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Supplementary Fig. 1. Optical images illustrating the LIL fabrication process: raw precursor film, laser writing to form “LIL” patterns, powder removal via air blowing, and pick-up of the crystallized ZnS/CaZnOS:Mn LIL. The rightmost image reveals the porous and rugged morphology of the LIL, visible to the naked eye. Scale bars: 1 cm.
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[bookmark: OLE_LINK27]Supplementary Fig. 2. Demonstration of reduced powder generation and ML emission of ZCM@LIL with B2O3 addition. The emission is triggered by glass rod friction against a PET protective layer.
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Supplementary Fig. 3. SEM characterization of CaZnOS:Mn@LIL at laser power of 20W.
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Supplementary Fig. 4. EDS characterization of CaZnOS:Mn@LIL at laser power of 20W.
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[bookmark: OLE_LINK21]Supplementary Fig. 5. XRD patterns of ZnS:Mn, CaZnOS:Mn and ZnS/CaZnOS:Mn prepared by HTSS and LTP at different powers.
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Supplementary Fig. 6. PL excitation, emission, and decay curves of ZnS:Mn, CaZnOS:Mn and ZnS/CaZnOS:Mn. The decay curves are in logarithmic scale.
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Supplementary Note 1. FEM simulation details

In the simulation framework, the laser heat flux () is delineated by a composite Gaussian distribution, expressed as:




[bookmark: OLE_LINK2][bookmark: OLE_LINK38]where  denotes the distance between the laser beam and the focal point, and  represents the laser spot radius. The simulation model neglects heat convection, while heat conduction is coupled via the following equation:







[bookmark: OLE_LINK34][bookmark: OLE_LINK36]where is the material density,  signifies the specific heat capacity at constant pressure,  is the velocity vector,  denotes the thermal conductivity, and  is the heat source tern. In addition, thermal radiation emitted from the material surface to the environment is accounted for by:










[bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK35][bookmark: OLE_LINK4]where  is the heat flux vector,  is unit normal vector to the surface, is emissivity of the surface, is the Stefan-Boltzmann constant, and  stands for the ambient temperature. Finally, thermal strain ()  is proportional to the temperature variation and the thermal expansion coefficient. It is regulated by dissipative heat () and entropy () as follows: 




Supplementary Note 2. Deep learning framework
This study proposes a five-level progressive deep learning system architecture, consisting of a preprocessing layer, data augmentation layer, model architecture layer, optimization strategy layer, and performance evaluation layer. Through a closed-loop process of feature enhancement, data augmentation, CNN modeling, optimization parameter tuning, visualization display, it achieves efficient classification of "A, D, S, W" four types of ML alphabet images. Aiming at the recognition challenges of incomplete images, this architecture conducts full-link analysis from data processing, model construction to result optimization, demonstrating advantages in robustness and accuracy.



In the aspect of ML image preprocessing, multiple operations are employed to strengthen alphabet features and improve image quality. First, a Laplacian second-order differential operator  is used for convolution with a sharpening factor of 2.0, enhancing the gradient amplitude of alphabet edges and effectively highlighting contour clarity. Second, contrast stretching is performed via a linear transformation function  (where x represents the grayscale value of the original image pixel, min and max are the minimum and maximum grayscale values of the original image, and contrast_factor=1.5 controls the contrast enhancement degree), expanding the distribution range of grayscale values, increasing the entropy of pixel grayscale distribution, and thus enlarging the variance between alphabets and the background in the class space to enhance image recognizability. For brightness unevenness, a brightness equalization strategy is adopted: when the mean_brightness of the image is less than 128, linear mapping is performed  (where x is the original pixel value, y is the pixel value with enhanced brightness), and experiments based on classification evaluation metrics such as accuracy and precision show that this operation improves the recognition rate of alphabets under dark backgrounds. The Laplacian second-order differential operator enhances the grayscale difference on both sides of edges to strengthen the contrast of alphabet stroke boundaries, followed by the Sobel first-order differential operator to accurately extract contour shape features, providing precise edge positioning for image binarization. Finally, combining morphological topology methods, erosion and dilation techniques with a 3×3 structural element eliminates isolated noise and connect broken alphabet strokes, significantly closing alphabet gaps and improving contour integrity.
In data augmentation, this study constructs a self-built dataset containing four types of alphabets ("A, D, S, W") with 60 original samples (15 per class). Data augmentation is performed on preprocessed 224×224 binary grayscale images, expanding the sample size to 2,400, which are divided into training, validation, and test sets at a ratio of 7:1:2. The augmentation strategy employs two methods: (1) targeted occlusion, where alphabets are in white regions and the background is in black regions, using the same color as the background for occludes in shapes of circles, rectangles, triangles, and irregular figures, with five occlusion ratios (10%, 20%, 30%, 40%, 50%) for independent occlusion processing of each region, expanding a single image into 20 augmented samples; (2) adding salt-and-pepper noise, injecting black and white noise points randomly with a density of 0.02-0.1, combined with local pixel perturbations of different intensities, to simulate sudden errors such as image stains caused by signal interference in experiments. This strategy not only expands the dataset scale but also effectively improves the model's generalization ability by simulating partial occlusions and stain interferences in real-world scenarios. As illustrated in Supplementary Fig. 6, partial ML images of the four alphabets are presented, with four representative images demonstrating the "targeted occlusion" augmentation strategy.
[image: 日历

AI 生成的内容可能不正确。]
[bookmark: OLE_LINK28]Supplementary Fig. 6.  ML images and the targeted occlusion" augmentation strategy.



Model optimization is conducted from three dimensions: data, training, and architecture. In the data dimension, addressing sample class imbalance, the WeightedRandomSampler function is adopted  (where N is the total number of samples in all classes, is the number of samples in the i-th class, and  is the sample integrity score), dynamically assigning weights based on the reciprocal of the number of samples in each class and the data quality of each sample to increase the sampling probability of rare classes (samples with better integrity). In the training dimension, the ReduceLROnPlateau scheduler is used for adaptive learning rate adjustment: when the validation loss does not decrease for 3 consecutive epochs, the learning rate is reduced by 50%, effectively avoiding local optima, while the minimum learning rate (1e-5) prevents training stagnation due to excessive learning rate decay; an early stopping mechanism with a patience of 5 epochs avoids ineffective training when the validation set performance no longer improves, saving computational resources and preventing overfitting. In the model architecture dimension, ablation experiments verify the effectiveness of key components. Experiments show that the asymmetric activation characteristic of LeakyReLU significantly enhances the model's response to direction-sensitive features such as straight lines and acute angles of alphabets, especially for recognizing the triangular framework of "A" and the multi-peak structure of "W"; removing LeakyReLU leads to a decrease in the classification accuracy of "A" and "W". Removing the Dropout layer increases the validation set variance, a manifestation of overfitting, where the model performs excellently on the training set but fluctuates greatly on the validation set, causing significant differences in model parameters across different training batches and unstable prediction results. Through repeated optimizations, it is determined that the combination of three-level Dropout (0.5+0.5+0.4) and BatchNorm achieves the optimal model evaluation performance, proving the effectiveness of the implicit attention mechanism.
The detailed information of the corresponding CNN model architecture and operational configurations in this study is shown in the following tables. 


Supplementary Table 1.  CNN Model Architecture
	Layer
	Input
	Output
	Kernel Size
	Channel Number
	Activation Function
	Configuration

	Convolutional Layer 1
	224×224×1
	224×224×32
	3×3
	32
	LeakyReLU(0.1)
	BatchNorm2d

	Max Pooling Layer 1
	224×224×32
	112×112×32
	2×2
	
	
	stride=2

	Convolutional Layer 2
	112×112×32
	112×112×64
	3×3
	64
	LeakyReLU(0.1)
	BatchNorm2d

	Max Pooling Layer 2
	112×112×64
	56×56×64
	2×2
	
	
	stride=2

	Convolutional Layer 3
	56×56×64
	56×56×128
	3×3
	128
	LeakyReLU(0.1)
	BatchNorm2d

	Max Pooling Layer 3
	56×56×128
	28×28×128
	2×2
	
	
	stride=2

	Convolutional Layer 4
	28×28×128
	28×28×256
	3×3
	256
	LeakyReLU(0.1)
	BatchNorm2d

	Adaptive Pooling Layer
	28×28×256
	7×7×256
	
	
	
	AdaptiveAvgPool2d (7,7)

	Fully Connected Layer 1
	7×7×256
	512
	
	512
	LeakyReLU(0.1)
	Dropout (0.5), BatchNorm1d

	Fully Connected Layer 2
	512
	256
	
	256
	LeakyReLU(0.1)
	Dropout (0.5), BatchNorm1d

	Output Layer
	256
	4
	
	4
	Softmax
	




Supplementary Table 2. Operational Configurations/Versions of the CNN Model
	Type
	Operational Configurations/Versions

	CPU
	Intel i5-12600KF

	GPU
	NVIDIA GeForce RTX 3060Ti（16GB）

	RAM
	32GB

	Windows
	Windows 10

	torcch
	2.4.1+cu121

	torchaudio
	2.4.1+cu121

	torchvision
	0.19.1+cu121

	python
	3.8.20

	numpy
	1.22.0

	scikit-learn
	1.3.2

	matplotlib
	3.7.5
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