

Supplementary Information

Rising risk of elephant-caused human casualties in Tropical Asia

Naufal Rahman Avicena, Christos Mammides, Ashok Kumar Ram, Aritra Kshetry, Wai Phyo Thu, Nyein Aung, Tomas Maul, Salman Saaban, Benoit Goossens, Ee Phin Wong, Alex M. Lechner, Ahimsa Campos-Arceiz

Appendix S1 – Searching protocol

Searches were conducted in English and country-specific languages using online databases (Web of Science, Google Scholar, Scopus) and search engines (Google, Baidu). A set of keywords were designed to return potentially relevant information from the online platforms. Keywords include “*Asian elephants*”, “*Elephas maximus*”, “*Elephant*”, combined with “*attacks*”, “*conflict*”, “*mortalities*”, “*death*”, “*injury*”, “*trampled*”, “*human*”, “*people*”, and “*killing*”. Additional keywords mentioning the target country were also added. Non-English documents were translated with online tools (Google Translate, ChatGPT, or Gemini) and verified by native speakers where necessary. For each case, we recorded details of the incident: (1) location (GPS coordinates when provided, otherwise geocoded from place names), (2) type of casualty (fatality or injury), victim and elephant demographics, and victim activity where reported. Geocoding and digitizing were performed in QGIS 3.40.12. Duplicates were removed by cross-matching date, location, and narrative. Reports lacking sufficient geographic information were excluded (19% of the initial reports).

Appendix S2 – Combining deaths and injuries as a single category

We combined data on human deaths and injuries as casualties to improve predictive power. To test whether deaths and injuries could be pooled, we compare two regression models (one with deaths, one with injuries) to calculate the similarity between the coefficients’ estimates and standard errors of the two fitted models using z-test (Clogg *et al.* 1995; Paternoster *et al.*, 1998), expressed as:

$$Z = \frac{\beta_1 - \beta_2}{\sqrt{((SE\beta_1)^2 + (SE\beta_2)^2)}}$$

where β is the model’s coefficient, and $SE\beta$ is the coefficient’s standard error.

Table S1. Sets of models, arranged in an ascending order based on AIC and ΔAIC .

Model	Form	AIC	ΔAIC
<i>Full model with quadratic terms</i>	att ~ ed + mesh + tri + wetness + popdens + gdp + hfp + dist_forest + dist_fp + dist_cropland + dist_pa + I(dist_forest^2) + I(dist_fp^2) + I(dist_cropland^2) + I(dist_pa^2) + Matern(1 long+lat)	1485.9	0
<i>Full model without quadratic terms</i>	att ~ ed + mesh + tri + wetness + popdens + gdp + hfp + dist_forest + dist_fp + dist_cropland + dist_pa + Matern(1 long+lat)	1519	33.1
<i>Potential HEC with quadratic terms</i>	att ~ dist_forest + dist_fp + dist_cropland + dist_pa + I(dist_forest^2) + I(dist_fp^2) + I(dist_cropland^2) + I(dist_pa^2) + Matern(1 long+lat)	1538.9	53
<i>Potential HEC</i>	att ~ dist_forest + dist_fp + dist_cropland + dist_pa + Matern(1 long+lat)	1572.8	86.9
<i>Habitat and natural resources with quadratic term</i>	att ~ wetness + I(wetness^2) + Matern(1 long+lat)	1615.	129.4
<i>Topography</i>	att ~ tri + Matern(1 long+lat)	1618.2	132.3
<i>Forest fragmentation</i>	att ~ ed + mesh + Matern(1 long+lat)	1627.8	141.9
<i>Human disturbance</i>	att ~ hfp + Matern(1 long+lat)	1644.1	158.2
<i>Habitat and natural resources</i>	att ~ wetness + Matern(1 long+lat)	1645.9	160
<i>Null model</i>	att ~ 1 + Matern(1 long+lat)	1652.2	166.3
<i>Socioeconomic</i>	att ~ popdens + gdp + Matern(1 long+lat)	1653.8	167.9

Abbreviations: att = human casualties; ed = edge density, mesh = effective mesh size, tri = terrain ruggedness index, wetness = tasseled cap wetness index, popdens = human population density, gdp = gross domestic product, dist_forest = distance to forest, dist_fp = distance to forest plantations, dist_cropland = distance to cropland, dist_pa = distance to protected areas, hfp = human footprint

Table S2. Elephant-caused human casualties risk distribution in 2015. Percentages are relative to respective countries; brackets are size in km². (*) indicates area at risk relative to the study area.

Country	Low	Moderate	High	Severe	*Area at Risk
<i>Sri Lanka</i>	12.5% (6,836)	41.8% (22,900)	44% (24,071)	1.7% (920)	0.9 % (54,729)
<i>Sabah</i> <i>(Malaysia)</i>	46.3% (26,667)	31.4% (18,045)	18.4% (10,608)	3.9% (2,242)	1% (57,564)
<i>Cambodia</i>	46.4% (96,149)	30.9% (63,938)	21.6% (44,749)	1.2% (2,413)	3.4% (207,250)
<i>Thailand</i>	54.2% (433,247)	29.5% (235,854)	15.8% (126,487)	0.5% (3,583)	13% (799,172)
<i>Vietnam</i>	58.4% (348,357)	26.6% (158,966)	14.4% (86,177)	0.6% (3,488)	9.7% (596,989)
<i>Laos</i>	60.7% (348,365)	25.9% (148,709)	13.1% (75,400)	0.3% (1,498)	9.3% (573,972)
<i>Peninsula</i> <i>Malaysia</i>	66.7% (101,575)	27.1% (41,199)	6% (9,142)	0.2% (346)	2.5% (152,263)
<i>Bangladesh</i>	68.2% (97,818)	25.2% (36,154)	6.5% (9,273)	0.1% (127)	2.3% (143,373)
<i>India</i>	70.9% (1,161,332)	20.3% (332,611)	8.6% (140,901)	0.3% (4,009)	27% (1,638,855)
<i>Sumatra,</i> <i>Indonesia</i>	73.6% (362,933)	22.2% (109,499)	4.1% (20,054)	0.2% (983)	8% (493,471)
<i>Myanmar</i>	73.7% (774,995)	19.1% (200,391)	7.1% (75,149)	0.1% (1,350)	17.1% (1,051,887)
<i>Nepal</i>	76.9% (126,295)	13.2% (21,746)	9.4% (15,460)	0.5% (874)	2.7% (164,376)
<i>Bhutan</i>	82.7% (34,957)	9.3% (3,909)	7.7% (3,260)	0.4% (148)	0.7% (42,275)
<i>Yunnan,</i> <i>China</i>	87.1% (169,820)	11.4% (22,320)	1.5% (2,877)	0.01% (16)	3.2% (195,034)

Table S3. Baseline human population size at risk (2015).

Country	Moderate	High	Severe	Total
<i>India</i>	112,679,776	43,380,284	883,964	156,944,024
<i>Myanmar</i>	24,712,724	10,157,166	197,054	35,066,944
<i>Thailand</i>	19,297,678	9,808,117	177,619	29,283,414
<i>Vietnam</i>	14,559,162	6,585,284	179,459	21,323,905
<i>Nepal</i>	10,327,248	6,733,308	276,392	17,336,948
<i>Bangladesh</i>	19,213,766	4,576,210	43,234	23,833,209
<i>Laos</i>	11,675,124	6,009,674	87,538	17,772,336
<i>Sri Lanka</i>	7,257,112	2,931,549	45,817	10,234,477
<i>Sumatra, Indonesia</i>	14,352,103	2,111,585	65,688	16,529,376
<i>Peninsula Malaysia</i>	7,591,289	1,448,450	50,504	9,090,242
<i>Cambodia</i>	4,611,863	2,324,423	94,781	7,031,067
<i>Bhutan</i>	435,362	993,172	32,185	1,460,719
<i>Sabah, Malaysia</i>	623,308	470,250	128,602	1,222,160
<i>Yunnan, China</i>	2,002,917	477,162	1,454	2,481,533

Table S4. Projected area at risk by 2050. Percentages are relative to respective countries; brackets are the size in km². (*) indicates area at risk relative to the study area

Country	Low	Moderate	High	Severe	*Area at Risk
<i>Sri Lanka</i>	6% (3,462)	27% (15,519)	50.5% (29,053)	16.6% (9,557)	0.87% (57,593)
<i>Sabah, Malaysia</i>	66.7% (38,719)	28.6% (16,583)	4.6% (2,672)	0.2% (98)	0.88% (58,074)
<i>Cambodia</i>	40% (89,618)	30% (67,036)	21.5% (48,075)	8.5% (19,116)	3.4% (223,846)
<i>Thailand</i>	53.7% (457,644)	26.4% (225,348)	15.4% (131,686)	4.5% (38,262)	12.9% (852,942)
<i>Vietnam</i>	55.6% (350,547)	25.3% (159,336)	14.5% (91,122)	4.7% (29,366)	9.6% (630,372)
<i>Laos</i>	60.2% (363,524)	24% (144,946)	12.2% (73,863)	3.6% (21,539)	9.1% (603,874)
<i>Peninsula Malaysia</i>	60.3% (93,136)	27.8% (42,873)	11% (16,934)	1% (1554)	2.3% (154,499)
<i>Bangladesh</i>	69% (115,494)	23% (38,303)	7.2% (12,087)	1% (1467)	2.5% (167,352)
<i>India</i>	70% (1,261,225)	18.9% (341,803)	9.2% (165,213)	2.1% (38,315)	27.3% (1,806,558)
<i>Sumatra, Indonesia</i>	66.8% (332,339)	26% (129,353)	6.8% (33,856)	0.6% (2,224)	8% (493,471)
<i>Myanmar</i>	71.7% (807,579)	18.9% (212,466)	7.9% (88,810)	1.5% (17,340)	17% (1,126,196)
<i>Nepal</i>	78.3% (151,119)	12.7% (24,583)	6.5% (12,522)	2.4% (4,703)	2.9% (192,928)
<i>Bhutan</i>	73.2% (31,225)	15.3% (6,544)	7.4% (3,152)	4% (1,726)	0.7% (42,648)
<i>Yunnan, China</i>	85.4% (166,957)	12.4% (24,310)	1.9% (3,683)	0.26% (511)	3% (195,463)

Table S5. Projected human population size at risk by 2050.

Country	Moderate	High	Severe	Total
<i>India</i>	136,519,504	62,069,136	12,518,925	211,107,565
<i>Myanmar</i>	24,766,404	11,528,165	2,522,746	38,817,315
<i>Thailand</i>	17,594,938	9,837,038	2,891,100	30,323,076
<i>Vietnam</i>	15,389,817	7,304,384	1,879,302	24,573,503
<i>Nepal</i>	13,758,316	7,235,163	2,379,862	23,373,341
<i>Bangladesh</i>	26,034,340	8,284,714	914,709	35,233,763
<i>Laos</i>	10,812,401	5,404,986	1,444,630	17,662,016
<i>Sri Lanka</i>	5,908,302	8,416,694	1,203,520	15,528,516
<i>Sumatra, Indonesia</i>	20,226,230	8,229,399	940,104	29,395,732
<i>Peninsula Malaysia</i>	9,079,643	5,169,395	865,122	15,114,160
<i>Cambodia</i>	5,834,804	2,340,035	817,595	8,992,434
<i>Bhutan</i>	409,150	850,541	800,912	2,060,603
<i>Sabah, Malaysia</i>	697,685	390,541	76,648	1,164,874
<i>Yunnan, China</i>	1,577,841	652,339	114,759	2,344,939

Table S6. Z-statistics between death and injury model. P-values beyond significance (>0.001) indicate no significant differences between coefficients' estimates and standard errors of the two fitted model.

Coefficient	Z-statistics	P-value
<i>Edge Density</i>	0.4	0.69
<i>Effective Mesh Size</i>	-0.54	0.59
<i>Terrain Ruggedness Index</i>	2.8	0.005
<i>Tasselled Cap Wetness Index</i>	1.26	0.2
<i>Human Footprint</i>	0.9	0.38
<i>Human Population Density</i>	-0.47	0.64
<i>Gross Domestic Product</i>	0.39	0.69
<i>Distance to Forest</i>	0.32	0.75
<i>Distance to Cropland</i>	-0.91	0.36
<i>Distance to Forest</i> <i>Plantations</i>	1.21	0.23
<i>Distance to Protected Areas</i>	0.4	0.69

Table S7. Definitions and sources for the predictor variables. *** indicates used in the regression analysis. We omitted some variables due to multicollinearity.

Variable	Description	Source Dataset	Usage
Fragmentation			
<i>Edge density (ed)</i>	The amount of edge habitat (forest), representing the number of human–elephant interfaces in a landscape	Xu et al. (2024)	***
<i>Landscape shape index (lsi)</i>	Complexity of landscape shapes in relation to how irregular or fragmented the patches are	Xu et al. (2024)	
<i>Largest patch index (lpi)</i>	Proportion of the landscape occupied by the largest habitat patch, identifying how dominant a habitat is in certain areas	Xu et al. (2024)	
<i>Effective mesh size (mesh)</i>	Measures the connection between patches, representing the connectivity in the area	Xu et al. (2024)	***
<i>Patch density (pd)</i>	Habitat patches per unit area in relation of fragmentation levels	Xu et al. (2024)	
Habitat and Natural Resources			
<i>Tasseled cap wetness index (wetness)</i>	A proxy for forest quality. Used to also detect changes in forest structure	Landsat 8 Collection 2 (GEE)	***
Socioeconomic			
<i>Human population density (popdens)</i>	Count of people per unit area	Tatem (2017)	***
<i>Gross domestic product (gdp)</i>	Measures the economic output of a certain area	Wang and Sun (2022)	***
<i>Nightlights (vnl)</i>	Nighttime lights as seen from satellite data, proxy for economic development	Elvidge et al. (2021)	
Potential human–elephant conflict			
<i>Distance to forest (dist_forest)</i>	Euclidean distance to naturally regenerated manage or unmanaged forests	Xu et al. (2024)	***

<i>Distance to cropland</i> (<i>dist_cropland</i>)	Euclidean distance to cropland	Potapov et al. (2021)	***
<i>Distance to forest plantations</i> (<i>dist_fp</i>)	Euclidean distance to forest plantations including agroforestry	Xu et al. (2024)	***
<i>Distance to protected areas</i> (<i>dist_pa</i>)	Euclidean distance to protected areas	IUCN and UNEP-WCMC	***

Human Disturbance

<i>Human footprint</i> (<i>hfp</i>)	Index of human pressure on the landscape	Venter et al. (2016)	***
--	--	-------------------------	-----

Topography

<i>Terrain ruggedness index</i> (<i>tri</i>)	Variability in ground terrain elevation, measures the ruggedness of the land	Danielson and Gesch (2011)	***
---	--	-------------------------------	-----

Table S8. List of *a priori* hypotheses of each driver and their references.

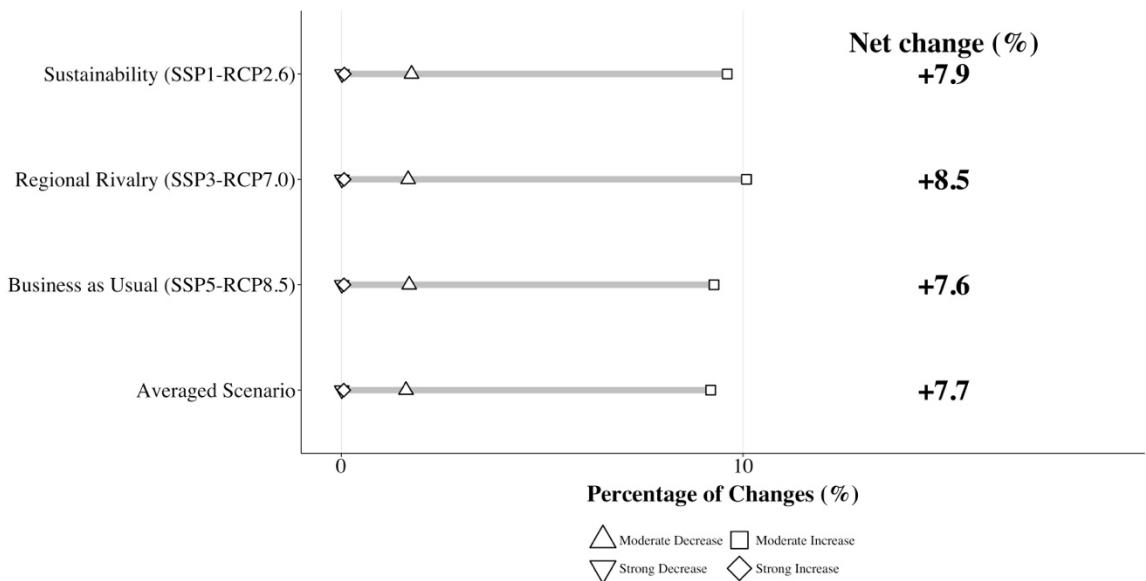
Drivers	Model	Hypotheses	References
<i>Potential Human-Elephant Conflict (distance to forest, distance to forest plantations, distance to cropland, and distance to protected areas), with and without quadratic terms</i>	Human Casualties (HC) ~ Potential HEC + Spatial Autocorrelation Term (SAC)	Human casualties will be higher nearer to forests, forest plantations, croplands, and protected areas due to elephant habitat preferences.	Natarajan <i>et al.</i> , 2023
<i>Habitat and Natural Resources (wetness)</i>	HC ~ Habitat and natural resources + SAC	Elephants prefer disturbed forests due to abundant food resources – wetness characterized forest structure. Human casualties will be higher where food resources are abundant for elephants.	de la Torre <i>et al.</i> , 2021, 2022
<i>Topography (terrain ruggedness index)</i>	HC ~ Topography + SAC	Elephants prefer flat surfaces; hence encounters are much more likely in less rugged environment.	de la Torre <i>et al.</i> , 2021
<i>Forest Fragmentation (edge density, landscape shape index, largest patch index, effective mesh size, and patch density)</i>	HC ~ Fragmentation + SAC	Elephants prefer the periphery of forest. Fragmentation indicates higher human-elephant interfaces. Human casualties will be higher where forests are more fragmented.	Acharya <i>et al.</i> , 2017
<i>Human Disturbance (human footprint)</i>	HC ~ Human Disturbance + SAC	Higher human disturbance (built-up area and linear infrastructure) increases the chance of encounter. Human casualties will be	Natarajan <i>et al.</i> , 2023

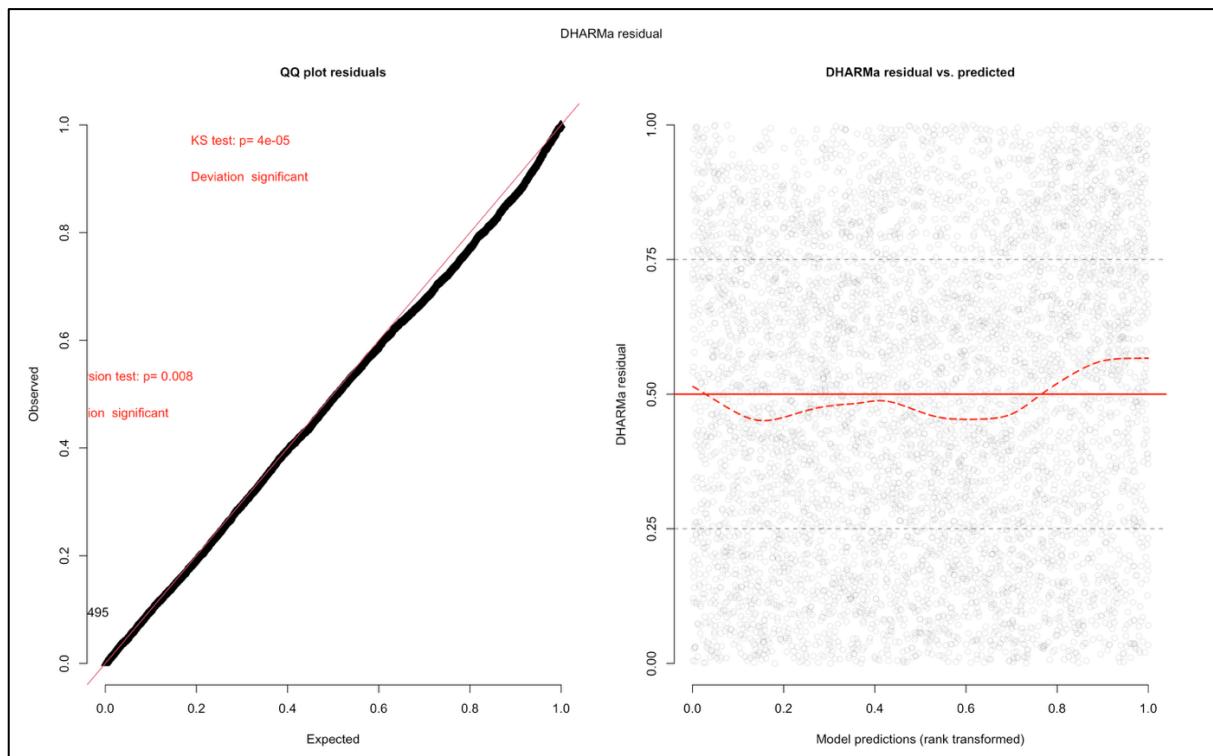
		higher where there is higher rate of human disturbance.	
<i>Socioeconomic (Human population density, gross domestic product, nightlights)</i>	$HC \sim \text{Socioeconomic} + SAC$	Human casualties will be higher in densely populated settlements and among people with low economic background.	Ram <i>et al.</i> , 2021
<i>Full Model, with and without quadratic terms</i>	$HC \sim \text{Potential HEC} +$ Habitat and Natural Resources + Topography + Fragmentation + Human Disturbance + Socioeconomic + SAC		

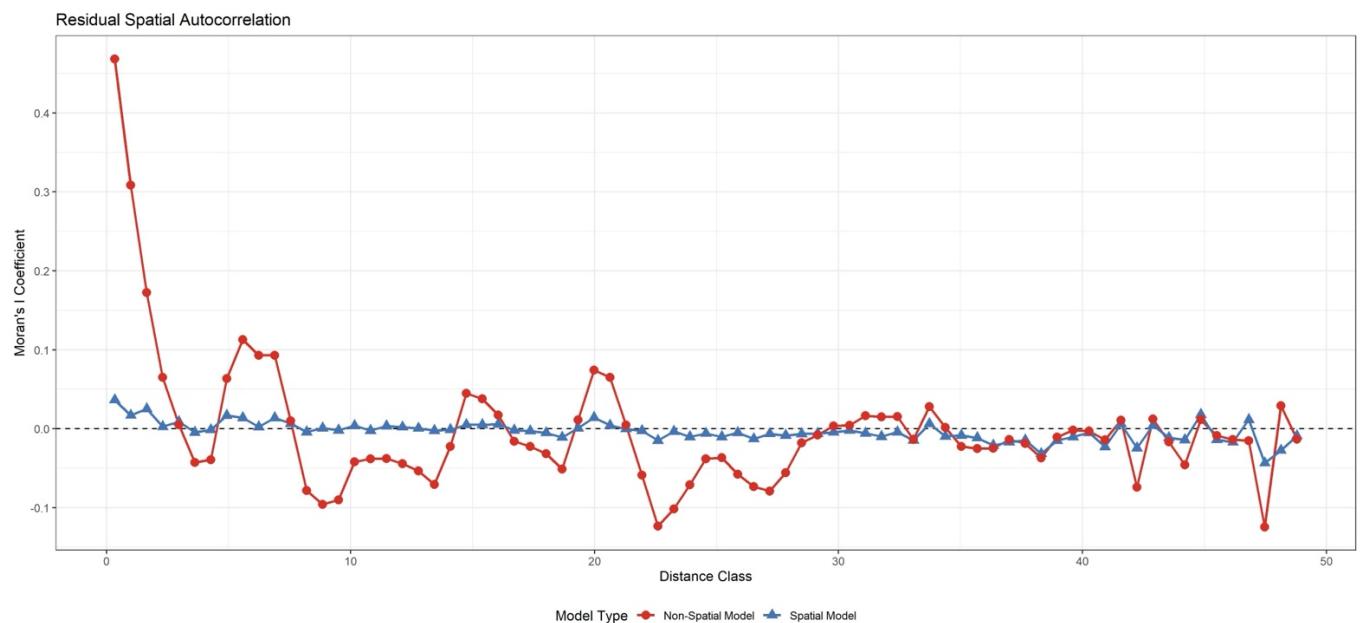
Table S9. Sources for country-level patterns of wild elephant-caused human casualties across Tropical Asia for the period 2020-2024.

No	Country	Period covered	Total casualties	Source
1	<i>India</i>	2000, 2009-2024	1,581	Centre for Science and Environment (2025); Lok Sabha Unstarred Questions No. 3194: Elephant-Human Conflict (2023); Pandey <i>et al.</i> (2024)
2	<i>Sri Lanka</i>	2010-2024	358	Gunawansa <i>et al.</i> (2023)
3	<i>Nepal</i>	2000-2020	412	Ram <i>et al.</i> (2021)
4	<i>Myanmar</i>	2010-2022	171	Forest Department, Myanmar
5	<i>Bangladesh</i>	2001- 2004, 2009, 2012	242	Hossen (2013)
6	<i>China</i>	2000- 2004, 2013-2019	105	Chen <i>et al.</i> (2012); Hu <i>et al.</i> (2021)
7	<i>Malaysia</i>	2006-2021	42	Department of Wildlife and National Parks Peninsula Malaysia
8	<i>Laos</i>	2000-2020	22	Ministry of Agriculture and Forestry (2022)
9	<i>Cambodia</i>	2009, 2011, 2012, 2014	4	<i>Pers. Communication</i>
10	<i>Sabah (Malaysia)</i>	2011, 2015, 2016, 2023	4	<i>Pers. communication</i>

Table S10. Province-level data used to compare predicted risks and actual data.


No	Country	Period covered	Source
1	<i>Bangladesh</i>	2012	Hossen, A. (2013)
2	<i>Myanmar</i>	2010-2022	Department of Forestry, Myanmar
3	<i>India</i>	2019-2021	“Lok Sabha Unstarred Questions No. 3194: Elephant-Human Conflict (2023)”


4	<i>Sri Lanka</i>	2019-2021	Gunawansa <i>et al.</i> (2023)
5	<i>China</i>	2000-2004	Chen <i>et al.</i> (2012); Hu <i>et al.</i> (2021)
6	<i>Malaysia</i>	2006-2021	Department of Wildlife and National Parks of Peninsular Malaysia
7	<i>Laos</i>	2000-2020	Ministry of Agriculture and Forestry (2022)
8	<i>Indonesia</i>	2015-2020	Leuser International Foundation (2021)


Figure S1. Risk change across all scenarios compared to the baseline scenario (2015).

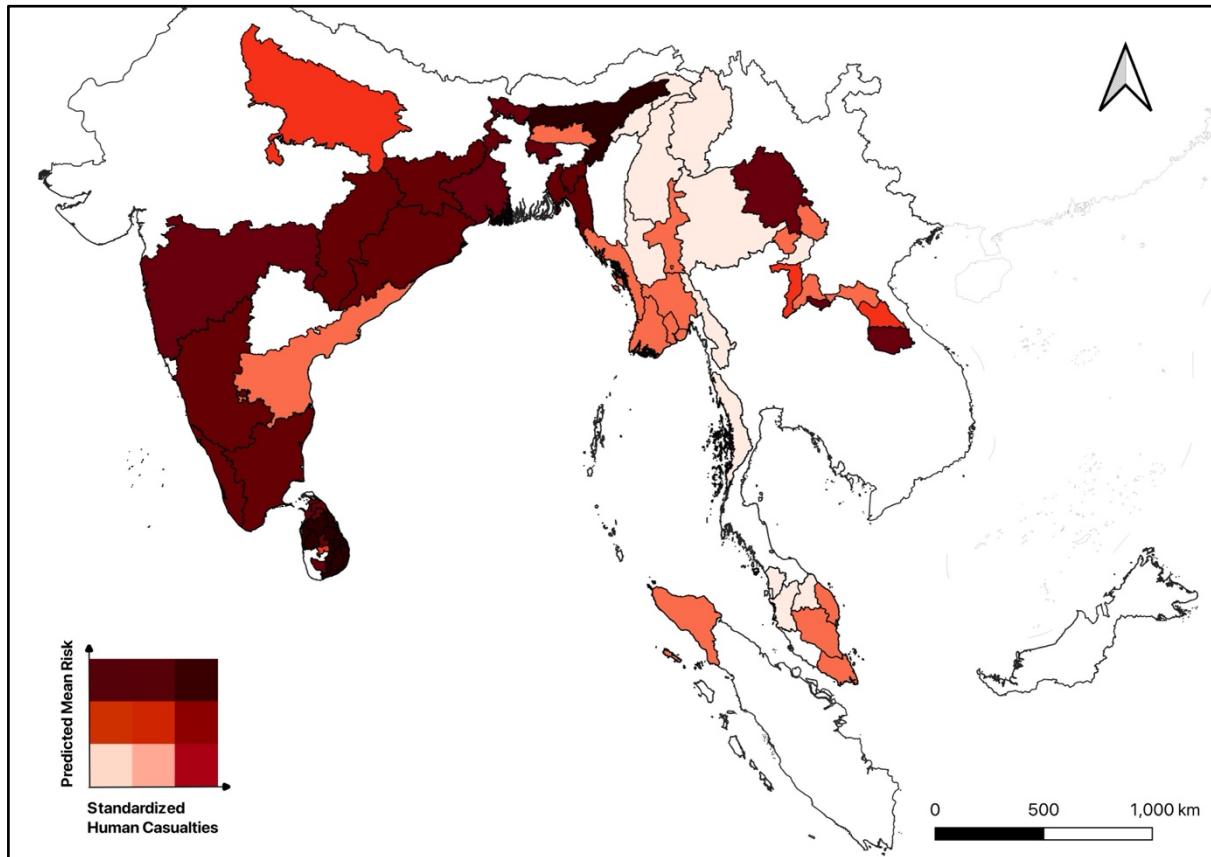

Figure S2. Simulated residuals diagnostics of the chosen model.

Figure S3. Spatial (fitted with Matérn covariance) and non-spatial model correlogram.

Figure S4. Standardized human casualties against the area-weighted predicted mean risk. We validated our predictions to actual data at province-level. Official reports were compiled from 64 provinces across 8 countries (Table S10).

References

Acharya, K.P. *et al.* (2017) “Can forest fragmentation and configuration work as indicators of human–wildlife conflict? Evidences from human death and injury by wildlife attacks in Nepal,” *Ecological Indicators*, 80, pp. 74–83. Available at: <https://doi.org/10.1016/j.ecolind.2017.04.037>.

Center for Science and Environment (2025) *State of India’s Environment: In Figures*.

Chen, M. (2012) *Studies of Conflict between Human Beings and Elephants in China [in Chinese]*.

Clogg, C.C., Petkova, E. and Haritou, A. (1995) “Statistical methods for comparing regression coefficients between models,” *American Journal of Sociology*, 100(5), pp. 1261–1293. Available at: <https://doi.org/10.1086/230638>.

Danielson, J.J. and Gesch, D.B. (2011) *Global multi-resolution terrain elevation data 2010 (GMTED2010), Open-File Report*. 2011–1073. U.S. Geological Survey. Available at: <https://doi.org/10.3133/ofr20111073>.

Elvidge, C.D. *et al.* (2021) “Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019,” *Remote Sensing*, 13(5), p. 922. Available at: <https://doi.org/10.3390/rs13050922>.

Gunawansa, T.D. *et al.* (2023) “The human-elephant conflict in Sri Lanka: history and present status,” *Biodiversity and Conservation*, 32(10), pp. 3025–3052. Available at: <https://doi.org/10.1007/s10531-023-02650-7>.

Hossen, A. (2013) *Human-elephant conflict in Bangladesh: causes and intensities*. Norwegian University of Science and Technology.

Hu *et al.* (2021). Research Progress and Prospects of Human-Elephant Conflict at Home and Abroad. *Journal of Beijing Forestry University (Social Science)*, 20(2), pp. 72–79. Available at: <https://doi.org/10.13931/j.cnki.bjfuss.2021077>

IUCN and UNEP-WCMC (2023) “The World Database on Protected Areas (WDPA) [Online] Available at: www.protectedplanet.net. WDPA Updates.”

Leuser International Foundation (2021) *An update to human-elephant conflict in Aceh, Indonesia*.

“Lok Sabha Unstarred Questions No. 3194: Elephant-Human Conflict” (2023).

Ministry of Agriculture and Forestry (2022) *National Elephant Action Plan, Lao PDR, 2022 to 2032*. Ministry of Agriculture and Forestry, Department of Forestry.

Natarajan, L., Nigam, P. and Pandav, B. (2023) “Impacts of passive elephant rewilding: assessment of human fatalities in India,” *Environmental Conservation*, 50(3), pp. 186–191. Available at: <https://doi.org/10.1017/S0376892923000115>.

Pandey, R.K. *et al.* (2024) “Elephant conservation in India: Striking a balance between coexistence and conflicts,” *Integrative Conservation*, 3(1), pp. 1–11. Available at: <https://doi.org/10.1002/inc3.38>.

Paternoster, R. *et al.* (1998) “Using the Correct Statistical Test for the Equality of Regression Coefficients,” *Criminology*, 36(4), pp. 859–866. Available at: <https://doi.org/10.1111/j.1745-9125.1998.tb01268.x>.

Potapov, P. *et al.* (2022) “Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century,” *Nature Food*, 3(1), pp. 19–28. Available at: <https://doi.org/10.1038/s43016-021-00429-z>.

Ram, A.K. *et al.* (2021) “Patterns and determinants of elephant attacks on humans in Nepal,” *Ecology and Evolution*, 11(17), pp. 11639–11650. Available at: <https://doi.org/10.1002/ece3.7796>.

Tatem, A.J. (2017) “WorldPop, open data for spatial demography,” *Scientific Data*, 4(1), p. 170004. Available at: <https://doi.org/10.1038/sdata.2017.4>.

de la Torre, J.A. *et al.* (2021) “There will be conflict – agricultural landscapes are prime, rather than marginal, habitats for Asian elephants,” *Animal Conservation*, 24(5), pp. 720–732. Available at: <https://doi.org/10.1111/acv.12668>.

de la Torre, J.A. *et al.* (2022) “Sundaic elephants prefer habitats on the periphery of protected areas,” *Journal of Applied Ecology*, 59(12), pp. 2947–2958. Available at: <https://doi.org/10.1111/1365-2664.14286>.

Venter, O. *et al.* (2016) “Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation,” *Nature Communications*, 7(1), p. 12558. Available at: <https://doi.org/10.1038/ncomms12558>.

Wang, T. and Sun, F. (2022) “Global gridded GDP data set consistent with the shared socioeconomic pathways,” *Scientific Data*, 9(1), p. 221. Available at: <https://doi.org/10.1038/s41597-022-01300-x>.

Xu, H. *et al.* (2024) “Changes in the Fine Composition of Global Forests from 2001 to 2020,” *Journal of Remote Sensing*, 4, p. 0119. Available at: <https://doi.org/10.34133/remotesensing.0119>.