
Appendix A. Formal derivation of the Universal-Attractor / Null-
Attractor equivalence

A.0 Notation and standing assumptions

Let N ≥ 2 be the number of labeled atomic elements (sites, agents, points).
Let S denote the system state space (discrete counts or a continuous vector space).
Write SN for the permutation group on N labels (relabelings of elements). A map or stochastic

kernel T is permutation-invariant (or strictly impartial) iff

T (π · s, π ·A) = T (s,A) ∀π ∈ SN ,

where π · s denotes the relabeled state and A a measurable set of states.

Null Attractor (NA). Informally, dynamics that have zero deterministic drift (continuous case)
or uniform sampling / zero preference (discrete case), which yield maximum normalized entropy
Sd = 1 in the discrete setting or an irreducible minimal steady variance in the continuous setting.
Universal Attractor (UA). The dynamical rule intended to enforce absolute uniformity (all
components equal—zero relative variance) under the constraint of strict impartiality. The UA is a
family of rules claimed to drive states to the perfectly uniform state

U = {x ∈ S : x1 = · · · = xN}

(continuous) or to equal counts (discrete).
We will formalize UA as any permutation-invariant dynamics whose unique putative target

is the uniform state. The claim to prove is that under strict impartiality the UA dynamics are
mathematically identical to NA dynamics; i.e., they are equivariant and their invariant measures /
stationary states coincide with those of the null dynamics.

All results below are stated and proved under the strict impartiality hypothesis (permutation
invariance) and standard regularity conditions (continuity, existence/uniqueness of solutions or
ergodicity of kernels where required).

A.1 Discrete case (multinomial / Markov sampling)

Definitions. Let, at each discrete time t ∈ N, a single element i ∈ {1, . . . , N} be selected according
to a probability vector

p(st) =
(
p1(st), . . . , pN (st)

)
,

which may depend on the current state st (selection counts, etc.). The transition of counts is
multinomial / urn-like.

The dynamics are strictly impartial iff

p(π · s) = π · p(s) ∀π ∈ SN .

In particular, impartiality implies that if the state is fully symmetric (all atomic components
are equal in all respects except identity), then

p(s) =

(
1

N
, . . . ,

1

N

)
.
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Lemma .1 (Symmetry implies uniform stationary distribution). Let P be a time-homogeneous
Markov chain kernel on a finite state space X whose transition kernel is permutation-invariant
under relabeling of components. Then any permutation-symmetric probability measure ν (i.e., ν(π ·
A) = ν(A)) that is stationary for P has marginals that are uniform across labels. In particular,
if P has a unique stationary measure, that stationary measure is permutation symmetric and the
marginal distribution on labels is uniform.

Proof. For finite X , existence of stationary measures is standard. If P is permutation-invariant
then, for any stationary ν,

ν(A) =
∑
x∈X

ν(x)P (x,A) =
∑
x∈X

ν(π · x)P (π · x, π ·A) = ν(π ·A).

Thus ν is permutation symmetric. Permutation symmetry of ν implies equal marginals for all
labels, hence uniform marginals.

Theorem .2 (Discrete UA = NA equivalence). Let the discrete dynamics be strictly impartial in
the sense above and assume the dynamics are ergodic (unique stationary measure). Then the unique
stationary distribution is the uniform (maximum-entropy) distribution across labels. Consequently,
the UA (the rule that purports to enforce absolute uniformity by treating labels identically) has the
same stationary distribution as the NA (the impartial, zero-preference sampling rule). Therefore,
under strict impartiality and ergodicity,

UA = NA.

Proof. Under strict impartiality, every relabeling of states leaves the transition kernel unchanged, so
by Lemma A.1 the unique stationary measure is permutation symmetric and therefore gives equal
marginal probabilities to each label. The uniform marginal yields maximum Shannon entropy
H = lnN and normalized entropy Sd = 1. The NA (uniform sampling pi ≡ 1/N) has the same
stationary distribution. Hence the stationary behavior of any impartial UA dynamics coincides
with that of NA.

Remarks. The assumption of ergodicity (unique stationary measure) is natural for irreducible,
aperiodic chains; without ergodicity one may obtain multiple invariant measures, but impartiality
still forces any symmetric invariant measure to have uniform marginals (so the equivalence holds
for symmetric invariant measures).

The result formalizes the intuition in Section 3 of the manuscript: impartiality forces uniform
long-run frequencies, i.e., maximal normalized entropy.

A.2 Continuous case (mean-reverting linear SDE / Ornstein–Uhlenbeck family)

Setup. Consider x(t) = (x1(t), . . . , xN (t)) ∈ RN evolving under the linear SDE

dxi(t) = −k
(
xi(t)− µ(t)

)
dt+ ϵ dWi(t), µ(t) :=

1

N

N∑
j=1

xj(t),

where {Wi(t)}Ni=1 are independent standard Wiener processes, k > 0 and ϵ ≥ 0. This is the mean-
coupled Ornstein–Uhlenbeck process used in the manuscript (Section 2). The drift is manifestly
permutation-invariant: any relabeling of coordinates leaves the drift form invariant.
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Define the empirical mean m(t) = µ(t) and the variance

σ2(t) :=
1

N

N∑
i=1

(
xi(t)− µ(t)

)2
.

Lemma .3 (Variance evolution). For the SDE above,

d

dt
E
[
σ2(t)

]
= −2kE

[
σ2(t)

]
+ ϵ2.

Sketch. Standard Itô calculus applied to (xi − µ)2 and summing over i gives (because the noise
terms are independent and mean zero) the deterministic ODE for the expectation as claimed; details
follow the textbook derivation of the OU variance.

Corollary .4 (Steady state variance). If ϵ > 0 then the linear ODE for E[σ2] has the unique
globally attracting steady state

E[σ2]∞ =
ϵ2

2k
.

If ϵ = 0 then E[σ2] → 0 exponentially fast.

Proposition .5 (Permutation invariance forces NA behavior). Under the standing linear mean-
coupled SDE above, the drift is permutation-invariant and on the perfectly symmetric subspace

U = {x : x1 = · · · = xN},

the drift vanishes identically (because xi − µ = 0). Therefore, when ϵ > 0 the dynamics remain
stochastic and the steady-state variance is positive, determined solely by the noise floor ϵ. The
UA target of absolute uniformity (collapse to U with σ2 ≡ 0) is not achieved: instead the unique
stationary measure supported on fluctuations about U is the Gaussian with covariance proportional
to ϵ2. The null dynamics (zero deterministic bias within the symmetric manifold) produce precisely
the same steady-state fluctuation statistics.

Theorem .6 (Continuous UA = NA equivalence — linear SDE). Under the mean-coupled linear
SDE above with ϵ > 0 and finite k > 0, the permutation-invariant UA dynamics and the null
(zero-bias) dynamics are statistically equivalent at stationarity: both yield the invariant Gaussian
measure concentrated about U with variance ϵ2/(2k). Consequently,

UA = NA.

A.3 Nonlinear continuous dynamics (general permutation-invariant drift)

The linear SDE gives a clean closed-form equivalence. The physical claim in the manuscript is
stronger: any strictly impartial deterministic rule (or SDE) that attempts to impose absolute
uniformity will, under impartiality, be dynamically equivalent to a null attractor in the sense that
the only permutation-symmetric invariant sets / measures are those that treat labels uniformly;
stochastic forcing then prevents collapse to exact uniformity.

Theorem .7 (General impartial dynamics — invariant symmetric measures are uniform). Let the
drift F : RN → RN and diffusion matrix D(x) be SN -equivariant (permutation-invariant). Suppose
there exists a symmetric manifold U . Then:
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1. Any invariant probability measure ν which is permutation-symmetric has uniform marginals
(as in Lemma A.1).

2. If stochastic forcing is nonzero in directions transverse to U , no invariant measure can be
supported exactly on U (i.e., exact collapse is prevented).

3. Therefore, the only symmetric invariant measures coincide with those produced by null dy-
namics (no label bias), and any UA dynamics under strict impartiality can at best match NA
statistics at stationarity.

Sketch. (1) follows from SN -equivariance just as in the discrete case. (2) follows because nonzero
noise transverse to U gives positive escape probability from any point of U . (3) follows immediately
by combining (1) and (2).

A.4 Formal statement of the Universal-Attractor Paradox (UAP)

Let dynamics on N labeled components be strictly impartial (permutation invariant) and suppose
stochastic forcing transverse to the uniform manifold is present (or, in the discrete case, selec-
tion is randomized by a symmetric kernel). Then any attractor that purports to enforce absolute
uniformity (the UA) is dynamically indistinguishable from the Null Attractor (NA). In particu-
lar, absolute uniformity (Sc = 0 in continuous systems or Sd = 0 in discrete counts) cannot be
achieved for ϵ > 0 (continuous) or under symmetric random sampling (discrete); the stationary
state for strictly impartial dynamics is the maximal-entropy / uniform state (discrete) or a steady-
state distribution of transverse fluctuations with variance determined solely by the intrinsic noise
(continuous).

Proof. The discrete part is Theorem A.1. The continuous linear part is Theorem A.2. The general
case is Theorem A.3. Combined, these show that under strict impartiality the stationary invariant
measures coincide with those of the null dynamics — hence UA = NA in all such impartial regimes.

A.5 Corollaries and remarks

1. Noise is the decisive factor. The inability to reach exact uniformity is not a deep conse-
quence of Liouville or conservation laws in general — it is a direct consequence of the presence
of nonzero intrinsic fluctuations (noise) and the symmetry constraint. If ϵ = 0 and the de-
terministic flow is contracting transversely to U , absolute uniformity can be achieved; but
such flows must break typical time-reversal / Hamiltonian constraints and are not generically
available in natural closed systems with quantum or thermal fluctuations. (This corrects the
Liouville misattribution in the first draft; see main text and Section 2.3 of the manuscript,
The Universal and Null Attractors.)

2. Breaking impartiality allows escape. Any deviation from strict permutation invariance
— e.g. an infinitesimal bias or symmetry-breaking term — can change the stationary measure
and allow the system to develop non-uniform order (this is the basis for SSB discussions in
Sections 4–5). Formally, if the drift or sampling kernel contains terms that are not SN -
equivariant, then the unique stationary measure need not be symmetric and UA can differ
from NA.
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3. Generality beyond linear OU. The linear OU case is the clearest demonstration because
of closed-form variance; the more general results above show the same conclusion under broad
regularity conditions.

A.6 Concluding mathematical remark

The proofs given are constructive and elementary: permutation invariance constrains invariant
measures to be symmetric, and nonzero stochastic forcing prevents support collapsing onto the
uniform manifold. The equality UA = NA follows directly from these two facts. The appendix
above provides a rigorous formalization of the intuition and simulation evidence given in your
manuscript (cf. Sections 2–4).
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