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I Structural characterization

When tackling such a difficult sample synthesis procedure, samples characterization is pivotal. The possible structures of Lan-
thanum hydrides at Mbar pressures have been studied in experimental [Laniel et al.|[2022] as well as purely theoretical structural
search works [Peng et al. 2017; Shipley et al. 2020; Errea, Belli, et al.|[2020]. In this wide literature, the phase most commonly
recognized to be stable and that show strong SC behavior displays a F'm3m space-group symmetry [Drozdov et al. 2019; Liu
et al. 2018]]. This comprises a cubic close-packed fcc structure of La atoms, that are arranged in triangular layers with an ABC
stacking along the [111] direction of the conventional cubic cell (as shown in [Extended Data Fig. 6] top left panel). The
much smaller H atoms occupy the interstitial positions of such highly symmetric close-packed lattices. Hydrogen atoms can
be symmetry-wise grouped in two sets of Wyckoff positions, 8c and 32f: the former are located at tetrahedral interstitial posi-
tions, the latter instead arrange in regular cubes at octahedral interstitial sites or in regular tetrahedra around the 8c Hydrogen at
tetrahedral sites. As a result, they form a cage around each La atom that can be seen as a chamfered cube, a highly symmetric
convex polyhedron with 6 congruent squares and 12 congruent flattened hexagons having two internal angles of 109.47° and the
remaining four of 125.26° (Extended Data Fig. 6] bottom left). We will refer to this highly symmetric phase as fcc-LaH;o.
Several other structural phases have been proposed, including rhombohedral R3m, orthorhombic Immmim and monoclinic Cy
or Cy/m ones [Errea, Belli, et al. 2020; Sun et al. 2021|] [Eremets et al.|[2022]. All such phases retain the ABC stacking of La
triangular layers and can be seen as a symmetry-lowering deformation of the cubic close-packed fcc structure mostly involving
a rearrangement of the hydrogen atoms and a consequent deformation of the chamfered-cubic cage.

A fundamentally different and competing hexagonal phase with P63/mmc space-group symmetry and two formula units has
been also proposed as thermodynamically stable and hosting a high-T. superconducting phase [Shipley et al.|2020]: signatures of
this structural phase have been reported as impurities in otherwise cubic structures [Drozdov et al.[2019} Sun et al.[2021]]. In this
structure La atoms form an hexagonal closed-packed (hpc) lattice where La triangular layers display a different ABAB stacking
along the hexagonal ¢ axis, that can be related to the fcc structure by a 3-fold rotation of the C layer about an axis orthogonal to
the triangular layers and passing through a La atom (see [Extended Data Fig. 6|top panels). Hydrogen atoms can be grouped in
three sets of Wyckoff positions of the highest-symmetric hexagonal P63 /mmc space group, namely 4e, 4 f and 12k. Here the
4f H atoms sit at the center of tetrahedral interstitial sites while 4e and 12k H atoms form both distorted tetrahedra around 4 f
positions and distorted cubes filling the octahedral voids of the hpc lattice. The resulting substantial deformation of the hydrogen
cage around each La atom can also be interpreted as a deformation of the chamfered cube where the lower half of the polyhedron
with respect to the triangular-layer plane is rotated by 120° about a perpendicular axis passing through the La atom at the center
of the H cage (Extended Data Fig. 6| bottom right panel). Nonetheless, the P63/mmc phase displays the largest number of
symmetries within the hexagonal crystal systems; henceforth we will refer to it as the hpc-LaH;y phase. Symmetry-lowering
rearrangements of H atoms can be foreseen also for this hpc lattice, in close analogy with the several proposed modification of
the fcc phase, that to the best of our knowledge have not been explored so far.

The different arrangement of La atoms in fcc and hep lattices results in a clear identification of a hexagonal structure of La
atoms from X-ray diffraction measurements, that instead cannot provide information on the Hydrogen positions due to its small
atomic mass. Nonetheless, useful structural information can be extracted from Raman spectra, especially in the low-frequency
range where vibrational signatures are mostly contributed by La phonons. La atoms do not contribute to any Raman-active
phonon mode in the highly symmetric fcc F'm3dm phase. On the other hand, the highly symmetric P63 /mmc phase allows for a
single Raman-active La phonon, contrasting the structured spectra we observe in the 100-200 cm ™! frequency range. The latter
observation, alongside the XRD characterization of the La hexagonal lattice, suggests a substantial rearrangement of Hydrogen
atoms that may cause an overall symmetry reduction with a consequent activation of other La phonon modes. We explored this
possibility by performing first-principles calculations of the candidate structures within density functional theory (DFT) using
the generalized gradient approximation (GGA) as parametrized by Perdew, Burke and Ernzerhof (PBE) [Perdew et al. [1996].
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Harmonic phonon frequencies were calculated within density functional perturbation theory (DFPT) [Baroni et al.|2001]] making
use of the Quantum ESPRESSO code [Paolo Giannozzi et al.[2009; Giannozzi et al.[2017]. We used optimized norm-conserving
Vanderbilt pseudopotentials [Hamann |[2013]] from the Pseudo dojo repository [van Setten et al.|[2018)], including 11 electrons for
La, with a plane-wave cut-off energy of 110 Ry for the kinetic energy. We adopted I'-centered Monkhorst—Pack grid of k-points
with a spacing of ~ 0.13 A~! and a Gaussian smearing of 0.03 Ry for Brillouin-zone integration. For structural optimization we
adopted convergence criteria such that forces on the atoms were less than 2.5 meV A~! and stresses were less than 0.01 GPa.
The static and dynamic phonon frequencies were obtained diagonalizing the dynamical matrix in these two limits as defined in
the method and we tested a posteriori the negligible difference between static and dynamic eigen-vectors.

We first optimized the P65/mmc structure previously reported [Shipley et al. [2020] at a classical pressure of 135 GPa,
as quantum effects have been shown to add around 10-15% of extra pressure [Errea, Belli, et al. 2020; Errea, Calandra, et al.
2016; Belli and Errea 2022]. The calculated lattice parameters are a = 3.72 A and ¢ = 5.68 A, roughly within 1% error
with respect to refined XRD lattice constants (structural details are given in [Supplementary Table 1). The enthalpy of such
structure is 4.1 meV/f.u. above that of the fcc phase evaluated at the same pressure. We calculated the phonon dispersion by
Fourier-interpolating the harmonic force constants on a 2x2x2 grid comprising the high-symmetry points I', A, L and M of
the hexagonal Brillouin zone. Several phonon modes display imaginary frequencies, shown as negative values in Supplementary
Figure[Supplementary Figure 1} projection onto the La atomic character clearly shows that unstable modes mostly involves light
H atoms, while La atoms mostly contribute to phonon modes in the 0-250 cm~! range. As materials rich in light elements are
sensible to quantum anharmonic effects, typically reducing the tendency to dynamical instabilities, we recalculate La-dominated
phonon frequencies by artificially reducing the hydrogen atomic mass, thus disentangling the H contribution to those phonon
modesSupplementary Figure 2| At the T' point of the P63/mmc (displaying Dgp, point-group symmetries) there are only
two optical phonon modes due to the La vibrations, among which only the Es, (F; in the Miller-Love notation) mode at
approximatively 90 em~! is Raman-active, as shown in Fig. Supplementary Figure 2a. The most unstable hydrogen phonon is a
M mode at M point of the hexagonal Brillouin zone (B; ¢ using the Mulliken notation for the Dy, point group of point M), that
could lead to a 2x 1x 1 reconstruction with orthorhombic Pnma structure or to a 2x2x 1 hexagonal P63/m phase comprising
eight formula units. Interestingly, La-derived phonon modes appear in the frequency range 120-200 cm™' at the M point,
that might induce additional Raman-active modes when folded at the center of the Brillouin zone after the symmetry-lowering
reconstruction (see coloured area in Fig. [Supplementary Figure 2a). We discard the 2x1x1 orthorhombic reconstruction as
it will turn on the Raman activity of the zone-center La phonon Bj, at ~ 250 cm™?, falling outside the targeted frequency
range. Following the symmetry-lowering phonon mode M2+ we therefore optimized the hexagonal P63 /m structure and found
an enthalpy gain of -2.8 meV/f.u. over fcc-LaH;jg. In the reconstructed structure La atoms undergo very tiny displacements (at
most of 4x 103 A) from the ideal positions of the P6s /mmc phase, while Hydrogen displacements are one order of magnitude
larger. We computed phonon frequencies of the reconstructed cell limiting the calculations to inversion-even modes, i.e., those
that may display Raman activity, in order to reduce the computational burden in such a large supercell. The zone-center F; mode
of undistorted hpc-LaH is blue-shifted to ~102 cm ™!, while other zone-folded phonon modes appear to become Raman-active
in the frequency range between 100 and 200 cm~! as shown in Fig. [Supplementary Figure 2b. Among these, we identify those
contributing to satellite peaks at ~ 150 and ~ 197 cm™! as E;, and E», modes arising from the folding of La M3* and M?*
modes of the P63/mmec phase, respectively.




Space group Lattice parameters ‘Wyckoff positions
a =5.13709 A La 4b 2,54
Fm3m H 8¢ [%, % %
Volume/f.u. =33.89 A3 H 32f [xf,xp, 2] xy = 0.87908
a=3.72120 A La 2¢ 3,21
PGy /mme ¢ =5.68038 A H 4e 0,0, 2] ze = 0.35384
H 4f 11,2 2] zp = 0.61510
Volume/f.u. = 34.06 A3 H 12k [k, 22, 2k] z = 0.83410, zj, = 0.08601
a=T7.45130 A La2c¢ (3, %, 1)
¢ =5.67802 A La 6h [@h, yn, 1] ), = 0.83259, yj, = 0.16563
H 4e [0,0, z.] ze = 0.34603
H 4f 1, 3,zf] zp = 0.61619
P6 H 12i [0.16664,0.08117,0.91759]
3/m .
H 12i [0.16724,0.58398,0.91395]
H 12i [0.67170,0.08756,0.91236]
H 12i [0.65834,0.57907,0.91780]
H 12i [0.99935,0.49028, 0.64746]
Volume/f.u. = 34.13 A3 H 12i [0.33147,0.17916,0.88389]

Supplementary Table 1: Computed structural parameters Structural parameters of fcc, hpc and distorted hpc phases eval-
uated from DFT calculations at a classical pressure of 135 GPa. Wyckoff positions are given in crystal coordinates and only for
a representative site for each Wyckoff orbit, as the other positions can be obtained by applying the corresponding space-group
symmetry operations.

P63 /mme (# 194) P63/m (# 176)
I' (Den) M (Dap) T (Cen)
Static Dynamic Static Static Dynamic
Iy (Eay) 89.5[83.3] 125.8 [120.7] I'T ol (Ey)  102.2[90.3] 154.4 [144.8]
I ol (By,) 150.6[131.9] 163.6 [159.8]
T+ 4 6 1g
Mg (Bzg) 1398 [135.4] Iy (By)  178.0[172.9] 179.6 [173.9]
I aTF  (By) 164.6[160.4] 182.4 [178.4]
g+ 3 5 29
My (A IRTOSA2D P ™ 8 1981 [176.8] 1790 [177.8]
rf (A,)  185.1[180.9] 192.8 [189.5]
]

Via A
My (Big)  1826[181.3] T el (Ey) 197.0[192.5] 210.9[198.3

It (By,) 254.1[2533]  256.1[2554]

Supplementary Table 2: Calculated phonon frequencies in the static harmonic approximation. La-derived phonon modes
that can display Raman optical activity. Phonon modes are labeled according to the irreducible representations of the point group
relevant for the crystal structure and phonon momentum, using the Miller-Love notation (Mulliken notation in round brackets).
Phonon (static) frequencies are given in cm~" in the limit of infinitely small Hydrogen mass, the corresponding value obtained
for the physical m g being given in square brackets. For the higher-symmetry hpc-LaH;( phase we list the two La phonons at T,
only one of which is Raman active; the optically inactive phonon is written in gray. We further provide the phonon frequencies
of inversion-even modes at the M point whose folding in the lower-symmetric 2x2x 1 reconstruction gives rise to additional
Raman-active phonon modes. The folding of the M5~ mode in the zone center of the P63/m produces a Raman-active F7, mode
and an optical inactive B, mode (gray-shaded) that appears to hybridize with the zone-center phonon mode labeled as I‘I in
the high-symmetry structure. [Extended Data Table 1|compares the ab initio frequencies of the P63 /m reconstruction with the
values obtained from the analysis of the experimental spectra.
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Supplementary Figure 1: Phonon dispersion of hpc-LaH; from DFT. Harmonic phonon dispersion of hexagonal LaHg in
the P63 /mmc phase, interpolated from a 2x2 X2 grid comprinsing the high-symmetry points I', A, L and M. The phonon modes
with dominant La character in the frequency range 0-250 cm ™! is highlighted by dark-red points whose size is proportional to
the La contribution. The grey shading marks the region with unstable (imaginary) phonon frequencies, here depicted as negative
frequencies. The strongest dynamical instability occurs for a By, (M, in Miller-Love notation) phonon mode contributed only

by Hydrogens at the M point.
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Supplementary Figure 2: Lanthanum-derived Raman-active modes in ideal hpc-LaH;; and in reconstructed cell. In
order to identify the interplay of La and H contribution in low-energy phonon modes with dominant Lanthanum character, we
show the evolution of phonon frequencies as a function of inverse Hydrogen mass, where the Hydrogen contributions can be
fully suppressed in the limit of vanishing mg. a At I" point of hpc-LaH;o only two modes are significantly contributed by La
atoms, a Raman-active 4 and an optically inactive B1, mode, displayed as grey empty symbols. Phonons are labeled using
the Mulliken notation for the irreducible representations of the Dgy, point group describing the symmetry properties at the I'
point. The coloured region highlights six La-derived phonon modes found at M point of LaH;¢ in the P63/mmc phase, labeled
using the Miller-love notation. Among these only three are even under inversion and expected to give rise to Raman-active
folded phonons. They are displayed with solid symbols with red, blue and green colours, while the inversion-odd partners are
shown as empty grey symbols. Using Mulliken notation for the M point with Dy, point-group symmetries, the inversion-even
modes correspond respectively to Ay, Bi, and Bsy, irreducible representations. b Raman-active La-derived phonon modes for
the 2x2x1 reconstructed cell with P63/m symmetry (crystallographic point grop Cgp). The lowest Es, mode corresponds to
the zone-center Raman-active mode of the higher-symmetry P63 /mmc phase, that is however blue-shifted at slightly higher
frequencies most probably as a consequence of the different H-sublattice. The folding of Mfr and M; phonons of the higher-
symmetry structure split into Fog + A, modes at the I' point of the lower-symmetry phase, with a splitting of approximatively
12-14 cm~!. Finally, M;' phonons are zone-folded and split in a Raman-active F1, mode (green solid triangles) strongly

sensitive to the H-sublattice, and in a silent B, mode (not shown) that is blue-shifted by ~ 30 cm™ L



Convention “ladder” operator ¢ “displacement” operator u,
i s

Phonon propagator Dyt —t') = —i <T</)H(t)¢f,(t/)> D, (t—t") = —iv/M;Mg <Tum(t)'ul,ﬂ(t’)> Esaus' gy
Bare Phonon propagator D(O)(z) - e D, 0)( )= 1
propag ot = Z-Ww?)? L T (WP
. . -1 _
Dyson Equation Dyu(z) = 2w2 {22 — (wﬂ)Z — 2w22u(z)] D,u(z) = [22 — (wﬂy“)2 — E‘,(z)} !
Phonon self energy $,(2) = —h2Ngp <\g‘,|2>5}_ 1(2) Tu(z) = (Wit — wdm)2](2)
Phonon spectral func. A (w) =1lim, o+ Im 22D, (2) Ay(w) =lim, 0+ Im =22D,,,(2)
Phonon spectral func. norm 2 Auw) =0 I, =2
Raman profile 75},,(0.1) = 45}2 A,,,(w) Pu(w) = 55 Au(w)
Parameters { w5 =2Nr (l9u*) g, 3 r/,,,,,,} {wdvn s Wit s iy b

Supplementary Table 3: Definition of pivotal quantities in the “Dressed bubble” approximation for phonon propagator accord-
ing to different conventions.

II  Ab initio dressed bubble approximation for phonon spectral function

A Ladder operators convention

The central quantity in the many-body description of crystal vibrations is the phonon propagator D,,, (2) defined as the retarded
correlation of the phonon field operator ¢,, [Mahan 2000, p. 118]

Dy (t 1) = —i0(t — ) {6, ()0} (1)) (D)

where 6(¢) is the Heaviside function.

In order to describe the low-energy interaction between the electronic and ionic degrees of freedom, the electron-phonon
coupling guim,qu, relating two electronic states |ki) and |k + qm) and a phonon mode g, is introduced. Furthermore, in many
cases, it is reasonable to neglect isolated degeneracy of the Fermi surface and thus it is reasonable to identify the Fermi contri-
bution with the electronic intraband (I = m) excitation and higher-energy contributions with interband (I # m) transitions. In
second quantization lattice vibrations are described by the creation (annihilation) operators aq u (aqu), so that the phonon field
operators are ¢, (t) = (aque™a ! + afj, ,e~*a"). The physical displacement u’,(t) of the s-th ion in the L unit-cell, along
the « direction can be retrieved as [Mahan 2000, p. 10 eq. 1.85]

et RL el RL

Z \/> Z \/’ MZwO fq,u(bcw()

(S2)

where N is the number of unit cells considered in the Born-Von Karman boundary conditions, £5°, is the eigenvector of the
phonon mode p at the q point and ionic mass M. The system is then described by the following low-energy Hamiltonian
[Maksimov and Shulga|1996, Eq. (2)]:

1
H= Z Elelekl + Z h“/,u (aquaqu + ) Z hgkl,qucllckl(aqu + a,qﬂ) (S3)
ki,qu

where electronic states of energy ¢y; are populated by Ckz operators, with “I” labelling both the band index and the electronic
spin for a lighter notation.

From now on we consider only the ¢ = 0 case, being interested in the spectroscopic response of the system. The first building
block for an evaluable expression of the phonon propagator, is the “bare” phonon propagator defined as the correlation in the
ground state at zero temperature (-),

D(t 1) = =ib(t — ') (du(D)OL (1)), - (S4)

ng

Since at zero temperature the Fermi surface does not contribute, the bare phonon propagator coincides with the insulator-like
contribution and thus it is completely described by the bare phonon frequency

- 2w0
0 _ M
D/(uz(z) T2 (w?)Q (85)
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where we express the time-dependent correlation in the complex frequency space z = w + 7.
The complete phonon propagator Eq. (ST) includes the effects of intraband electron-phonon interaction accounted for by the
phonon self-energy 3,/ (w) as defined by the following Dyson equation [Mahan 2000, Eq. (2.123)]:

~ 0) 2 0
Dyu(z) = —— &) _ e (S6)
1— Dl (2)E(z) 22— (Wh)? — 202, (2)

For the sake of simplicity, we neglect the mode mixing that due to iuv (2) and focus on just the diagonal terms. Besides being
a valid approximation whenever the phonon frequencies are well-separated, this approximation can be easily lifted. Secondly,
we assume that the contributions at the Fermi level are isotropic. Neglecting anisotropy greatly simplified the derivation since
it allows reducing the 3D integral over momenta k to the energy integral over |k|. Furthermore, it implies that all quantities
computed at the Fermi level coincide with their average over the Fermi surface, starting from the electron-phonon coupling g,
whose Fermi average is:

<|gkl,p.|2>SF 2N N Zf (ext) | gt (S7)

where Ny stands for the electronic density of state per spin at Fermi. The validity of the isotropic approximation is system-
specific and has to be verified. While it was considered commonly valid [Allen and Mitrovi¢|1983| p. 45] [Shepelev |[1969], the
recent study [Lucrezi et al.|2024]] questions its applicability to super-Hydrides. The agreement between the theoretical isotropic
model and experimental observations supports the validity of the isotropic approximation in the case of h-LaH;y. The general
anisotropic theory is discussed in [Allen and Mitrovi¢|1983]] and [Marchese et al.[2024], we leave the generalization of the present
implementation to the anisotropic case to subsequent studies.

The isotropic phonon self-energy reads as in [Zeyher and Zwicknagl [1988, Eq. (13)] and [Maksimov and Shulga |[1996, Eq.
13)]:

Su(2) = =h2Ne (lgaul*) g, 1(2) (S8)
where the dimensionless function I(z) defined as [Zeyher and Zwicknagl|1988| Eq. (8)]:
I(z) = — kp T ZTr[AG‘ (i9) 73 Girei (192, + iwp, ) (S9)
- 2]\7]‘:‘1\71€ T3Uki n)T3Uki n m i 2 3

Zi n

encodes completely the temperature and frequency dependence of the phonon self-energy. The electronic propagator appearing in
is written in the Nambu spinor representation and accounts for the electron-phonon and impurity scattering and the Cooper
pairs formation across the SC transition. Its explicit form is then found solving the Migdal-Eliashberg systems of equations for
a given Eliashberg function o2 F'(w) determining the electron-phonon coupling. Once the dimensionless function and thus the
phonon propagator is found, the peak profile entering the vibrational Raman contribution can be written as:

DU AN (w)
Put(w) = =5 (S10)
"
where the phonon spectral function is commonly defined as [Mahan [2000, Eq. (3.114)]
A, (w) lim  Tm > D,u(2), (S11)
w)=—lim —
K z—w+i0+ s
with the following normalization properties:
o0 ~ o -
/ dwA,(w) =0 / dwA,(w) = 20.)2. (S12)
—00 0

In conclusion, this many-body approach requires estimating only three parameters entering the (low-energy) effective model:
the bare phonon frequency wﬁ, the electron-phonon coupling contribution of the Fermi surface —2 Ny <\ it ] > Sp and the level
of impurities 7;,,,. An example of obtaining the electron-phonon coupling contribution from the experimental data can be found
in [Cappelluti 2006], where the value of —2Npg <| Ikl |2> Sp is estimated by the zero-point motion while w2 is treated as a fitting
parameter of the model. In the following section, we rewrite these quantities in a slightly different convention required for
expressing these phenomenological parameters in terms of ab initio quantities evaluable in DFT.|[Supplementary Table 3|reports

the main quantities for the “dressed bubble” approximation in the two conventions.




B The displacement operator convention

To draw a connection between the many-body formalism and the ab initio framework based on DFPT, it is convenient to adopt
a different definition of the phonon propagator based on displacement operators . rather than field operators A, [Abrikosov
et al.|1975]:

Dayrap(t —t') = —in/ MM, 0(t —t' <um(t)ui,ﬁ(t’)>_ (S13)

The equivalence of the two conventions is insured by the linearity of Eq. relating field and displacement operator. Choosing
the displacement operator as the descriptor of the lattice vibrations implies that the coupling between the electronic and the
ionic degrees of freedom should be replaced accordingly. Thus, the “electron-displacement” coupling Vi gsa, also known as
“deformation potential”, assumes the role of the electron-phonon coupling gi;,,,. If we write the deformation potential in the

normal mode basis as:
/1
Vkl,u = Z Wgu,savkl,saa (S14)

we find that the two coupling are related by a linear relation [Giustino 2017]]:
Vkl,,u = 2wggkl,u. (SlS)

Following the same steps of the previous section we find that the bare phonon propagator in this convention reads

0)(5) — (0) _ 1

D;L (Z) = fu,safu,s’ﬁDss/aﬂ('z) T2 (wg)Qa (S16)

the complete phonon propagator is then

1
D,(2) = (S17)
: 22— (wp)? = Zu(2)
and the self-energy at leading order is

Su(2) = —2Neh ([Viaul*) g, 1(2)- (S18)

The spectral function in this convention has the following definition for the phonon spectral function (as [Berges et al. [2023]
equivalent to [Abrikosov et al.|1975| Eq. (7.29)])

A(w)=—lim Im2—ZD#(z). (S19)

z—w4+10+ s

and its normalization properties are independent of the bare phonon frequency

/ dwA,(w) =2 / dwA,(w) =1 (S20)
—o0 0
as proved in Section|[C] Finally, the peak profile for the vibrational Raman contribution is:
: Ap(w)
vib _ 1
Putw) = —5 = (S21)

Wrapping up the comparison between these two conventions, we see how the linear relation between the two operators

Oy = M swo S sallsa (S22a)
propagates to the following quantities:
(Viaul®)s, = 2w, (loul®) g, (S22b)
Su(2) = 2wn 8, (2) (S22¢)
Dy(2) = wgb u(2) (S22d)
Aule) = 53 An(e) (822¢)
Pu(w) = Qig P (w). (S22f)



As a consequence of this mapping, the parameters to be calculated in this convention are <\ka\2> Sp quantifying the

electron-phonon coupling of the Fermi surface; and wg describing the insulator-like contribution that does not include the Fermi
surface contribution. As detailed in the method section, the following identities allows to easily calculated these parameters in a
DFPT framework:

—h2Ne (Viau|*) g, = (@)% = (@p*™)? (S23)
wh = W™ (S24)

C Spectral function

A similar arbitrariness is present in the definition of the phonon spectral function. We find useful the following definition for the
phonon spectral function due to its normalization properties (ST9).

The reasons for adopting this phonon spectral function definition are to be found in the following proof of the normalization
properties of Eq. follows. We can calculate the norm of the spectral function solving the following integral

/ dwA,(w +i07) = —Im / dw w0 (S25)
—o0 T —oo (w+i01)2 = (w,")?2 = B, (w +i07)

in the complex space taking advantage of the of the analytic properties of the phonon self-energy. Since the imaginary part of
the phonon self-energy is an odd function of the frequency and has negative values for positive frequencies, the A, (z) has only
poles in the lower half of the complex space.

Then, the normalization integral can be calculated considering a closed line-integral in the upper half-plane consisting in a
2R length segment of the real axis and an half-circumference of radius R. Since there are no poles enclosed in such simple closed
curve, the total integral is null thanks to the Cauchy theorem. As a consequence, the integral over the real axis is equal to minus
the half-circumference contribution in the limit of infinite radius R. We proceed calculating the half-circumference contribution:

— i ) Ret?
—Im lim df(iRe?) —— S .
™ R—o0 J (Rezé‘)Q _ (Wuyn)2 _ E“(Rela)

(S26)

Assuming that asymptotically the self-energy becomes a constant due to the absence of high energy interaction, we can simplify
the denominator in the asymptotic regime defining the complex constant Z = (w™)? 4 X,,(Re®) for R > R, and thus:

oo ™ . 10\2 ™ - ™
/ dwA,(w+i0%) = 2 Tm lim / de(z(Re) - gIm/ d6 [ lim ZZ] - gIm/ doi = 2. (S27)
0 0 ™ 0

10\2
o ™ R—o0 Re? ) —Z ™ R—soco 1 — ez



III Pressure estimation from Raman spectrum
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Supplementary Figure 3: Pressure determination from the stressed diamond Raman phonon. Panel a shows the Raman

from the stressed diamond (blue curve) and its derivative (red curve). The maxima and the minima in the derivative mark the
unstressed and stressed edges of the diamond signal, respectively. The two edges are marked by vertical dashed lines and are
then used to determine the pressure Akahama and Kawamura 2006, As shown in panel b, our datasets demonstrate an increase
in pressure when decreasing temperature, typical for high-pressure studies.

10



References

Laniel, Dominique et al. (Nov. 2022). “High-pressure synthesis of seven lanthanum hydrides with a significant variability of
hydrogen content”. en. In: Nature Communications 13.1, p. 6987. 1SSN: 2041-1723. DOI: |10 . 1038 /s41467—-022 —
34755-y. URL: https://www.nature.com/articles/s41467-022—-34755-y|(cit. on p..

Peng, Feng et al. (Sept. 2017). “Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to
Room-Temperature Superconductivity”. In: Physical Review Letters 119.10, p. 107001. DOI:|10.1103/PhysRevLett.
119.107001. URL:https://link.aps.org/doi/10.1103/PhysRevLett.119.107001(cit. on p.[I).

Shipley, Alice M. et al. (June 2020). “Stability and superconductivity of lanthanum and yttrium decahydrides”. In: Physical
Review B 101.22, p. 224511. DO1: 10.1103/PhysRevB.101.224511, URL:https://link.aps.org/doi/10.
1103/PhysRevB.101.224511/(cit. on pp.[T}2).

Errea, Ion, Francesco Belli, et al. (Feb. 2020). “Quantum Crystal Structure in the 250-Kelvin Superconducting Lanthanum Hy-
dride”. In: Nature 578.7793, pp. 66—69. ISSN: 1476-4687. DOI: |10 . 1038 /541586 - 020 - 1955 -z, URL: http:
//www.nature.com/articles/s41586-020-1955-z/(cit. on pp.[I} 2).

Drozdov, A. P. et al. (May 2019). “Superconductivity at 250 K in lanthanum hydride under high pressures”. en. In: Nature
569.7757, pp. 528-531. 1SSN: 1476-4687. DOI:110.1038/s41586-019-1201-8. URL: https://www.nature.
com/articles/s41586-019-1201-8 (cit. on p.[I).

Liu, Hanyu et al. (Sept. 2018). “Dynamics and superconductivity in compressed lanthanum superhydride”. In: Physical Review
B 98.10, p. 100102. DO1:110.1103/PhysRevB. 98.100102, URL: https://link.aps.org/doi/10.1103/
PhysRevB. 98.100102/(cit. on p.[I).

Sun, Dan et al. (Nov. 2021). “High-Temperature Superconductivity on the Verge of a Structural Instability in Lanthanum Super-
hydride”. In: Nature Communications 12.1, p. 6863. 1SSN: 2041-1723. DOI: 110.1038/s41467-021-26706—w. URL:
http://www.nature.com/articles/s41467-021-26706-w (cit. on p.[I).

Eremets, M. 1. et al. (Apr. 2022). “High-Temperature Superconductivity in Hydrides: Experimental Evidence and Details”. en.
In: Journal of Superconductivity and Novel Magnetism 35.4, pp. 965-977. 1SSN: 1557-1947. DOI1: |10 .1007/s10948—
022-06148-1, URL: https://doi.org/10.1007/s10948-022-06148-1|(cit. on p..

Perdew, John P., Kieron Burke, and Matthias Ernzerhof (Oct. 1996). “Generalized Gradient Approximation Made Simple”. In:
Phys. Rev. Lett. 77 (18), pp. 3865-3868. DO1:/10.1103/PhysRevLett.77.3865, URL: https://link.aps.org/
doi/10.1103/PhysRevLett.77.3865/(cit. on p.[I).

Baroni, Stefano et al. (July 2001). “Phonons and related crystal properties from density-functional perturbation theory”. In: Rev.
Mod. Phys. 73 (2), pp. 515-562. DOI1:|{10.1103/RevModPhys.73.515. URL: https://link.aps.org/doi/10.
1103/RevModPhys. 73.515/(cit. on p.[2).

Giannozzi, Paolo et al. (Sept. 2009). “QUANTUM ESPRESSO: a modular and open-source software project for quantum simu-
lations of materials”. In: Journal of Physics: Condensed Matter 21.39, p. 395502. DO1:110.1088/0953-8984/21/39/
395502, URL:[https://dx.doi.org/10.1088/0953-8984/21/39/395502/(cit. on p.2).

Giannozzi, P et al. (Oct. 2017). “Advanced capabilities for materials modelling with Quantum ESPRESSO”. In: Journal of
Physics: Condensed Matter 29.46, p. 465901. DOI1:|10.1088/1361-648X/aa8f79. URL: https://dx.doi.org/
10.1088/1361-648X/aa8£79 (cit. on p.[).

Hamann, D. R. (2013). “Optimized norm-conserving Vanderbilt pseudopotentials”. In: Phys. Rev. B 88, p. 085117 (cit. on p. [2).

van Setten, M.J. et al. (2018). “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential
table”. In: Comput. Phys. Commun. 226, pp. 39-54. DOI: https://doi.org/10.1016/3j.cpc.2018.01.012
(cit. on p.2).

Errea, Ion, Matteo Calandra, et al. (Apr. 2016). “Quantum hydrogen-bond symmetrization in the superconducting hydrogen
sulfide system”. In: Nature 532.7597, pp. 81-84. ISSN: 1476-4687. DOI:110.1038/naturel7175. URL: http://www.
nature.com/articles/naturel7175 (cit. on p.[).

Belli, Francesco and Ion Errea (Oct. 2022). “Impact of ionic quantum fluctuations on the thermodynamic stability and supercon-
ductivity of LaBHg”. In: Phys. Rev. B 106 (13), p. 134509. DOI: |[10.1103/PhysRevB.106.134509. URL: https:
//1ink.aps.org/doi/10.1103/PhysRevB.106.134509(cit. on p.[2).

Mahan, Gerald D. (2000). Many-particle physics. 3rd ed. Physics of solids and liquids. New York: Kluwer Academic/Plenum
Publishers. ISBN: 978-0-306-46338-9 (cit. on pp. [6][7).

Maksimov, E. G and S. V Shulga (Feb. 1996). “Nonadiabatic Effects in Optical Phonon Self-Energy”. In: Solid State Communi-
cations 97.7, pp. 553-560. 1SSN: 0038-1098. DOI:[10.1016/0038-1098 (95) 00745-8|(cit. on pp. [ [7).

Allen, Philip B. and BoZidar Mitrovi¢ (Jan. 1983). “Theory of Superconducting Tc”. In: Solid State Physics. Ed. by Henry
Ehrenreich, Frederick Seitz, and David Turnbull. Vol. 37. Academic Press, pp. 1-92. DOI1:|/10.1016/S0081-1947 (08)
60665-7/(cit. on p.[7).

11


https://doi.org/10.1038/s41467-022-34755-y
https://doi.org/10.1038/s41467-022-34755-y
https://www.nature.com/articles/s41467-022-34755-y
https://doi.org/10.1103/PhysRevLett.119.107001
https://doi.org/10.1103/PhysRevLett.119.107001
https://link.aps.org/doi/10.1103/PhysRevLett.119.107001
https://doi.org/10.1103/PhysRevB.101.224511
https://link.aps.org/doi/10.1103/PhysRevB.101.224511
https://link.aps.org/doi/10.1103/PhysRevB.101.224511
https://doi.org/10.1038/s41586-020-1955-z
http://www.nature.com/articles/s41586-020-1955-z
http://www.nature.com/articles/s41586-020-1955-z
https://doi.org/10.1038/s41586-019-1201-8
https://www.nature.com/articles/s41586-019-1201-8
https://www.nature.com/articles/s41586-019-1201-8
https://doi.org/10.1103/PhysRevB.98.100102
https://link.aps.org/doi/10.1103/PhysRevB.98.100102
https://link.aps.org/doi/10.1103/PhysRevB.98.100102
https://doi.org/10.1038/s41467-021-26706-w
http://www.nature.com/articles/s41467-021-26706-w
https://doi.org/10.1007/s10948-022-06148-1
https://doi.org/10.1007/s10948-022-06148-1
https://doi.org/10.1007/s10948-022-06148-1
https://doi.org/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/RevModPhys.73.515
https://link.aps.org/doi/10.1103/RevModPhys.73.515
https://link.aps.org/doi/10.1103/RevModPhys.73.515
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://dx.doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://dx.doi.org/10.1088/1361-648X/aa8f79
https://dx.doi.org/10.1088/1361-648X/aa8f79
https://doi.org/https://doi.org/10.1016/j.cpc.2018.01.012
https://doi.org/10.1038/nature17175
http://www.nature.com/articles/nature17175
http://www.nature.com/articles/nature17175
https://doi.org/10.1103/PhysRevB.106.134509
https://link.aps.org/doi/10.1103/PhysRevB.106.134509
https://link.aps.org/doi/10.1103/PhysRevB.106.134509
https://doi.org/10.1016/0038-1098(95)00745-8
https://doi.org/10.1016/S0081-1947(08)60665-7
https://doi.org/10.1016/S0081-1947(08)60665-7

Shepelev, A. G. (May 1969). “Gap Anisotropy in the Energy Spectrum of Superconductors”. In: Soviet Physics Uspekhi 11.5,
p- 690. 1SSN: 0038-5670. DOI:|10.1070/PU1969v011n05ABEH003742, URL: https://iopscience.iop.org/
article/10.1070/PU1969v011n05ABEH003742/metal(cit. on p.[7).

Lucrezi, Roman et al. (Jan. 2024). “Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides”.
en. In: Communications Physics 7.1, pp. 1-13. 1SSN: 2399-3650. DOI: |10 . 1038 / s42005—-024 - 01528 — 6. URL:
https://www.nature.com/articles/s42005-024-01528-6/(cit. on p.[7).

Marchese, Guglielmo et al. (Jan. 2024). “Born Effective Charges and Vibrational Spectra in Superconducting and Bad Conducting
Metals”. In: Nature Physics 20.1, pp. 88-94. ISSN: 1745-2481. DOI1:[10.1038/s41567-023-02203~-3|(cit. on p.[]).

Zeyher, R. and G. Zwicknagl (May 1988). “Phonon Self-Energy Effects Due to Superconductivity: Evidence for the Strong-
Coupling Limit in YBayCu3O7_s". In: Solid State Communications 66.6, pp. 617-622. 1SSN: 0038-1098. DO1:|110.1016/
0038-1098(88)90220-7.URL: https://www.sciencedirect.com/science/article/pii/0038109888902207
(cit. on p.[7).

Cappelluti, E. (Apr. 2006). “Electron-Phonon Effects on the Raman Spectrum in MgBs,”. In: Physical Review B 73.14, p. 140505.
DOI:10.1103/PhysRevB.73.140505, URL: https://link.aps.org/doi/10.1103/PhysRevB.73.
140505/ (cit. on p.[7).

Abrikosov, Alekse Alekseevich, Lev Petrovich Gorkov, and 1. E. Dzyaloshinski (Oct. 1975). Methods of Quantum Field Theory
in Statistical Physics. Courier Corporation. ISBN: 978-0-486-63228-5 (cit. on p. [§).

Giustino, Feliciano (Feb. 2017). “Electron-Phonon Interactions from First Principles”. In: Reviews of Modern Physics 89.1,
p. 015003. po1: (10 . 1103 /RevModPhys . 89 . 015003} URL: https://link.aps.org/doi/10.1103/
RevModPhys.89.015003/(cit. on p. [g).

Berges, Jan et al. (Oct. 2023). “Phonon Self-Energy Corrections: To Screen, or Not to Screen”. In: Physical Review X 13.4,
p- 041009. po1: 10 . 1103 /PhysRevX .13 . 041009, URL: https://link .aps.org/doi/10.1103/
PhysRevx.13.041009|(cit. on p.[g).

Akahama, Yuichi and Haruki Kawamura (Aug. 2006). “Pressure Calibration of Diamond Anvil Raman Gauge to 310GPa”. In:
Journal of Applied Physics 100.4, p. 043516. 1SSN: 0021-8979. DOI: |10 .1063/1.2335683. URL: https://doi.
org/10.1063/1.2335683(cit. on p.[I0).

12


https://doi.org/10.1070/PU1969v011n05ABEH003742
https://iopscience.iop.org/article/10.1070/PU1969v011n05ABEH003742/meta
https://iopscience.iop.org/article/10.1070/PU1969v011n05ABEH003742/meta
https://doi.org/10.1038/s42005-024-01528-6
https://www.nature.com/articles/s42005-024-01528-6
https://doi.org/10.1038/s41567-023-02203-3
https://doi.org/10.1016/0038-1098(88)90220-7
https://doi.org/10.1016/0038-1098(88)90220-7
https://www.sciencedirect.com/science/article/pii/0038109888902207
https://doi.org/10.1103/PhysRevB.73.140505
https://link.aps.org/doi/10.1103/PhysRevB.73.140505
https://link.aps.org/doi/10.1103/PhysRevB.73.140505
https://doi.org/10.1103/RevModPhys.89.015003
https://link.aps.org/doi/10.1103/RevModPhys.89.015003
https://link.aps.org/doi/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/PhysRevX.13.041009
https://link.aps.org/doi/10.1103/PhysRevX.13.041009
https://link.aps.org/doi/10.1103/PhysRevX.13.041009
https://doi.org/10.1063/1.2335683
https://doi.org/10.1063/1.2335683
https://doi.org/10.1063/1.2335683

IV Spectra collection

In this section, we present the complete set of Raman spectra analysed, along with the results of the multi-peak fitting procedure.
Not all fitted peaks were used to extract the parameters of the Migdal-Eliashberg model or plotted in the article figures. In the
following collection of plots, the peaks included in the ME analysis are shown as shaded regions, while the unselected ones are
displayed as hatched areas.

To ensure an unbiased selection of the data, we applied a filtering criterion based on the ratio (r = Ax/|z|) between the
fitting uncertainty (Ax) and the fitted value (x) of each peak parameter —namely amplitude, position, and linewidth (¢;, w;, I'; in
Eq. (2)). For sample 1, we excluded from the analysis all fits with ratios exceeding 4 > 0.12 for peak A, rp > 0.14 for peak D,
and rg > 0.30 for peak E. An additional criterion was adopted for peak A, due to its sharpness, consisting in studying only
spectra obtained with the 1200 gr/mm interferometer grating. For sample 2, we excluded results with 74 > 0.28, rp > 0.25,
and rg > 0.35.

No threshold criterion was applied to peaks B and C, as their limited signal-to-noise ratio prevents a detailed Migdal-
Eliashberg analysis. For these modes, only the averaged peak positions are reported in [Extended Data Table 1]

Finally, we verified the robustness of our conclusions by testing multiple selection thresholds, finding no significant changes
in the resulting analysis.
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A Spectra sample 1
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