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1 Model overview
1.1 Quantitative traits
We study the following models:
Llinear = G+E+ag€7 (1)
age
Lpa=G+E+age+) Ea, (2)
a=0
Lpa =G+ E +age + age * (G+ E), (3)

where L is disease liability (or quantitative trait), G is the genetic component, F is the environmental

component, age is the age quintile. EA denotes exposure accumulation and PA denotes proportional
amplification.

We are interested in the liability heritability and the accuracy of using PRS to predict L (measured
by R ps):
Rpps o h® = p(G, L)? (4)

Covariance between G and E has an impact on R% rg and ha, which we discuss in Section



1.2 Diseases

Diseases are defined as:

_ ]-7 Llinear > T
b= { 07 Llinear S T (5)

Prediction accuracy of diseases can be measured by the square of point-biserial correlation (Rl%p,

2
obs?

is proportional to

equation E[) or liability-scale correlation R% ,. On empirical data, we used the observed-scale R
which is a special case of Rj, measured in samples of fixed case-control ratio. RZ,
R%, when population prevalence is fixed and liability is a standard normal distribution [1].

1.3 Prevalent case association and incident case prediction

We distinguish two scenarios of case-control studies under the liability threshold model. We assume
all individuals are followed (i.e. without censoring) to simplify the discussion while random censoring
doesn’t impact our results:

e Prevalent case association: cases are defined as L(age) > T, controls are defined as L(age) < T.
Specifically, at 60 years of age, cases are all individuals who have been diagnosed with the disease
before 60, while controls are all those who were not diagnosed with the disease at 60 years of age.
Prevalent case association are applied in majority of GWAS and PRS studies in statistical genetics.

e Incident case prediction: cases are defined as L(agepegin) < T < L(ageenq), controls are
defined as L(ageenqd) < T. Specifically, for predicting 10-year risk at 50 years of age, cases are
all individuals who have got disease between 50 and 60 years of age, while controls are all those
who remained healthy at 60 years of age. Incident case prediction are widely applied in clinical
risk prediction and is informative for clinical decision making. In practice, individuals are censored
before agecnq, which needs additional treatment such as inverse-probability weighting 2] or time-
to-event regression (Cox model).

Under the definition of the two case-control studies, the controls are defined in the same way, while
the cases are defined differently. Age-specific prediction accuracy are usually lower for incident case
prediction compared to prevalence case association, for the same age point, which we will explain in the
next section (Section [2)).

2 Description of mechanisms that lead to decreased PRS pre-
diction accuracy with age

We found three mechanisms that can lead to decreasing PRS prediction accuracy in simulations and
analyses of empirical data, which can be summarised by following three inequalities:

L4 hioung = COT(Gyoung7 Lyoung)2 > hgld = COT(GOld, Lold)Q-
4 E[Gcase,young] - E[Gcontrol,young] > E[Gcase,old] - E[Gcontrol,old]-
i R?’Lab,incident (Young) > Rl%lab,incident(Old)'

The first mechanism is trivial mathematically. Section [3| provides proofs of the second and third
mechanisms. We note there is mechanism 4 which is the overall prediction accuracy irrespective of age
(R?,,) can cause different age dependency. We discuss this mechanism separately after equation [7] as it
does not cause decreases of PRS prediction accuracy.

2.1 Mechanism 1: Liability-scale heritability changes with age

Under this mechanism, the liability-scale heritability (hlziab) changes with age through changes in envi-
ronmental variance or the genetic variance. hl2mb can decrease when the genetic variance decreases or
when the environmental variance increases (The EA model). PRS prediction accuracy decreases with
h%.., (equation . We note this mechanism can only be tested in simulations for disease traits, as we
can not estimate h?,, for age interval as the assumptions are based in the entire population [1].



2.2 Mechanism 2: liability of older cases is closer to healthy controls than
younger cases

Under the liability-threshold model, a individual who get disease at 75 years of age is much healthier
than an individual who get disease at 40 years of age. This intuition can be formally expressed as the
mean of liability or genetic value of older cases are closer to healthy controls, which makes it harder for
models to distinguish them.

2.3 Mechanism 3: Collider bias due to removal of past prevalent cases

Under incident case prediction, individuals who have get the disease before baseline are not included
in the prediction of future cases. This creates a collider bias on the liability scale, which induces a
negative correlation between G and E. We derive the expected reduction in R?,, under this model
below.

We define a collider, C, which takes a value of 1 when an individual has prevalent disease and 0 when
they do not. The correlation between G and E stratified by C' can be expressed as: cov(G, E|C = 0) =
E[GE|C = 0] — E[G|C = 0] * E[E|C = 0]. Without the collider, cov(G, E) = 0. Prediction accuracy of
PRS is expressed as:

V(G) + cov(G, E)
VIV(G) + V(E) + 2cov(G, E))V(G)
~ V(G) +cov(G, E)
- VV@V(G)

Rijap h’l2iab = p(G7 L) =

(6)

The PRS accuracy is expected to decrease because of the negative correlation between G and E, which
we will prove in section [3:3]

3 Math of age-dependent prediction

We group most proofs in this section. Section discusses expression of three important metrics used
in the paper; Section [3.2] presents mathematical properties of liability threshold model with G and E
and proof of Theorem 1 that establishes decreasing prediction accuracy of mechanism [2.2} Section [3.3]
presents the analytical expression of covariance between G and E in incident case prediction.

3.1 Liability-scale R?, AUC, and observed-scale R?

We measured the age-specific prediction accuracy using three metrics (R%mb, AUC, and Rgbs) that are
suitable under the liability-threshold model. In practice, we found age-dependent prediction accuracy
has similar pattern when measured by log odds ratio and Cox hazard ratio.

Liability-scale R? (R?,,) is defined as the correlation between liability and a predictor. When
2
using G to represent PRS, R?,,, = p(G, L)% = ( var(G) 4 cov(G, E)/ var(é)) . For prevalent case

association under the Linear or Linearpr models, R? , does not depend on age. For incident disease
prediction, cov(G, E) = cov(G, E|L(agepegin) < T) < 0 (see derivation in section .

AUC is defined as the probability that a randomly sampled case has a score that are higher than
that of a randomly sampled control AUC = P(Gease > Geontrot)- We can approximate the distribution
of Gease and Geontror using Laplace approximation (normal approximation) and get an approximated

AUC:
E[G|L > a] — E[G|L < a))

Vvar(E[G|L > a]) +var(E[G|L < a])
® is the CDF of standard normal distribution. Numerator within ® strictly decrease with a (Theorem 1);
this provides the intuition that AUC' decreases with age under this model. Numeric simulation can estab-

lish the monotonic decrease of AUC by sampling scores of cases and controls using importance sampling
of based on equation |8 (fx,|z>q()); note we need to substitute G into X; in equation

AUC (a) ~ ®( )



Observed-scale R? is the square of the point-biserial correlation coefficient Ry,:

cov(lr>a,G)

- \/var(1L>a),var(G)
_ FE [1L>aG} —F [1L>a] E [G]
Vvar(1psq),var(G)

E[G|L>a]p—p<pE[GL>a]+(1—p)E[GL§a]> o
- \/var(1L>a),var(G)
_p(-p)(BIGIL > a) - E[GIL < a)

Vvar(1psa),var(G)

_VPA=P) piGiL > o) - E[GIL < a)),

Vovar(G)

where p = E[115,] is the prevalence of the disease in the target population. Ry, is proportional to the
difference between the expectation of G in cases and controls (E [G|L > a] — E [G|L < a]). The derivative
of (E[G|L > a] — E[G|L < a]) w.r.t a is strictly positive when a > p1 + po (Theorem 1), which means

Rgp decreases with age increases when 7”1)(1(7;)) is constant across age. Relating to Mechanism 4, for
var

G with different liability-scale R, (G), var(G) will have different age-dependency. High R, (G) will
results in var(G) changing with A(a) (defined below), which reduce the age-dependency. Intuitively,
predictors with low R, (G) will have similar var(G) at different age point as most variation in G is not
related to disease status. Age-dependent var(G) can be verified using numeric simulation, while we skip
its analytical derivation.

Ry,

3.2 Bivariate normal distribution of X; and X,

We first repeated the derivation of several well-known quantities of bivariate normal distribution:
2.0
X1\ N[ ([ 01
Xo p2)’\ 0 o3 '
First, PDF of L = X + X5 is:

_ [T x —z)dr = ! ex (=l )
0= [ el e (-t ).

The above results are derived by simplifying terms within exp to extract the quadratic terms of x, then
gathering remaining terms w.r.t. { (which will give a quadratic term of [). Using the fact that fr () is
a probability distribution w.r.t. exponential of a quadratic term of I, f7(I) is a normal distribution. In
fact, this could be derived from a more general results of affine transformation of normal distribution,
see equation 2.113-2.117 of [3].

As a corollary, we derive the truncated probability of L:

_ 2
P(L<a):¢’((a (M1+ﬂ2)) )7
\/0% + 0%

where @ is the CDF of standard normal distribution.

Next, we derive f(X1|L < a) and f(X1|L > a), which is straightforward rescaling of the truncated
distribution:
_ fxi (@)®((a—z — p2)/02)
le‘LSll(x) - P(L < CL)
! (2) = fx (@) (1= @((a —z — p2)/02))

X L>a 1—P(L <a)

(®)

In previous sections, we repeated use the difference of genetic values between cases and controls.
Therefore, in the following part we focus on deriving the expectation F[X;|L < a], expectation E[X;|L >



a], and the difference A(a) = E[X;|L > a] — E[X1]|L < a]. First we notice vector (L, X7) is a linear
transformation of (X1, X2), therefore it is also a joint normal distribution. Following the distribution of
affine mapping of normal distribution, we note the joint distribution of (L, X;) is:

Xi 121 o 0 T M1 i of
~N|A A A =N .
<X1 + X2> ( (Mz) ’ ( 0 o3 pr+p2)’ \o? o +o02 )

1 0
Here we use A = (1 1) . Using equation 2.79, 2.80, 2.96, and 2.97 of |3], the conditional distribution

of X1|X;7 + X2 =y is a normal distribution:

2 o202
P(X1|X1+X2=y)=/\f(u1+72 ! 2(9—(M1+M2), 21 22)
05 + o7 o3 + 07 (10)
2

o3
EX1|X1+ Xo = ——(y —
(X1 X1+ Xo = y] = 1 + = +U%(y (b1 + p2))
We notice F[X;]|X; + Xo = y] is a linear function of y. Therefore, using L = X; + Lo, the truncated
2
distribution E[X1|L < a] = E[E[X:1|L]|L < a] = 1 + 77> (E[LIL < a] = (11 + p2)). We note the
2 1
last term (E[L|L < a] — (p1 + p2)) can be expressed as inverse Mills ratio: (E[L|L < a] — (1 + u2)) =
—\/03 + 0? i((z = %/%;) Here ¢ is the pdf of standard normal distribution and ® is the CDF of
03101

standard normal distribution. Therefore, the expression of E[X;|L < q] is:

of 9
Vo3 +o7 ®(a)

Similarly, since (E[L|L > a] — (1 + p2)) = \/03 + 037 "5((;81) L= a:/(“;:“;), we have:
g3 Ty

E[Xi|L <a]l=p —

EX\|L > ] = +

The difference between E[X1|L > a] and E[X1|L < a] is:

A(a) = E[X1|L > a] — E[X;1]L < q]

EGiziteom0)

2 2
\ o5+ o7

2
01

= — 2 (\(a)+A(a).

J%—i—a

Here we use A\ and A_ to refer to the inverse Mills ratio. We are most interested in the derivative of A(a)

. . . a—(/_l,lJ,»/_L2) . . . . .
w.r.t. the threshold a. Noticing a = ~Jo3te? we use the derivative w.r.t. « to simplify the expressions
and note the sign of derivatives should be the same. Making use of the derivatives %)\+ = —ad;i+(\y)?

and ZA_ = —al_ — (A)%

Theorem 1 For o > 0, the sum of inverse Mills’ ratios Ay + A_ is a monotonically increasing function:

J Ala) = T (0 A (@) () = A () =) >0

Proof: Following inequalities can be obtained from Equation (9) of [4] (Ay(a) > a, A_(a = o0) = a,
A_(a = 00) = 0+) and theorem 2.3 in [5]:

2 87
A+—a>¥>o

2 4 —
A+-O{<¥



Using ®(«) > 0.5 for a > 0:

2 @2
A</ —e 7.
T

The goal is showing T'(a) = Ay (a) — A_(«) — « is positive:

T(0) =0
T —00)=0
2 T(0) =~ ady + () (12)
ad_ +(A)?
1

First, we compare the lower bound of A4 —« with the upper bound of A_ for large @ using L’Hopital’s
rule:

y (7\/&3{8—01)/ 0.25 x (\/ogﬁ -1
1m =

—00 _ a2 _ a2
“ (\/Ee 2 ) \/z X —axe 2
s ™

The upper bound of A_ decreases more sharply than the lower bound of A\, — « for large «; therefore,

the lower bound of Ay — « is larger than the upper bound of A_ for large «, suggesting T' (o — 00) = 0+.
VaZi8—ays
By plugging in numbers, we find %'a[pha:zﬁ = 1.144 > 1 and T(2.6) = 0.30 > 0. Using f to

VET

= 0.

represent the lower bound of Ay — o and ¢ to represent the upper bound of A_, ggz; = 7’;23:5((52)) ~
ﬂxgim. f/ dominate ¢’ for a > 2.6 proves T'(a) > 0 for a > 2.6.

Second, for a € (0, 2.6), %T(aﬂa:o > 0 implies T'(«) increases first. Next, we use numeric evaluation
and found %T () crosses zero around 1.994. Inverse Mills’ ratio is strictly convex on R [6], which implies

%/\Jr(a) >0 and %)\_ () = %)\4_(*0{) > 0. We can separate T'(«) into two monotonic parts:

I xi0) = —ay + (1)
0
7%)\_(04) =al_+ (\)?

Between (0,1], —aA; + (A1)? increases from 0.637 to 0.801 while aA_ + (A_)? decreases from 0.637 to
0.370+; therefore %T(a) is strictly positive on (0, 1] with 7'(1) = 0.2374. We repeat the same procedure
between (1,1.6] and found —aA; + (A )? increases from 0.801 to 0.858+ while aX_ +(\_)? decreases from
0.370 to 0.2014, again suggesting a%T(a) is strictly positive on (0, 1.6] with 7'(1.6) = 0.306+. Lastly on
(1.6, 2.6] we notice aX_ + (A_)? decreases from 0.201534 to 0.035+, which means the fluctuation of T'(«)
between (1.6,2.6] is bounded by |T'(x) —T(1.6)|,¢(1.6,2.6) < 0.17 x (2.6 — 1.6) = 0.17 < T'(1.6) = 0.306+;
this implies that T'(«) is strictly positive on (0,2.6]. Therefore we conclude the proof for « € (0, o0].

Theorem 1 is proved for standard normal distribution but we note these results are generalisable to
some other distributions [7].

Corollary 1.1 Under the Linearr model with normal liability distribution, observed-scale R-sqaured
(Rgp) in samples with the same genetic variance and case-control ratio strictly decreases with age.

Proof Equation [7shows R7, is a linear function of A(a)* and V@U-P) Gince g decreases with age, R},

v var(G)
also decreases with age. Corollary suggest observed-scale R?, are comparable only when sample has
fixed case-control ratio.

3.3 Collider effect estimation

We use a liability-threshold model with liability-scale heritability A% and disease prevelance P. Liability
threshold assumes L = G + F,var(G)/var(L) = h%, where G and F are independent at birth following
the definition of non-genetic variance. For incident case prediction, removing prevalent cases at baseline
would create negative correlation between G and F.



Using C' to denote the prevalent diseases C =1: L = G + E > T, where T is the threshold above
which an individual become a case. We are interested in the covariance of G and E conditional on not
having the disease at baseline:

cov(G, E|C = 0) = E[G - E|C = 0] — E[G|C = 0]E[E|C = 0]. (13)

The derivation of E[G- E|C = 0] uses the integration of truncated bivariate Gaussian distribution, which
we derived below as preparation:

o0 T—x1
A= / / 212N (21]0,07) N (22]0, 03 )dw 1 dao

0 T—x1
:/ X / x9N (220, 05)dxy | N(21]0,0%)dzy,

A = /_ :xl ng(mO?Ug)dxg]
-2 (e TE),
A (- g) /lezv<x1|o,a§>exp(_(””;”2>dm 19

(- g;iM;)/_leexp (3 G+ @ -ToA - v Do
~ V5 o () [ (S gon 7)o

1 o202 T2
:*\/*‘Tﬁ‘exp (22>
2 (0f +03)2 2(of + 03)

Similarly, we derive:

0o T—x1
B = / / £U2N(£L'1|070%)N(l’2|0,0§)d$1d$2

(,2 o0 2
2 ;2 / 1 1 1 2 )

o3 T?
= .exp|—o—5—> |
2m(0? + 03) ( 2(0%"‘03))

Theorem 2 Under liability threshold model, the population without prevalent cases has negative (liability-
scale) correlations of G and E. The covariance has following relationship to liability-scale heritability

and disease prevalence =1 — ®(T)
1 T?
T4y 5 00 (_2>]

2 _ K2 2
cov(G,E|C' =0) = —h(\l/Th) - exp (_7;) )
T




Proof: Plugging above derivation of A and B to equation

1 o202 T? T 1 T?
G E|IC=0)= —|—_T1% . ( > Y~ <>
GBI =0 = o 7o) P\ ol v o)) | Vet rer TV TP a2 od)

B () R )]

Here we plugged in 02 = h? and 02 = 1 — h? and uses expression of A to compute E[G - E|C = 0] and
B to compute E[G|C = 0] and E[E|C = 0].

(16)

Corollary 2.1 Under the Linear liability-threshold model with normal liability distribution, the same
predictor has higher R, for prevalent case association than incident case prediction.

The incident case prediction effect of G on disease liability can be expressed as 5 « p(G,L|C = 0) =
var(G) + cov(G, E|C = 0)/+/var(G). Therefore, the relative decrease of association effect size is

ey () [+ o ()]

4 Relationship between gene-by-age interaction and linear, ex-
posure accumulation, and proportional amplification models

Gene-age interactions (GxAge) usually defined as Y = G + age + BaxageG X age [8,9]. The existence of
GxAge is defined by Bgxage 7 0, which has following relationship to the three models we studied:

1. Linear model = no GxAge.
2. Exposure accumulation (EA) model = no GxAge

3. Proportional amplification (PA) model = GxAge. When applying a random effect model, such as
GCI-GREML [§] to estimate the interaction component, the PA model will cause a positive GxAge
signal. In detail, we can derive the expression of V' on the top of page 77 in Yang 2011 AJHG |[10]
under the PA model:

V(Yyoungs Yyoung) = coU(Lyoung, Lyoung) = \/var(Lyoung) X Va1 (Lyoung)cor(Lyoung, Lyoung) While
V(Yyoung7 Yold) = COU(Lyounga Lold) = \/Ua'r(Lyoung) X 'UGT(Lold)COT(Lyoungv Lold); Lyoung and
Ljq is the random liability for young or old population.

Under PA, cor(Lyoung, Lyoung) = cor(Lyoung, Lota) = 1 and var(Lyoung) 7 var(Leiq), which means
the interaction term (ggc; in [8]) will capture additional variance.
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