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Supplementary Fig. 1: Statistics of publicly available regulome datasets in plants.

plant datasets in the past years. Datasets are colored by different plant species.
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Barchart showing the release of
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Supplementary Fig. 2: The ChIP-Hub Shiny application.

Screenshots of the ChIP-Hub website. The left panel shows

the “Home” page of ChIP-Hub. The right panel shows the “Browser” page with example tracks of ChIP-seq datasets shown at the

bottom genome browser. Please visit our website (http://www.chip-hub.org) for interactive pages.
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Supplementary Fig. 3: Examples of metadata files. Treemap showing the classification of experiments in Glycine max,

(Oryza sativa), (Solanum lycopersicum) and (Zea mays), according to transcription factor (TF) families, the types of histone

modifications or open chromatin experiments.
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Supplementary Fig. 4: Summary of the quality of experiments according to the time. Barcharts showing whether

the experiments with proper input control or with replicates.
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Supplementary Fig. 5: Correlation of metrics scores. Scatter plots (the lower panel) showing the Pearson’s correlation
coefficients (the upper panel) of different metrics. SPOT: signal portion of tags; FRiP: fraction of reads in peaks; NSC: normalized
strand cross-correlation coefficient. RSC: relative Strand cross-correlation coefficient; NRF: non-redundant fraction; PBC1/2: PCR

bottlenecking coefficients 1/2.
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Supplementary Fig. 6: Fraction of plant genomes occupied by transcription factor (TF) binding sites (TFBSs).

Donut charts showing the fraction of the entire genome covered by TFBSs based on ChIP-seq data in the selected plant species.

The number of ChIP-seq experiments and the associated distinct TFs are indicated. The genome is colored according to the number

of occupied TFs.
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Supplementary Fig. 7: Co-associations of TFs in Arabidopsis thaliana. Heatmap showing co-binding relationships (upper
triangle) and co-regulated targets (lower) by TFs. Each row or column represent one TF. Co-associations were both calculated
based on Jaccard statistics with either peak basepair or target genes. TFs from different families were colored in the left bar. In
general, the same TF in different experiments and TFs from the same family or from known protein complexes showed significantly
higher associations than random controls (Supplementary Fig. 8). For example, MADS-domain TFs that act in a combinatorial
manner in specifying floral organ identities (such as SEP3, AP3, AP1, AG and PI)! or developmental phase transitions (such as
FLC, FLM and SOC1)2 strongly overlap in their DNA-binding sites.
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Supplementary Fig. 8: Co-associations of TFs, related to Supplementary Fig. 7. Boxplots (individual data points
as overlays) showing that the same TF with multiple experiments (a) or TFs from the same family (b) have significantly higher

associations than random controls. As random control, the same number of associations were sampled from the rest of comparisons.



a Similarity of samples (n=65) based on 18753 promoter activity
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Supplementary Fig. 9: Dynamics of tissue-specific chromatin accessbility.
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(a) Sample similarity based on promoter

activity. Open chromatin samples (with IDs labeled in square brackets) were collected from nine different studies. The input

DNA samples (in grey; n=4) are used for control. (b) Comparing the clustering analysis based on enhancers (as in Fig. 4a) and

promoters (as in a). (c¢) Predicting the sequence grammar underlying the chromatin dynamics of tissue-specific regulatory elements

using the Basset® convolutional neural network (CNN) framework. (d) The ROC curves display the Basset false-positive rate

versus true-positive rate for different tissues. (e) Heatmap showing normalized influence of motif-annotated filters on classification

of enhancers in different tissues. Filters matched to known motifs are labeled.
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Supplementary Fig. 10: Manually curated histone modification ChIP-seq experiments used for ChromHMM.

Heatmaps showing the similarity of histone modification ChIP-seq experiments in Arabidopsis thaliana (a), rice (Oryza sativa;
b), maize (Zea mays; c), barley (Hordeum wvulgare; d) and wheat (Triticum aestivum; €). The pairwise correlation of any two
experiments were calculated based on Jaccard index. Each experiment was assigned to one of the reference tissues (vegetative-,
reproductive- and root-related tissues). Experiments are colored according to the type of tissues or marks (as indicated in the bar
on the left of heatmaps). The number of peaks in each experiments is show on the right of heatmaps. The full list of experiments

can be found in Supplementary Table S7.
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Supplementary Fig. 11: Chromatin states determined by ChromHMM. The ChromHMM?® model was learnt with up
to 15 states for each reference tissue type (column) in each genome (row). The log(likelihood) of the model output by the program
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Supplementary Fig. 12: Chromatin states in Arabidopsis reproductive-related and root-related tissues. Prediction
of chromatin states by ChromHMMS in Arabidopsis reproductive-related (a) and root-related tissues (b). In each figure, the left
panel displays a heatmap of the emission parameters in which each row corresponds to a different state and each column corresponds
to a histone modification mark; the second heatmap displays the overlap fold enrichment for different genomic annotations; the
third heatmap shows the fold enrichment for each state for each 200-bp bin position within 2 kb around a set of transcription start
sites (T'SSs); Expression patterns for neighboring genes in each state are shown in the first boxplot; chromatin accessibility is shown
in the second boxplot; the right donut chart shows the fraction of the entire genome covered by each of the states as shown on the
left heatmaps. “Unmarked” state is always shown in grey. TF binding and flower-related enhancers!:” are shown for each state in

reproductive-related tissues. Gene expression and chromatin accessibility data in matched tissues from ref.8.
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Supplementary Fig. 13: Chromatin states in barley (Hordeum vulgare). Refer to Supplementary Fig. 12 for figure

legend description.
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Supplementary Fig. 14: Chromatin states in rice (Oryza sativa). Refer to Supplementary Fig. 12 for legend description.
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Supplementary Fig. 15: Chromatin states in wheat (Triticum aestivum). Refer to Supplementary Fig. 12 for legend

description.
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Supplementary Fig. 16: Chromatin states in

Predicted enhancers from ref.9.
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Factor Experiment Replicate  ChIP Input/control
Li et al. OsGRF4 OsGRF4 Rep1
Nature 20‘1 8 OsGRF4 OsGRF4 Rep2
OsGRF4 OsGRF4 Rep3
ETT ETT Rep1 ERX1938605 ERX1938611
Simonini et ETT ETT Rep2 ERX1938606 ERX1938611
al., Plant ETT ETT Rep3 ERX1938607 ERX1938611
Cell 2017 ETT ETT_IAA Rep1 ERX1938608 ERX1938611
ETT ETT_IAA Rep2 ERX1938609 ERX1938611
ETT ETT_IAA Rep3 ERX1938610 ERX1938611
Bencivenga BLR BLR Rep1 SRX1603698 SRX1603701
et al., Dev BLR BLR Rep2 SRX1603699 SRX1603702
Cell 2016 BLR BLR Rep3 SRX1603700 SRX1603703
H3K4me3 H3K4me3_shoot  Rep1 SRX012382 NA
H3K9ac H3K9ac_shoot Rep1 SRX012383 NA
Wang et H3K27me3 H3K27me3_shoot Rep1 SRX012384 NA
al., Plant H3K36me3 H3K36me3_shoot Rep1 SRX012385 NA
Cell 2019 H3K4me3 H3K4me3_root Rep1 SRX012387 NA
H3K9ac H3K9ac_root Rep1 SRX012388 NA
H3K27me3 H3K27me3_root Rep1 SRX012389 NA
H3K36me3 H3K36me3 root Rep1 SRX012390 NA

Supplementary Fig. 17: Examples of metadata files.

studies from refs.
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Different replicates with
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Different cases of experiment metadata. Examples are based on
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H3K4me1
H3K27ac
H3K9ac
H3K4me2
H3K9me2/3
H3K36me3
H3K4me3
H3K27me3

H3K27me2
H3K9me1

H3K27me1
\ H3K36me2

Arabidopsis Barley Rice Wheat Maize
Arabidopsis thaliana Hordeum vulgare Oryza sativa Triticum aestivum  Zea mays

Reference marks

Supplementary Fig. 18: Types of histone modification marks used for chromatin state annotation in different
plant species. Overview of histone modifications with avaible ChIP-seq data for chromatin state annotation in different plant
species. A common set of marks (called “reference marks”) avaible in most (if not all) species is used for comparison of chromatin

states annotated in different species.
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Supplementary Fig. 19: Quality metrics for plant regulome data. Various quality metrics for datasets/samples (a) and
experiments (b) in Arabidopsis thaliana. Similar plots for other plant species can be drawn via the ChIP-Hub online tool. (c) Quality
categories for different metrics. Taken reference from the ENOCDE ChIP-seq standards (https://www.encodeproject.org/data-
standards/terms/), each metircs were divided into five different levels based on their values. SPOT: signal portion of tags; FRiP:
fraction of reads in peaks; NSC: normalized strand cross-correlation coefficient. RSC: relative Strand cross-correlation coefficient;

NRF: non-redundant fraction; PBC1/2: PCR bottlenecking coefficients 1/2.

19



Supplementary References

10.

11.

12.

13.

Yan, W., Chen, D. & Kaufmann, K. Molecular mechanisms of floral organ specification by MADS domain proteins.

Current opinion in plant biology 29, 154-162 (2016).

Mateos, J. L. et al. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C
define distinct modes of flowering regulation in Arabidopsis. Genome biology 16, 31 (2015).

Posé, D. et al. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414
(2013).

Lee, J. H. et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors.

Science 342, 628-632 (2013).

Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep

convolutional neural networks. Genome research 26, 990-999 (2016).

Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nature methods

9, 215 (2012).

Zhu, B., Zhang, W., Zhang, T., Liu, B. & Jiang, J. Genome-wide prediction and validation of intergenic enhancers
in Arabidopsis using open chromatin signatures. The Plant Cell 27, 2415-2426 (2015).

Sullivan, A. M. et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana.

Cell reports 8, 2015-2030 (2014).

Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in

maize. Genome biology 18, 137 (2017).
Li, S. et al. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595 (2018).

Bencivenga, S., Serrano-Mislata, A., Bush, M., Fox, S. & Sablowski, R. Control of oriented tissue growth through

repression of organ boundary genes promotes stem morphogenesis. Developmental cell 39, 198-208 (2016).

Yang, Z. et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nature genetics

50, 1247 (2018).

Wang, X. et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to

mRNA and small RNA transcriptomes in maize. The Plant Cell 21, 1053—-1069 (2009).

20



	Supplementary Figures
	Supplementary References

