−1
1 |1− β|ϵ. (4.57)

With coefficients stored with l4 + 1 fractional qubits, the rounding error is at most

1

128
n−1
1 |1− β|ϵ(1 + 1

2
+

1

4
+ · · ·) ≤ 1

128
n−1
1 |1− β|ϵ ≤ 1

128
nβ−1
1 |1− β|ϵ, (4.58)

yielding a total error at most 1
64n

−1
1 |1− β|ϵ.

By Lemma 3.1, evaluating the degree-l4 polynomial in the argument {−(β + 2l3 − 1) log(b)}, which is represented
with at most (p1 + log(n1) + log(n0) + v) bits through multiplication, and with coefficients stored with l4 + 1 qubits,
to achieve precision ϵ|1−β|

32b2l3
requires

l24(p1 + log(n0) + log(n1) + v)2 + l24(p1 + log(n0) + log(n1) + v)(l4 + 1) + log

Ç
32b2l3

|1− β|ϵ

å
l4

=Poly(log(n1), log
Ä

1
|1−β|

ä
, log

(
1
ϵ

)
, v) (4.59)

gates, and

2(p1 + log(n0) + log(n1) + v)2l4 + l4 + 1 = Poly(log(n1), log
Ä

1
|1−β|

ä
, log

(
1
ϵ

)
, v) (4.60)

ancilla qubits. Thus, combine the three parts and the claimed resource bounds follow.

Proposition 4.9. The oracles
n1−1∑
b=n0

αb|b⟩|0⟩ 7→
n1−1∑
b=n0

αb|b⟩|Pb(β)⟩ and

n1−1∑
a=n0

αa|a⟩|0⟩ 7→
n1−1∑
a=n0

αa|a⟩|Pa(β)⟩, (4.61)

where

Pb(β) =
1

1− β
b2l3 +

1

2
b2l3−1 −

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
b2l3−2r,

Pa(β) =
1

1− β
a2l3 − 1

2
a2l3−1 −

l3∑
r=1

B2rΓ(β + 2r − 1)

(2r)! Γ(β)
a2l3−2r, (4.62)

can be constructed to precision ϵ
8 using

Poly(log(1/ϵ), log(n1), log
Ä

1
|1−β|

ä
) (4.63)

gates and ancilla qubits, in which n0 > β + 2l3.

S14

Proof. We focus on constructing the oracle for Pb(β), as the case for Pa(β) is analogous. All the coefficients are stored
with precision ϵ

16n
2l3
1

, so the total rounding is bounded by

ϵ

16n2l31

(b2l3 + b2l3−1 + · · ·) < ϵ

16n2l31

2b2l3 ≤ ϵ

8
. (4.64)

Hence the required number of qubit for each coefficient is at most

p2 = log

Ç
16n2l31

ϵ

å
= log(1/ϵ) + 4 + 2l3 log(n1). (4.65)

The polynomial in Equation (4.62) has degree 2l3, with input b requiring at most log(n1) qubits, and the output
targeted to precision ϵ

8 with absolute magnitude bounded by log
Ä

2
|1−β|n

2l3
1

ä
. Lemma 3.1 implies that this computation

can be performed using at most

l23 log
2(n1) + l23 log(n1)p2 + l3

(
log

Å
2

|1− β|
n2l31

ã
+ log

Å
8

ϵ

ã)
=Poly

(
log(n1), log

Ä
1

|1−β|

ä
, log

(
1
ϵ

))
(4.66)

gates, and

2l3 log(n1) + p2 = Poly(log(n1), log(1/ϵ)) (4.67)

ancilla qubits.

Corollary 4.10 (Extended state preparation). Let β > 0, β ̸= 1. Define

|ψ0⟩e =
1

C

n1−1∑
n=1

n−β/2|n⟩, C =

Ã
n1−1∑
n=1

n−β , (4.68)

where c = ⌈ 1
2 log2π

24
ε ⌉, n0 − 1 is the smallest power of 2 greater than ⌈β+2c⌉, and n1 −n0 is a power of 2. Then the

state |ψ0⟩e can be prepared on a gate-based quantum computer to precision ε > 0 using

Poly(log(1/ε), log(n1), log
Ä

1
|1−β|

ä
, β, v), (4.69)

gates and ancilla qubits, where v is the number of significant digits used to represent β.

Proof. By Theorem 4.2, the truncated state

|ψ0⟩ =
1

C

n1−1∑
n=n0

n−β/2|n⟩ (4.70)

can be prepared to precision ε
3 with

Poly(log(1/ε), log(n1), log
Ä

1
|1−β|

ä
, β, v) (4.71)

gates and ancilla qubits, for c = ⌈ 1
2 log2π

24
ε ⌉ and n0 greater than ⌈β + 2c⌉ + 1. Following the approach of direct

amplitude splitting4, we can also prepare

|ψ1⟩ =
1

C1

n0−1∑
n=1

n−β/2|n⟩, (4.72)

to precision ε
3 , using Poly(n0, log(1/ε)) gates. An auxiliary qubit coherently combines the two states:

|0⟩+ γ|1⟩√
γ2 + 1

|0⟩ → |0⟩|ψ0⟩+ γ|1⟩|ψ1⟩√
γ2 + 1

. (4.73)

S15

Applying a Hadamard gate gives:

H−→ (|0⟩+ |1⟩)|ψ0⟩+ γ(|0⟩ − |1⟩)|ψ1⟩√
2γ2 + 2

=
|0⟩(|ψ0⟩+ γ|ψ1⟩) + |1⟩(|ψ0⟩ − γ|ψ1⟩)√

2γ2 + 2
. (4.74)

Here, γ = C1

C =
√

S(1,n0−1,β)
S(n0,n1−1,β) , where the denominator estimated via Euler-Maclaurin summation method and the

numerator is computed directly. If the ancilla is measured in |0⟩, the desired normalized superposition is obtained. If
not, a correction step—using an additional register for comparison with n0 and a controlled-Z operation-restores the
target state. The comparator writes a 1 in an auxiliary qubit iff the index is smaller than n0. The process is listed as
follows:

(|ψ0⟩−γ|ψ1⟩)|0⟩
comparator−−−−−−−→ |ψ0⟩|0⟩−γ|ψ1⟩|1⟩

controlled-Z−−−−−−−−→ |ψ0⟩|0⟩+γ|ψ1⟩|1⟩
undo comparator−−−−−−−−−−−→ (|ψ0⟩+γ|ψ1⟩)|0⟩. (4.75)

If γ is approximated by γ̃, the error is bounded by∥∥∥∥∥ |ψ0⟩+ γ̃|ψ1⟩√
1 + γ̃2

− |ψ0⟩+ γ|ψ1⟩√
1 + γ2

∥∥∥∥∥ =

2− 2

1 + γγ̃√
(1 + γ2)(1 + γ̃2)

=

√
2− 2

1− (γ − γ̃)2

(1 + γ2)(1 + γ̃2)

<

√
2− 2

»
1− (γ − γ̃)2 <

»
2|γ − γ̃|. (4.76)

Thus, computing γ to precision ε2

18 ensures an additional error at most ε
3 . This can be achieved by estimat-

ing C with error n−β0
ε2

36 and C1 with error ε2

36
C2

C1
> ε2

36
n−2β
0

n0
= ε2

36n
−1−2β
0 using Euler-Maclaurin summation with

Poly(log(1/ε), log
Ä

1
|1−β|

ä
, β, log(n1), v) classical computations. Hence, |ψ0⟩e can be prepared with accuracy ε using

Poly(log(1/ε), log(n1), log
Ä

1
|1−β|

ä
, β, v) (4.77)

gates and ancilla qubits.

Theorem 4.11 (Initial state preparation (Methods, Theorem 3)). Let β > 0, β ̸= 1 and N ∈ N. Define

|ψ0⟩ =
1

C

N∑
n=1

n−β/2|n⟩, C =

Ã
N∑
n=1

n−β . (4.78)

Then |ψ0⟩ can be prepared on a quantum computer to precision ε > 0, with success probability at least (12 − ε
3). The

required number of gates and ancilla qubits is bounded by

Poly(log(1/ε), log(N), log
Ä

1
|1−β|

ä
, β, v), (4.79)

where v denotes the number of significant digits used to represent β.

Proof. Set c =

⌈
1
2 log2π

(
144
ε

)⌉
, and choose n0 so that (n0 − 1) is the smallest power of 2 larger than ⌈β + 2c⌉. Let

n1 be the smallest integer larger than N with n1 − n0 a power of 2. By Corollary 4.10, the extended state

|ψ0⟩ =
1

C

n1−1∑
n=1

n−β/2|n⟩ (4.80)

can be constructed to precision ε
6 using

Poly(log(1/ε), log(n1), log
Ä

1
|1−β|

ä
, β, v) = Poly(log(1/ε), log(N), log

Ä
1

|1−β|

ä
, β, v) (4.81)

gates and ancilla qubits.
Let P denote the projector onto the subspace spanned by {|n⟩ : 1 ≤ n ≤ N}, given by:

P =

N∑
n=1

|n⟩⟨n|, (4.82)

S16

which can be implemented using an ancilla qubit, a comparator, and a measurement. After projection P , the system
ideally collapses to the desired state

|ψ⟩ = 1

C

N∑
n=1

n−β/2|n⟩ (4.83)

with ideal success possibility

N∑
n=1

n−β

n1−1∑
n=1

n−β
>

N

n1 − 1
≥ N

2(N − n0) + n0 − 1
≥ N

2N − 3
>

1

2
, (4.84)

since n−β is positive and decreasing for β > 0.
In practice, the extended state is prepared to precision ε

6 . Let |ψ0⟩ and |ψ̃0⟩e denote the ideal and actual extended
state. Then the ideal and actual post-selected states can be written as

|ψ0⟩ =
P |ψ0⟩e√

⟨ψ0|eP |ψ0⟩e
, |ψ̃0⟩ =

P |ψ̃0⟩e»
⟨ψ̃0|eP |ψ̃0⟩e

. (4.85)

The precision in |ψ̃0⟩e and the contractive property of P imply that

∥
»
⟨ψ0|eP |ψ0⟩e|ψ0⟩ −

»
⟨ψ̃0|eP |ψ̃0⟩e|ψ̃0⟩∥ = ∥P |ψ0⟩e − P |ψ̃0⟩e∥ ≤ ∥|ψ0⟩e − |ψ̃0⟩e∥ ≤ ε

6 . (4.86)

Furthermore, using the triangle inequality

|⟨ψ0|eP |ψ0⟩e − ⟨ψ̃0|eP |ψ̃0⟩e| ≤ |⟨ψ0|eP |ψ̃0⟩e − ⟨ψ̃0|eP |ψ̃0⟩e|+ |⟨ψ0|eP |ψ0⟩e − ⟨ψ0|eP |ψ̃0⟩e| ≤ ε
3 . (4.87)

Since ⟨ψ0|eP |ψ0⟩e ≥ 1
2 , it follows that

∣∣∣»⟨ψ0|eP |ψ0⟩e −
»
⟨ψ̃0|eP |ψ̃0⟩e

∣∣∣ = |⟨ψ0|eP |ψ0⟩e − ⟨ψ̃0|eP |ψ̃0⟩e|√
⟨ψ0|eP |ψ0⟩e +

»
⟨ψ̃0|eP |ψ̃0⟩e

≤
√
2ε

3
. (4.88)

Using the triangle inequality and combining the Equations (4.86) and (4.88),»
⟨ψ0|eP |ψ0⟩e∥|ψ0⟩ − |ψ̃0⟩∥ = ∥

»
⟨ψ0|eP |ψ0⟩e|ψ0⟩ −

»
⟨ψ0|eP |ψ0⟩e|ψ̃0⟩∥

≤∥
»

⟨ψ0|eP |ψ0⟩e|ψ0⟩ −
»

⟨ψ̃0|eP |ψ̃0⟩e|ψ̃0⟩∥+ ∥
»
⟨ψ0|eP |ψ0⟩e|ψ̃0⟩ −

»
⟨ψ̃0|eP |ψ̃0⟩e|ψ̃0⟩∥

≤ε
6
+

√
2ε

3
. (4.89)

Given ⟨ψe|P |ψe⟩ ≥ 1
2 , we have the stated bound

∥|ψ0⟩ − |ψ̃0⟩∥ ≤ 1+2
√
2

3
√
2
ε < ε, (4.90)

and success possibility satisfies

⟨ψ̃0|eP |ψ̃0⟩e ≥
1

2
− ε

3
. (4.91)

Thus, the ideal state |ψ0⟩ can be prepared with precision ε with at least the success probability as claimed.

Supplementary Note 5: Construction of the evolution operator

We now demonstrate the construction of the evolution operator.

S17

Theorem 5.1 (Evolution operator construction (Methods, Theorem 4)). Define the time evolution operator

U(t) = e−iH0t, H0 =

N∑
n=1

log(n)|n⟩⟨n|, (5.1)

where the evolution time t is specified with u significant digits. Then U(t) can be implemented to precision ξ using

Poly(log(N), log(|t|), log(1/ξ), u) (5.2)

gates and ancilla qubits.

Proof. Consider an input state of the form

N∑
n=1

αn|n⟩|0⟩, (5.3)

where |0⟩ represents the ancilla register. Applying the logarithm oracle L produces

N∑
n=1

αn|n⟩| log(n)⟩. (5.4)

Multiplying log(n) by t yields

N∑
n=1

αn|n⟩| log(n)t⟩. (5.5)

Applying controlled Rz rotations results in

N∑
n=1

αne
−i log(n)t |n⟩| log(n)t⟩. (5.6)

Uncomputing the multiplication and applying inverse logarithm oracle L−1 leaves

N∑
n=1

αne
−i log(n)t |n⟩|0⟩ = U

N∑
n=1

αn|n⟩|0⟩. (5.7)

In practice, the logarithm log(n) is approximated by ‡log(n) with error at most ξ/|t|. This ensures that

∥∥∥ N∑
n=1

αn
(
e−i

·�log(n) t − e−i log(n)t
)
|n⟩
∥∥∥ ≤ 2 sin

Å
ξ

2

ã
< ξ. (5.8)

Thus, the distance between the achieved and ideal U is bounded by ξ. By Lemma 3.2, the logarithm oracle and its
inverse can be realized using log3(N) log2(|t|/ξ) gates and log2(N) log(|t|/ξ) ancilla qubits. Multiplying log(n) by t
requires (log(|t|/ξ) + log(N))u gate operations and (log(|t|/ξ) + log(N)) + u ancilla qubits. The controlled Rz gates
can be implemented qubit by qubit with O(log(N) + log(|t|/ξ)) gates. Combining these bounds, the total resource
requirement for implementing U(t) is

Poly(log(N), log(|t|), log(1/ξ), u) (5.9)

gates and ancilla qubits, completing the proof.

Supplementary Note 6: Order of |χ(s)| for 0 < β < 1

Recall that

χ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s). (6.1)

S18

Thus,

|χ(s)| = 2βπβ−1| sin πs
2
||Γ(1− s)|. (6.2)

We focus on s = β + it with 0 < β < 1,

sin
(
πs
2

)
= sin

Ä
πβ
2 + iπt

2

ä
= sin

Ä
πβ
2

ä
cosh

(
πt
2

)
+ i cos

Ä
πβ
2

ä
sinh

(
πt
2

)
, (6.3)

so we obtain

| sin(πs)| =
»

sin2(πβ2) cosh2(πt2) + cos2(πβ2) sinh2(πt2) =
»
sinh2(πt2) + sin2(πβ2) = Θ(eπ|t|/2). (6.4)

Using Stirling’s formula in the sector | arg z| ≤ π − ε,

Γ(z) =
√
2π z z−

1
2 e−z

(
1 +O(|z|−1)

)
. (6.5)

Taking absolute values gives

|Γ(z)| =
√
2π |z z−

1
2 |e−Re(z)

(
1 +O(|z|−1)

)
. (6.6)

Note that

|zz− 1
2 | = exp

(
Re(ln(z)(z − 1

2))
)
= exp

(
ln(|z|)(Re(z)− 1

2)− arg(z) Im(z)
)
= |z|Re(z)− 1

2 e− arg(z) Im(z). (6.7)

Now we set z = 1− s = (1− β)− it, then

|Γ(1− s)| =
√
2π |1− s|1/2−βet arg(z)e−(1−β)(1 +O(|t|−1)

)
. (6.8)

For t < 0, arg z = arctan
Ä

|t|
1−β

ä
, so

exp(t arg z) = exp
Ä
t arccot 1−β|t|

ä
= exp

(
t(π2 − 1−β

|t| +O(|t|−3))
)
= exp(−π|t|/2) exp((1− β))(1 +O(|t|−2)). (6.9)

For t > 0, arg(z) = − arctan
Ä

t
1−β

ä
, so

exp(t arg(z)) = exp
Ä
−t arccot 1−βt

ä
= exp

(
(−t(π2 − 1−β

t +O(|t|−3))
)
= exp(−πt/2) exp((1− β))(1 +O(t−2)). (6.10)

In both cases,

exp(t arg z) = exp(−π|t|/2) exp((1− β))(1 +O(|t|−2)). (6.11)

Therefore,

|Γ(1− s)| =
√
2π |1− s|1/2−β exp(−π|t|/2)(1 +O(|t|−1)

)
. (6.12)

Combining terms,

|χ(s)| = Θ(1)2βπβ−1 exp(π|t|/2)
√
2π|1− s|1/2−β exp(−π|t|/2)(1 +O(|t|−1)), (6.13)

The exponential terms cancel, leaving

|χ(s)| = Θ(|1− s|1/2−β) = Θ(|t|1/2−β). (6.14)

Supplementary Note 7: Upper bound of ζ ′(s) for 0 < β < 1

We establish upper bounds for the Dirichlet eta function η(s) and its derivative η′(s), defined as

η(s) =

∞∑
n=1

(−1)n+1n−s, η
′
(s) = −

∞∑
n=1

(−1)n+1 lnn n−s. (7.1)

S19

Then η(s) can be expressed as:

η(s) =

∞∑
n=1

(−1)n+1n−s =

∞∑
n=1

((2n− 1)−s − (2n)−s) =

∞∑
n=1

s

∫ 2n

2n−1

ν−s−1dν. (7.2)

Taking the absolute value, we obtain

|η(s)| ≤ |s|
∞∑
n=1

∫ 2n

2n−1

ν−β−1dν < |s|
∫ ∞

1

ν−β−1dν =
|s|
β
. (7.3)

Similarly, for the derivative η′(s), we have

η
′
(s) = −

∞∑
n=1

(−1)n+1(lnn)n−s =

∞∑
n=1

(ln (2n)(2n)−s − ln (2n− 1)(2n− 1)−s) =

∞∑
n=1

∫ 2n

2n−1

(−sν−s−1 ln ν + ν−s−1)dν.

(7.4)
Hence,

|η
′
(s)| ≤ |s|

∫ ∞

1

|ν−s−1| ln ν dν +
∫ ∞

1

|ν−s−1| dν = |s|
∫ ∞

1

ν−β−1 ln ν dν +

∫ ∞

1

ν−β−1 dν =
|s|
β2

+
1

β
. (7.5)

Since the zeta function is related to η(s) by

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n+1

ns
=

1

1− 21−s
η(s). (7.6)

Its derivative ζ ′(s) is:

ζ
′
(s) =

d

ds
(

1

1− 21−s

∞∑
n=1

(−1)n+1

ns
) =

η
′
(s)(1− 21−s)− 21−s ln 2 η(s)

(1− 21−s)2
. (7.7)

Using the previously established bounds

|η(s)| ≤ |s|
β
, |η′(s)| ≤ |s|

β2
+

1

β
,

we obtain the bound for ζ ′(s):

|ζ
′
(s)| ≤ |s|

|21−β − 1|β
+

21−β ln 2(|s|β + 1)

|21−β − 1|2β2
= O(

|s|
β|1− β|

+
|s|β + 1

|1− β|2β2
) = Poly(|t|, |1− β|−1, β−1), (7.8)

given that |21−β − 1| ≥ ln(2)|1− β| for all 0 < β < 1.
[1] Litinski, D. Quantum schoolbook multiplication with fewer Toffoli gates. arXiv preprint arXiv:2410.00899 (2024). URL

https://arxiv.org/abs/2410.00899.
[2] Grover, L. & Rudolph, T. Creating superpositions that correspond to efficiently integrable probability distributions. arXiv

preprint quant-ph/0208112 (2002). URL https://arxiv.org/abs/quant-ph/0208112.
[3] Akiyama, S. & Tanigawa, Y. Multiple zeta values at non-positive integers. The Ramanujan Journal 5, 327–351 (2001).

URL https://link.springer.com/article/10.1023/A:1013981102941.
[4] Long, G.-L. & Sun, Y. Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev.

A 64, 014303 (2001). URL https://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.014303.

https://arxiv.org/abs/2410.00899
https://arxiv.org/abs/quant-ph/0208112
https://link.springer.com/article/10.1023/A:1013981102941
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.014303

	 Supplementary information for "The Riemann Hypothesis Emerges in Dynamical Quantum Phase Transitions"
	Asymptotic behavior of SN(s)
	Asymptotic behavior of Z(,H0)
	Construction of the preliminary oracles
	Construction of the initial state
	Construction of the evolution operator
	Order of |(s)| for 0<<1
	Upper bound of '(s) for 0<<1
	References

