

Supplementary Figure S1 – SAS code used for analysis of quantitative data

```
/* Data for Public entomology survey 2025 USA and UK CloudResearch
participants responses*/

FILENAME REFFILE 'Insert path';

PROC IMPORT DATAFILE=REFFILE
  DBMS=CSV
  OUT=can_raw;
  GETNAMES=YES;
RUN;

proc print data=can_raw (obs=100);*use the obs option to get this to
print quickly!;
run;

data clean;
  set can_raw;
  if progress=100; *52 dropped, didn't finish survey;
  if duplicate_score=0; *7 dropped, participant already completed
survey;
  if consent=1; *28 dropped, participant did not consent to
participate in survey;
  if dem_quota_full=0; *95 dropped, demographic category filled;
  if attention_pass=1; *12 dropped, failed attention check;
*   if duration<618; *drop extreme values (95%) to get a better
estimate of duration;
  if duration>98; *136 dropped, values less than half of the median
following Gesas rule;
  if quality_data=1; *67 dropped, didn't provide qualitative
opinion "no" "N/A" random letters or similar;
run;

proc print data=clean; *use the obs option to get this to print
quickly!;
run;

*rearange data to see omnivore or non-omnivore;

data OV; *omnivore;
  set clean;
  if uk_diet=3 or usa_diet=3;
  diet_group=1;
run;
```

```

data VG; *vegetarian;
  set clean;
  if uk_diet=1 or usa_diet=1;
  diet_group=0;
run;

data VE; *vegan;
  set clean;
  if uk_diet=2 or usa_diet=2;
  diet_group=0;
run;

data diet_combo;
  set OV VG VE;
run;

proc sort data=diet_combo;
  by diet_group;

proc print data=diet_combo (obs=100);
run;

*rearrange data to see gender as woman or other;

data GW; *gender woman;
  set diet_combo;
  if uk_gender=1 or usa_gender=1;
  gender_group=1;
run;

data GM; *gender male;
  set diet_combo;
  if uk_gender=0 or usa_gender=0;
  gender_group=0;
run;

data GNS; *gender prefer not say;
  set diet_combo;
  if uk_gender=2 or usa_gender=2;
  gender_group=0;
run;

data gender_combo;
  set GW GM GNS;
run;

```

```

proc sort data=gender_combo;
  by gender_group;

proc print data=gender_combo (obs=100);
run;

*rearrange data to bring do you have children under 1 label;

data C1; *Yes;
  set gender_combo;
  if uk_children=1 or usa_children=1;
  children=1;
run;

data C2; *No;
  set gender_combo;
  if uk_children=0 or usa_children=0;
  children=0;
run;

data children_combo;
  set C1 C2;
run;

proc sort data=children_combo;
  by children;

proc print data=children_combo (obs=100);
run;

*rearrange data to bring do you have pets under 1 label;

data P1; *Yes;
  set children_combo;
  if uk_pets=1 or usa_pets=1;
  pets=1;
run;

data P2; *No;
  set children_combo;
  if uk_pets=0 or usa_pets=0;
  pets=0;
run;

data pets_combo;
  set P1 P2;

```

```

run;

proc sort data=pets_combo;
  by pets;

proc print data=pets_combo (obs=100);
run;

*rearrange data to see income in 4 groups;

data I1; *less than $15,000 USD or 12,000 GBP;
  set pets_combo;
  if uk_income=1 or usa_income=1;
  income_group=1;
run;

data I2; *$15,000-$24,999 USD or 12,000-19,999 GBP;
  set pets_combo;
  if uk_income=2 or usa_income=2;
  income_group=1;
run;

data I3; *$25,000-$34,999 USD or 20,000-27,999 GBP;
  set pets_combo;
  if uk_income=3 or usa_income=3;
  income_group=2;
run;

data I4; *$35,000-$49,999 USD or 28,000-39,999 GBP;
  set pets_combo;
  if uk_income=4 or usa_income=4;
  income_group=2;
run;

data I5; *$50,000-$74,999 USD or 40,000-59,999 GBP;
  set pets_combo;
  if uk_income=5 or usa_income=5;
  income_group=3;
run;

data I6; *$75,000-$99,999 USD or 60,000-79,999 GBP;
  set pets_combo;
  if uk_income=6 or usa_income=6;
  income_group=3;
run;

```

```

data I7; *$100,000-$149,999 USD or 80,000-119,999 GBP;
  set pets_combo;
  if uk_income=7 or usa_income=7;
  income_group=4;
run;

data I8; *$150,000-$199,999 USD or 120,000-159,999 GBP;
  set pets_combo;
  if uk_income=8 or usa_income=8;
  income_group=4;
run;

data I9; *$200,000 USD or 160,000 GBP and above;
  set pets_combo;
  if uk_income=9 or usa_income=9;
  income_group=4;
run;
data income_combo;
  set I1 I2 I3 I4 I5 I6 I7 I8 I9;
  run;
proc sort data=income_combo;
  by income_group;

proc print data=income_combo (obs=100);
run;

*rearrange data to see age in 3 groups;

data A1; *18-34 years - UK here and USA in data A5 below;
  set income_combo;
  if uk_age>17 and uk_age<35;
  age_group=1;
run;

data A2; *35-64 years UK;
  set income_combo;
  if uk_age>34 and uk_age<65;
  age_group=2;
run;

data A3; *35-64 years USA;
  set income_combo;
  if usa_age>34 and usa_age<65;
  age_group=2;
run;

```

```

data A4; *65 years and over;
  set income_combo;
  if uk_age>64 or usa_age>64;
  age_group=3;
run;

data A5; *18-34 years USA;
  set income_combo;
  if usa_age>17 and usa_age<35;
  age_group=1;
run;
data age_combo;
  set A1 A2 A3 A4 A5;
run;
proc sort data=age_combo;
  by age_group;
proc print data=age_combo (obs=100);
run;

data AT1; * bringing UK and USA age as a continuous variable under
one;
  set age_combo;
  age=uk_age;
run;

data AT2;
  set age_combo;
  age=usa_age;
run;

data age_both_together;
  set AT1 AT2;
  if age <=.Z then delete;
run;

proc sort data=age_both_together;
  by age;
proc print data=age_both_together (obs=100);
run;

data R1; * bringing UK and USA region into one variable;
  set age_both_together;
  region=uk_region;
run;

data R2;

```

```

      set age_both_together;
      region=usa_region;
run;

data region_combo;
  set R1 R2;
  if region <=.Z then delete;
run;

proc sort data=region_combo;
  by region;
proc print data=region_combo (obs=100);
run;

*bringing UK and USA where lived as child into one variable;
data LC1; *urban;
  set region_combo;
  if uk_lived_child=1 or usa_lived_child=1;
  lived_child=1;
run;

data LC2; *suburban;
  set region_combo;
  if uk_lived_child=2 or usa_lived_child=2;
  lived_child=2;
run;

data LC3; *rural;
  set region_combo;
  if uk_lived_child=3 or usa_lived_child=3;
  lived_child=3;
run;

data LC_combo;
  set LC1 LC2 LC3;
run;

proc sort data=LC_combo;
  by lived_child;

proc print data=LC_combo (obs=100);
run;

*bringing UK and USA where live now into one variable;
data LN1; *urban;
  set LC_combo;

```

```

      if uk_currently_live=1 or usa_currently_live=1;
      currently_live=1;
run;

data LN2; *suburban;
  set LC_combo;
  if uk_currently_live=2 or usa_currently_live=2;
  currently_live=2;
run;

data LN3; *rural;
  set LC_combo;
  if uk_currently_live=3 or usa_currently_live=3;
  currently_live=3;
run;

data LN_combo;
  set LN1 LN2 LN3;
run;

proc sort data=LN_combo;
  by currently_live;

proc print data=LN_combo (obs=100);
run;

*bringing UK and USA familiar with research into one variable;
data FR1; *not at all;
  set LN_combo;
  if uk_familiar_research=1 or usa_familiar_research=1;
  familiar_research=1;
run;

data FR2; *slightly;
  set LN_combo;
  if uk_familiar_research=2 or usa_familiar_research=2;
  familiar_research=2;
run;

data FR3; *moderately;
  set LN_combo;
  if uk_familiar_research=3 or usa_familiar_research=3;
  familiar_research=3;
run;

data FR4; *very;

```

```

set LN_combo;
if uk_familiar_research=4 or usa_familiar_research=4;
familiar_research=4;
run;

data FR5; *extremely;
set LN_combo;
if uk_familiar_research=5 or usa_familiar_research=5;
familiar_research=5;
run;
data FR_combo;
set FR1 FR2 FR3 FR4 FR5;
run;

proc sort data=FR_combo;
by familiar_research;

proc print data=FR_combo (obs=100);
run;

*bringing UK and USA politics into one variable;
data P1; *labour;
set FR_combo;
if uk_politics=1;
politics=1;
run;

data P2; *Conservative;
set FR_combo;
if uk_politics=2;
politics=2;
run;

data P3; *liberal democrat;
set FR_combo;
if uk_politics=3;
politics=3;
run;

data P4; *independent;
set FR_combo;
if uk_politics=4 or usa_politics=4;
politics=4;
run;

data P5; *none of the above;

```

```

      set FR_combo;
      if uk_politics=5 or usa_politics=5;
      politics=5;
run;

data P6; *no opinion;
  set FR_combo;
  if uk_politics=6 or usa_politics=6;
  politics=6;
run;

data P7; *republican;
  set FR_combo;
  if usa_politics=7;
  politics=7;
run;

data P8; *democrat;
  set FR_combo;
  if usa_politics=8;
  politics=8;
run;

data politics_combo;
  set P1 P2 P3 P4 P5 P6 P7 P8;
run;

proc sort data=politics_combo;
*   by politics;
  by tx;
proc print data=politics_combo (obs=100);
run;

*need to re-arrange the data to have aware of entomology practice
labelled identically for all treatments;

data AP1;
  set politics_combo;
  if tx=1;
  aware_practice = aware_practice_1;
run;

data AP2;
  set politics_combo;
  if tx=2;
  aware_practice = aware_practice_2;

```

```

run;

data AP3;
  set politics_combo;
  if tx=3;
  aware_practice = aware_practice_3;
run;

data AP4;
  set politics_combo;
  if tx=4;
  aware_practice = aware_practice_4;
run;

data AP5;
  set politics_combo;
  if tx=5;
  aware_practice = aware_practice_5;
run;

data knowledge_combo;
  set AP1 AP2 AP3 AP4 AP5;
run;

proc sort data=knowledge_combo;
  by aware_practice;

proc print data=knowledge_combo (obs=100);
run;

*need to re-arrange the data to have support for original entomology
practice labelled identically for all treatments;

data S01;
  set knowledge_combo;
  if tx=1;
  support_original = support_original_1;
run;

data S02;
  set knowledge_combo;
  if tx=2;
  support_original = support_original_2;
run;

data S03;

```

```

      set knowledge_combo;
      if tx=3;
      support_original = support_original_3;
run;

data S04;
  set knowledge_combo;
  if tx=4;
  support_original = support_original_4;
run;

data S05;
  set knowledge_combo;
  if tx=5;
  support_original = support_original_5;
run;

data S0_combo;
  set S01 S02 S03 S04 S05;
run;

proc sort data=S0_combo;
  by support_original;

proc print data=S0_combo (obs=100);
run;

*need to re-arrange the data to have support for neutral change
entomology practice labelled identically for all treatments;

data SN1;
  set S0_combo;
  if tx=1;
  support_neutral = support_neutral_1;
run;

data SN2;
  set S0_combo;
  if tx=2;
  support_neutral = support_neutral_2;
run;

data SN3;
  set S0_combo;
  if tx=3;
  support_neutral = support_neutral_3;

```

```

run;

data SN4;
  set S0_combo;
  if tx=4;
  support_neutral = support_neutral_4;
run;

data SN5;
  set S0_combo;
  if tx=5;
  support_neutral = support_neutral_5;
run;

data SN_combo;
  set SN1 SN2 SN3 SN4 SN5;
run;

proc sort data=SN_combo;
  by support_neutral;

proc print data=SN_combo (obs=100);
run;

*need to re-arrange the data to have support for refined change
entomology practice labelled identically for all treatments;

data SR1;
  set SN_combo;
  if tx=1;
  support_refined = support_refined_1;
run;

data SR2;
  set SN_combo;
  if tx=2;
  support_refined = support_refined_2;
run;

data SR3;
  set SN_combo;
  if tx=3;
  support_refined = support_refined_3;
run;

data SR4;

```

```

    set SN_combo;
    if tx=4;
    support_refined = support_refined_4;
run;

data SR5;
    set SN_combo;
    if tx=5;
    support_refined = support_refined_5;
run;

data SR_combo;
    set SR1 SR2 SR3 SR4 SR5;
run;

proc sort data=SR_combo;
    by support_refined;

proc print data=SR_combo (obs=100);
run;

*need to re-arrange the data with attitude construct labelled
identically for all treatments;
*one intuitive way of doing this is just through a series of data
statements as shown below;

data T1;
    set SR_combo;
    if tx=1;
    attitude_a = attitude_1_a;
    attitude_b = attitude_1_b;
    attitude_c = attitude_1_c;
run;

data T2;
    set SR_combo;
    if tx=2;
    attitude_a = attitude_2_a;
    attitude_b = attitude_2_b;
    attitude_c = attitude_2_c;
run;

data T3;
    set SR_combo;
    if tx=3;
    attitude_a = attitude_3_a;

```

```

    attitude_b = attitude_3_b;
    attitude_c = attitude_3_c;
run;

data T4;
    set SR_combo;
    if tx=4;
    attitude_a = attitude_4_a;
    attitude_b = attitude_4_b;
    attitude_c = attitude_4_c;
run;

data T5;
    set SR_combo;
    if tx=5;
    attitude_a = attitude_5_a;
    attitude_b = attitude_5_b;
    attitude_c = attitude_5_c;
run;

data tx_combo;
    set T1 T2 T3 T4 T5;
    run;
proc sort data=tx_combo;
    by tx;

proc print data=tx_combo (obs=100);
run;

*due to attention check need to reverse scores in attitude_b (forgot
before survey launch);

data rev_combo;
    set tx_combo;
    if attitude_b=1 then attitude_b_r=7;
    if attitude_b=2 then attitude_b_r=6;
    if attitude_b=3 then attitude_b_r=5;
    if attitude_b=4 then attitude_b_r=4;
    if attitude_b=5 then attitude_b_r=3;
    if attitude_b=6 then attitude_b_r=2;
    if attitude_b=7 then attitude_b_r=1;
*   keep id attitude_b attitude_b_r;
run;

proc sort data=rev_combo;
    by id;

```

```

proc print data=rev_combo (obs=100);
run;

*create attitude construct and keep relevant variables;

data final;
  set rev_combo;
  attitude_score = (attitude_a+attitude_b_r+attitude_c)/3;
  keep id tx attitude_score aware_practice support_original
support_neutral support_refined
  country region age age_group gender_group income_group children
pets diet_group lived_child
  currently_live politics familiar_research attitude_a attitude_b_r
attitude_c;
run;
proc sort data=final;
  by id;

proc print data=final (obs=100);
run;

*Now we need to combine support_original support_neutral
support_refined into one variable;
*will use this data set with 4083 observations (repeated measures) in
funding support regression model;
data FS1;
  set final;
  funding_support = support_original;
  group = 1;
run;

data FS2;
  set final;
  funding_support = support_neutral;
  group = 2;
run;

data FS3;
  set final;
  funding_support = support_refined;
  group = 3;
run;

data funding_combo;
  set FS1 FS2 FS3;

```

```

        run;
proc sort data=funding_combo;
  by group;

proc print data=funding_combo (obs=100);
run;

proc boxplot data=funding_combo;
  plot funding_support*group;
run;

*below Cronbach's coefficient alpha to estimate reliability of
attitude construct (use standardized);

proc corr data=final nomiss alpha plots(maxpoints=10000)=matrix;
  var attitude_a attitude_b_r attitude_c;
run;

*Factor Analysis checking unidimensionality of
constructs(eigenvalues>1);

*-attitude construct;
proc factor data=final corr scree ev rotate = varimax method=print
priors=smc;
  var attitude_a attitude_b_r attitude_c;
run;

***Aware of practice*** - frequency data for reporting in manuscript;

Proc freq data=final;
  table aware_practice*tx / plots=all;
run;

*Graphing;

proc sgplot data=final;
  vbar tx / group=aware_practice groupdisplay=cluster;
run;

***ATTITUDE SCORE MODEL*** Not include income or politics since not
equal between UK&USA;

proc anova data=final; *post hoc analysis of demographic factors;
  class tx age_group country gender_group children pets lived_child
currently_live diet_group familiar_research;

```

```

model attitude_score = tx age_group country gender_group children
pets lived_child currently_live diet_group familiar_research;
means tx age_group country gender_group children pets lived_child
currently_live diet_group familiar_research / tukey;
run;

*ANOVA cautioned proc GLM might be more appropriate;

proc glm data=final plots=all; *check to see what to include in model;
  class tx country gender_group children pets lived_child
currently_live diet_group familiar_research;
  model attitude_score = tx age country gender_group children pets
lived_child currently_live diet_group familiar_research;
run;

*Checking correlation of sig demographics at p<0.20;
proc corr data=final;
  Var country gender_group children diet_group familiar_research;
run;
*Checking distribution of participants of significant demographics
acrossall 5 treatments*;

/*Distribution of attitude score by system*/
Proc freq data=final;
  table gender_group*tx / expected chisq out=gender_group
plots=all;
run; /*-->Confirmed that not unexpected (uneven) distribution
between tx*/
Proc freq data=final;
  table children*tx / expected chisq out=children plots=all;
run; /*-->Confirmed that not unexpected (uneven) distribution
between tx*/;
Proc freq data=final;
  table diet_group*tx / expected chisq out=diet_group
plots=all;
run; *Unexpected (uneven) distribution between tx so variable
removed;
Proc freq data=final;
  table familiar_research*tx / expected chisq
out=familiar_research plots=all;
run; *Confirmed that not unexpected (uneven) distribution between
tx;
Proc freq data=final;
  table country*tx / expected chisq out=country plots=all;
run; *Confirmed that not unexpected (uneven) distribution between
tx;

```

```

proc glm data=final plots=all; *check for tx_attitude interation with
sig variables;
  class tx country gender_group children familiar_research;
  model attitude_score = tx country gender_group children
familiar_research tx*country tx*gender_group tx*children
tx*familiar_research;
  run;
* tx*country, tx*gender_group interactions significant p<0.20;

*FINAL Attitude Model without all P<0.20 variables and interactions*;

proc glm data=final plots=all; *could not use actucal sample
demographics for LMS calculations (obsmargins);
  class tx country gender_group children familiar_research;
  model attitude_score = tx country gender_group children
familiar_research tx*country tx*gender_group;
  lsmeans gender_group / stderr cl pdiff diff;
  lsmeans children / stderr cl pdiff diff;
  lsmeans country*tx / stderr cl pdiff diff;
  lsmeans familiar_research / stderr cl pdiff diff;
run;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  var attitude_score;
run;

proc sort data=final;
  by tx;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by tx;
  var attitude_score;
run;
proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by tx;
  class country;
  var attitude_score;
run;

proc sort data=final;
  by gender_group;

```

```

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by gender_group;
  var attitude_score;

proc sort data=final;
  by children;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by children;
  var attitude_score;

proc sort data=final;
  by familiar_research;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by familiar_research;
  var attitude_score;

/*Graphing*/;

proc sgplot data=final;
  vbox attitude_score / group=tx;
run;
proc sgplot data=final;
  vbox attitude_score / group=gender_group;
run;
proc sgplot data=final;
  vbox attitude_score / category=tx group=country;
run;
proc sgplot data=final;
  vbox attitude_score / group=children;
run;
proc sgplot data=final;
  vbox attitude_score / group=familiar_research;
run;

```

*FUNDING SUPPORT MODEL** Not include income or politics since not equal between UK&USA;

```

proc anova data=funding_combo; *post hoc analysis of demographic
factors;
  class tx age_group country gender_group children pets lived_child
currently_live diet_group familiar_research;
  model funding_support = tx age_group country gender_group
children pets lived_child currently_live diet_group familiar_research;
  means tx age_group country gender_group children pets lived_child
currently_live diet_group familiar_research / tukey;
run;

*Using proc mixed due to repeated measures in funding_support;

proc mixed data=funding_combo plots=all; *check to see what to include
in model;
  class group id tx country gender_group children pets lived_child
currently_live diet_group familiar_research;
  model funding_support = group tx age country gender_group
children pets lived_child currently_live diet_group familiar_research;
  repeated / type=cs sub=ID;
  lsmeans group / pdiff=all;
run;

*Checking distribution of participants of significant demographics at
p<0.20*;
  *Distribution of demographic var by treatment* only one not
investigated was currently_live;

  Proc freq data=final;*use data=final so no psudo-replication;
    table currently_live*tx / expected chisq out=currently_live
plots=all;
  run; *-->Confirmed that not unexpected (uneven) distribution
between tx*;

proc mixed data=funding_combo plots=all; *explore group interactions;
  class group id tx country gender_group children currently_live
familiar_research;
  model funding_support = group tx country gender_group children
currently_live familiar_research tx*group country*group
gender_group*group children*group currently_live*group
familiar_research*group;
  repeated / type=cs sub=ID;
  lsmeans group / pdiff=all;
run;
*tx*group, country*group, gender_group*group interactions sign at
p<0.20;

```

```

*FINAL Funding Support Model without all P<0.20 variables and
interactions*;
ods graphics on / discretemax=1400;

proc mixed data=funding_combo plots=all ; *obsmargins to use actual
sample demographics for LMS calculations;
  class group id tx country gender_group children currently_live
familiar_research;
  model funding_support = group tx country gender_group children
currently_live familiar_research tx*group country*group
gender_group*group;
  repeated / type=cs sub=ID;
  lsmeans group / cl obsmargins pdiff diff ;
  lsmeans tx / cl obsmargins pdiff diff;
  lsmeans country / cl obsmargins pdiff diff;
  lsmeans gender_group / cl obsmargins pdiff diff;
  lsmeans children / cl obsmargins pdiff diff;
  lsmeans familiar_research / cl obsmargins pdiff diff;
  lsmeans group*tx / cl obsmargins pdiff diff;
  lsmeans group*country / cl obsmargins pdiff diff;
  lsmeans group*gender_group / cl obsmargins pdiff diff;
run;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  var support_original support_neutral support_refined;
run;

proc sort data=final;
  by tx;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by tx;
  var support_original support_neutral support_refined;
run;

proc sort data=funding_combo;
  by country;

proc means n mean std stderr max min data=funding_combo; *this allows
you to see response means and other basic stats;
  by country;
  var funding_support;
run;

```

```
proc sort data=final;
  by country;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by country;
  var support_original support_neutral support_refined;
run;

proc sort data=funding_combo;
  by gender_group;

proc means n mean std stderr max min data=funding_combo; *this allows
you to see response means and other basic stats;
  by gender_group;
  var funding_support;
run;

proc sort data=final;
  by gender_group;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by gender_group;
  var support_original support_neutral support_refined;
run;

proc sort data=funding_combo;
  by children;

proc means n mean std stderr max min data=funding_combo; *this allows
you to see response means and other basic stats;
  by children;
  var funding_support;
run;

proc sort data=final;
  by children;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by children;
  var support_original support_neutral support_refined;
run;

proc sort data=funding_combo;
```

```
by familiar_research;

proc means n mean std stderr max min data=funding_combo; *this allows
you to see response means and other basic stats;
  by familiar_research;
  var funding_support;
run;

proc sort data=final;
  by familiar_research;

proc means n mean std stderr max min data=final; *this allows you to
see response means and other basic stats;
  by familiar_research;
  var support_original support_neutral support_refined;
run;

/*Graphing*/

proc sgplot data=funding_combo;
  vbox funding_support / group=group;
run;

proc sgplot data=funding_combo;
  vbox funding_support / category=tx group=group;
run;
```

Supplementary Figure S2 – Codebook used for analysis of qualitative data

Codebook 1 – Attitude towards practices used during entomology research

Theme – Focused on the animals

1. Animal impacts – rational provided by participant asserts animals will experience or not experience pain, suffering, distress, harm or similar
2. Value of life – rational provided by participant asserts life, animal life, insect life, or similar has or does not have value

Theme – Focused on ethics

3. Cruelty – rational provided by participant asserts that the practice is cruel
4. Normative values – rational provided by participant asserts that practices are broadly acceptable or not acceptable animal treatment
5. Utilitarian reasoning – rational provided by participant asserts a conscious weighing of harms to insects (animal impacts) and benefits to society (scientific progress)

Theme – Focused on science

6. Scientific progress – rational provided by participant asserts that practices are required or not required to advance scientific progress or similar
7. Alternatives – rational provided by participant asserts there is, isn't, or should find alternatives to the procedures described

Theme – Focused on participants

8. Ambivalence – rational provided by participant asserts no opinion, doesn't matter, doesn't know, no comment, or that they don't care
9. Confused – rational provided by participant asserts they didn't understand the question asked
10. Unable to describe – rational provided by participant asserts they are unsure why, describes a belief, feeling or existing opinion
11. Lack information – rational provided by participant asserts they need more information to justify opinion
12. Unfamiliar – participant states they are unaware or unfamiliar about the topic

Theme – Other – rational provided by participant does not fit into prevailing themes or is unclear

Codebook 2 – Likelihood to support public funding of future entomology research

Theme – Focused on the research procedures

1. Change in procedure – rational provided by participant asserts refinements improve or did not change willingness to fund research or that additional refinements to procedures are required
2. Never support – rational provided by participant asserts they are against animal research, will not support, or the research as cruel
3. Disregard for insects – rational provided by participant asserts a disregard, unpleasanliness, or a lack of concern for insects or their experiences

Theme – Focused on the scientific merit

4. Necessity – rational provided by participant asserts described research is needed or unnecessary for scientific advancement
5. Trust scientists – rational provided by participant asserts they trust scientists and their decisions

Theme – Focused on the societal benefit

6. Public value – rational provided by participant asserts decision was based on importance of research to broader society
7. Financial cost – rational provided by participant asserts financial cost to society influenced their decision
8. Alternative benefits – rational provided by participant asserts the public interest would be better served by not funding insect research or funding other types of research

Theme – Focused on the participant

9. Ambivalence – rational provided by participant asserts no opinion, doesn't matter, no comment, or that they don't care
10. Unable to describe – rational provided by participant asserts they are unsure why, don't know, describes a belief, feeling or existing opinion
11. Lack information – rational provided by participant asserts they need more information to justify opinion
12. Unfamiliar – participant states they are unaware or unfamiliar about the topic

Theme – Other – rational provided by participant does not fit into prevailing themes or is unclear